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Abstract 

A graph generative model takes a graph as input 
and is supposed to generate new graphs that “look 
like” the input graph. While most classical models 
focus on few, hand-selected graph statistics and 
are too simplistic to reproduce real-world graphs, 
NetGAN recently emerged as an attractive alter-
native: by training a GAN to learn the random 
walk distribution of the input graph, the algorithm 
is able to reproduce a large number of important 
network patterns simultaneously, without explic-
itly specifying any of them. In this paper, we 
investigate the implicit bias of NetGAN. We find 
that the root of its generalization properties does 
not lie in the GAN architecture, but in an incon-
spicuous low-rank approximation of the logits 
random walk transition matrix. Step by step we 
can strip NetGAN of all unnecessary parts, in-
cluding the GAN, and obtain a highly simplified 
reformulation that achieves comparable general-
ization results, but is orders of magnitudes faster 
and easier to adapt. Being much simpler on the 
conceptual side, we reveal the implicit inductive 
bias of the algorithm — an important step towards 
increasing the interpretability, transparency and 
acceptance of machine learning systems. 

1. Introduction 
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structure (such as the community structure, the characteris-
tic path lengths, etc). Being able to create perturbed copies 
of a graph is useful in many different scenarios, for example: 
comparing a small sample of brain networks for Alzheimer 
patients (just one, in the extreme case) to a large population 
of healthy subjects, making robustness statements about a 
climate network by running a sensitivity analysis on per-
turbed copies, or performing a generic bootstrap analysis. 

A graph generative model is a mechanism to achieve the 
following task: for a given input graph (or a set of input 
graphs), generate new graphs that have a similar structure 
as the input graph. The mechanism is supposed to slightly 
perturb the graph, but should not change its characteristic 

A recent graph generative model that has received a lot of 
attention is NetGAN (Bojchevski et al., 2018). First, it sam-
ples a set of random walks from the input graph to train 
a GAN (Goodfellow et al., 2014), whose generator learns 
to produce node-sequences that resemble random walks 
over the input graph. Generated graphs are then obtained 
as reconstructions based on these sequences. The inherent 
assumption of this approach is that random walks describe 
graphs in a reasonably holistic way: local statistics such as 
motifs are observable in the individual random walks, while 
global statistics such as cluster structure and diameter are 
encoded in the distribution over random walk sequences. 
As opposed to other approaches, NetGAN does not make 
any explicit model assumptions; rather, it is supposed to 
implicitly learn many local and global graph statistics simul-
taneously by reproducing random walk statistics. However, 
if the goal is to generalize (perturb) the input graph, there 
has to be an implicit bias as to which type of generalization 
(perturbation) is preferred (no free lunch). The goal of our 
paper is to characterize this bias of NetGAN, which we will 
achieve by reformulating it in terms of a distance function 
between graphs. This formulation provides insights on the 
influence of design choices and model parameters, such as 
the length of the random walks. Scrutinizing the NetGAN 
architecture, we observe that many of its components can 
be considerably simplified. Step by step we strip all the 
unnecessary parts until we are left with the only crucial 
ingredient, a low-rank approximation of the logits random 
walk transition matrix. Our main contributions are: 

‚ Reformulation of NetGAN. We reformulate NetGAN 
as a low-rank approximation with respect to the 
Kullback-Leibler divergence between transition matri-
ces, which requires neither a GAN nor any sampling. 

‚ Huge speedup. Our algorithm retains the generalization 
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Figure 1. Pipelines for NetGAN (upper path) and our proposed method CELL (lower path). CELL is a condensed version of NetGAN 
that bypasses the expensive sampling steps and replaces the GAN with an optimization problem. 

performance of NetGAN, but runs in seconds instead of 
hours. See Table 1 for a comparison of training times. 

‚ Transparency. Our algorithm is conceptually much 
simpler than NetGAN. This opens the possibility to ana-
lyze it theoretically, and allows for application-specific 
adaptions. 

2. Background: NetGAN 

2.1. Graph and random walk notation 

Like NetGAN, we consider an unweighted, undirected, and 
connected graph G “ pV, E with nodes V N

, . . . , N   E  V 
q

V   
“ r
  

s “
t1

e G E

u, edges Ñ ˆ , and number of edges 
p q “

 
|

 
|. It has adjacency matrix A 0, 1  NˆN , de-

gree vector d P RN 
P t u

, degree matrix D “ diagpdq P RNˆN , 
and the transition matrix for unbiased random walks on G 
is given by P “ D

´1
A P RNˆN . We additionally as-

sume G to be non-bipartite so that the random walk de-
scribed by P has a unique stationary distribution fi P RN . 
A single random walk of length T is an ordered tuple 
R “ pv0, . . . , vT q P V

T ̀ 1 , and a set of n random walks 
is denoted by R “ tR1, . . . , Rnu. The score matrix 
SpRq P RNˆN counts the transitions in R, that is, Sv,w 

equals the total number of times random walks in R tran-
sition from v to w. If clear from the context, we drop the 
dependency on R and write S instead of SpRq. An edge-
independent random graph model, sometimes also called 
inhomogeneous Erdos-Rén˝ yi model, is a symmetric matrix 
A

: P r0, 1sNˆN of edge probabilities. Graphs on the same 
vertices rN s are sampled from this model by drawing epGq 
edges tv, wu with probability A: 

v,w independently and with-
out replacement. We use bold symbols, if we consider an 
object as a random variable (e. g. R instead of R). 

 

2.2. NetGAN 

Table 1. Training time (in seconds) for NetGAN and our proposed 
method CELL on a variety of networks. NetGAN requires a GPU 
for training, while CELL runs on a CPU. 

DATA SET (NODES/ EDGES) NETGAN CELL 

CORA-ML (2,810/ 7,981) 7,478 21 
CITESEER 
POLBLOGS 

(2,110/ 
(1,222/ 

3,668) 
16,779) 

4,654 
55,276 

10 
15 

RT-GOP (4,687/ 5,529) 14,800 23 
WEB-EDU (3,031/ 6,474) 11,000 16 

learns the distribution over random walks drawn from the 
input graph in the learning step. It then reconstructs the 
graph based on “synthetic” random walks sampled from this 
learned distribution in the reconstruction step. See Figure 1 
for a schematic overview. 

In this section, we give a high-level overview of the NetGAN 
algorithm; for more details, we refer the reader to Bo-
jchevski et al. (2018). NetGAN is a graph generative model: 
given a single input graph G, it returns graphs G1 on the 
same set of nodes by proceeding in two main steps. First, it 

Learning step. Given an input graph G, NetGAN samples 
a large set R of random walks of fixed length T with ran-
domly chosen start nodes. These random walks form the 
training set for a GAN: the generator tries to produce node 
sequences of length T that resemble the observed random 
walks in R, while the discriminator tries to distinguish real 
from generated sequences. Both generator and discrimina-
tor use the Long short-term memory architecture (LSTM) 
(Hochreiter & Schmidhuber, 1997), and they are trained 
with the Wasserstein loss (Arjovsky et al., 2017). Training 
finishes once an early stopping criterion is met, after which 
the generator is used to sample synthetic random walks. 

During and after training, the generator constructs each 
synthetic random walk pv0, . . . , vT q in a step-by-step proce-
dure. First, random noise z is used to initialize the memory 
state m0 of the LSTM architecture and the start node v0 of 
the sequence. A function f◊ with learnable parameters ◊ 
then repeatedly updates the two values: given the current 
memory state mt and node vt, it outputs the next memory 
state mt`1 and the distribution pt`1 over the next node vt`1 

in form of logits. The next node vt`1 is then obtained as a 
sample from this distribution. In equations, this update is 



maxtSk,l, Sl,ku
A

: “ . (2)
k,l ∞

N 
k1,l1“1 maxtSk1,l1 , Sl1,k1 u 
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described by 

pmt`1, pt`1q “  f◊pmt, vtq , 
(1)

vt`1 „ Cat p‡ppt`1qq , 

where Cat denotes the categorical distribution and ‡ the 
softmax function, which converts the logits into a probability 
distribution on rN s. This procedure is repeated until the 
sequence has the desired length T . 

Reconstruction step. After training is finished, NetGAN 
uses the generator to generate a large set of n synthetic ran-
dom walks. Their transitions are counted in a joint score 
matrix S, which is then converted into an edge-independent 
random graph model A: by symmetrizing and then normal-
izing it, that is, 

To obtain the new graph G1, NetGAN samples epGq edges 
independently and without replacement from A: while pre-
venting self-loops and isolated nodes. 

3. What causes the generalization? 

In this section, we identify those parts of NetGAN that we 
believe to be absolutely necessary to achieve the two goals 
of producing new graphs that (i) resemble the input graph 
by mimicking its graph statistics, but (ii) also generalize the 
input graph by sharing only a certain amount of its edges. 
The complicated GAN- and LSTM-based architecture used 
by NetGAN disguises its underlying bias and makes a direct 
analysis difficult. Therefore, we examine all the individual 
steps of NetGAN, not in terms of how they work, but what 
they aim to achieve. 

The random walks? The intuition of NetGAN is that 
graphs with a similar random walk distribution also share 
many of their topological properties. In fact, as we observe 
in Section 5.3, learning the transition matrix of random 
walks by counting their transitions is sufficient for perfectly 
reconstructing the input graph. This excludes the possibility 
that by reducing graphs to their random walk statistics, we 
introduce an irreversible systematic bias. 

The GAN? The role of the GAN is to learn the random walk 
distribution of the input graph. We prove in Section 5.3 that 
if the GAN perfectly learns the random walk distribution, 
NetGAN will simply reproduce the input graph instead of 
generalizing it. However, the results reported by Bojchevski 
et al. (2018) show that even if NetGAN is trained for a long 
time, it produces graphs that are considerably different from 
the input graph as measured by edge overlap. Consequently, 
there has be be another mechanism that prevents the GAN 
from memorizing the input graph. 

The LSTM? As the authors of NetGAN pointed out them-
selves, the LSTM architecture, which is supposed to capture 
long-term dependencies, seems to be an odd choice for 
learning Markov sequences that by construction do not have 
any such dependencies. It is possible that this architecture 
choice injects noise into the learning process, which pre-
vents memorization of the input graph. Yet, this type of 
noise seems to be rather uncontrolled, and we consider it 
unlikely that this aspect of the LSTM cannot be replaced by 
a simpler, more direct mechanism. 

Computational trick: low-rank approximation. What is 
left? In our opinion, the only component that explains why 
NetGAN successfully generalizes graphs is a computational 
trick: the LSTM is not operating on the high-dimensional 
space RN directly. In order to reduce computational com-
plexity, it uses learnable down- and up-projections Wdown  
RN

P
ˆH and Wup P RHˆN with H ! N . As we derive in 

Section A of the supplementary, these projections force the 
update rule of a node and memory state pair pvt, mtq with 
vt as one-hot vector to be of the form 

pt`1 “ vt 
J

W pmtq , 
(3)

vt`1 „ Cat p‡ppt`1qq , 

where W pmtq P R NˆN depends on mt and has rank at 
most H . Because W mt  is the transition matrix after 
applying ‡, 

p q
we refer to it as the logit transition matrix. 

NetGAN forces this matrix to have low rank, which leads 
us the following conjecture: 

Conjecture: The key ingredient of NetGAN is to learn 
the random walk distribution by performing a low-
rank approximation of the logit transition matrix. 

To validate this conjecture, we derive a simplified method 
that applies this low-rank approximation directly and demon-
strate its comparable performance in experiments. 

4. Stripping NetGAN 

We now gradually simplify NetGAN by stripping it 
of all unnecessary components in Section 4.1. Addi-
tionally, we observe in Section 4.2 that sampling ran-
dom walks can be circumvented with a limit argument. 
This leads to our new, highly simplified method called 
Cross-Entropy Low-rank Logits (CELL), see Section 4.3 
for a summary and Figure 1 for a schematic outline. 

4.1. Low-rank approximation replaces the GAN 

Motivated by the above conjecture, we now prune the update 
rule in Eq. (3) until we arrive at a rank-constrained optimiza-
tion problem. Justified by the Markov property of unbiased 
random walks, we first drop the LSTM and the memory 
state mt. In Section A of the supplementary, we derive 



ÿT ÿn ÿT 
a. s.S “ 

1 
Q̂tpRjq ››› Ñ Qt . (6)

n n nÑ8 
t“1 j“1 t“1 

S a. s. ›››››Ñ diagpfiqP .  (7)
nT n,T Ñ8 
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that the GAN learns the random walk distribution by choos-
ing its transition matrix directly from the parametric family 
P “ t‡rowspW q P RNˆN 

: W P RNˆN 
, rankpW q § Hu, 

where ‡rows denotes the function that applies the softmax ‡ 
to each row of a matrix. The training set for this problem 
consists only of the transitions of random walks in , and 
the noise random 

R

variable z plays the subordinate role of 
choosing the first node. This parametric family formulation 
defeats the purpose of using a GAN at all, which is why 
instead we revert to the classical maximum likelihood ap-
proach (or, equivalently, the cross-entropy loss) on P : using 
the notation pk, lq P R to denote all transitions (with multi-
ple counting) of random walks in R, the resulting problem 
is given by 

ÿ
min ´ log ‡rowspW qk,l ,

W PRN ̂ N 
pk,lqPR (4) 

s. t. rankpW q § H .  

In short: instead of learning the random walk distribution 
by training a GAN, we approximate its transition matrix 
directly by solving a rank-constrained optimization problem. 

4.2. Bypassing random walk sampling 

There is another aspect of NetGAN that is somewhat puz-
zling: even to learn a graph of moderate size, for exam-
ple the graph CORA-ML with about 3,000 vertices and 
8,000 edges, NetGAN needs to sample 7,500,000 random 
walks of length 15 from the input graph, which are worth 
112,500,000 edges. In other words, we see every edge of the 
input graph about 14,000 times on average — with which 
any edge-frequency statistic would be very close to its ex-
pected value. The same order of magnitude applies to the 
sampling of random walks from the generator in the recon-
struction step. With that observation, a natural question 
is whether we can circumvent the random walk sampling, 
and the answer is yes. Since the random walks are only 
used in form of the score matrix that contains the frequency 
of node transitions, and this matrix converges for a large 
number of random walks, we can substitute the actual score 
matrix with its limit value. The remainder of this section 
formalizes this idea in Eq. (7) and applies it to NetGAN at 
both sampling steps. 

Convergence of the score matrix S. First, we consider a 
single random walk R “ pv0, . . . , vT q of length T as a ran-
dom variable, whose distribution depends on the distribution 
q0 P RN of the first node v0 and the transition matrix P . 
For t P t1, . . . , T u, let Qt P RNˆN denote the distribution 
of the t-th transition pvt´1, vtq in R. Its marginal vt´1 

is distributed as qt´1 P RN and its conditional vt|vt´1 is 
distributed as P , which yields the matrix decomposition 

Qt “ diagpqt´1qP .  (5) 

From this perspective, counting the transitions of a single 
random walk R in a score matrix S R  RNˆN can be ∞
expressed as p q “  T ˆ

p q P
S R ˆ

t
    “1 Qt R , where Qt R is the em-

pirical 
p q p q

version of Qt based on one sample. The score matrix 
S “ SpR1, . . . , Rnq based on n random walks ∞ R1, . . . , Rn

decomposes into n
S “ 

j“1 SpRjq, and with the above 
∞ ∞

considerations we have n T
S “ Q̂

j tpRjq. By the “1 t“1 
Glivenko-Cantelli theorem for empirical distributions, we 
can compute the limit of S n for n as { Ñ 8

Using Eq. (5), the normalized right-hand side is given by∞
T ∞

T 
t“1 Qt{T “ diagpflT qP , where flT “ 

t“1 qt´1{T . In 
that sense, using a large number of random walks reduces to 
node weights flT . Since the underlying graph is by assump-
tion connected and non-bipartite, the stationary distribution 
fi of P exists and is unique, that is, fi “ limtÑ8 qt. Hence 
the Cesàro mean flT also converges to fi as T Ñ 8. Or, in 
other words: for any initial distribution q0, the node weights 
induced by sufficiently long random walks are given by 
fi. In conjunction with Eq. (6), we obtain the limit of the 
normalized score matrix 

Note that we take two limits to approximate S. We take the 
first limit with respect to the amount of random walks n, 
because NetGAN samples many random walks. The second 
limit with respect to the length T dilutes the influence of the 
initial distribution (fl1 “ q0) in favor of the stationary distri-
bution (limT  flT “ fi). This is appropriate because most Ñ8
real-world networks have small diameter, and the length 
T “ 15 used in NetGAN already ensures that flT is close to 
its limit distribution. Furthermore, the authors of NetGAN 
already observed that taking longer random walks increases 
performance. Finally, in Section 5.4 we will see that the 
information encoded in the start distribution of the random 
walk can be more directly incorporated by the node weights. 

Replacing random walks from the input graph. The 
objective in Eq. (4) sums over all node transitions in R. 
We count the transitions in a corresponding score matrix 
S “ SpRq to rewrite the objective function as 

Nÿ
´ Sk,l log ‡rowspW qk,l . (8) 

k,l 1 “

Normalizing S does not change the minimum, and allows 
us to approximate it with the limit diagpfiqP in Eq. (7). 
Since we consider unbiased random walks according to 
P “ D

´1
A, the stationary distribution fi is proportional 

to the degrees d, hence diagpfiqP 9 diagpdqD´1
A “ A. 
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This means that we observe every edge in every direction 
with the same frequency, see Lovász et al. (1993) for a 
survey on random walks on graphs. We use this new weight-
ing A to define our final objective function 

Nÿ
F pW q “ ´  Ak,l log ‡rowspW qk,l (9) 

k,l 1 “

and our final objective 

min F pW q ,
W PRNˆN 

s. t. rankpW q § H ,  
(10) 

whose solution is denoted as W ˚ . Note that the sum in 
Eq. (9) grows only as OpepGqq, and we can enforce the 
rank-constraint in Eq. (10) with the factorization W “ 
WdownWup, where Wdown P RNˆH 

, Wup P RHˆN , result-
ing in OpNHq trainable parameters and a non-convex opti-
mization problem. 

Replacing random walks from the generator. In prin-
ciple, we could use the synthetic transition matrix P ˚ “ 
‡rowspW ˚q defined with the solution W ˚ of Eq. (10) in 
place of the generator: we produce synthetic random walks 
of length T , with transition matrix P ˚, and with the same 
distribution over the first node as in the training set, and 
then count their transitions in a score matrix. But since the 
score matrix is needed only up to proportionality for the 
edge-independent model, we can use the limit in Eq. (7) in-
stead, which replaces sampling random walks with solving 
the eigenvector problem fi˚J

P
˚ “ fi

˚J . That is, we skip 
sampling random walks and simply set S “ diagpfi˚qP ˚ . 

4.3. Our proposed algorithm: 
Cross-Entropy Low-rank Logits (CELL) 

In the previous section, we have shown how to (i) re-
place the LSTM and GAN architecture with a low-rank 
approximation of the logit transition matrix with respect 
to the cross-entropy loss, (ii) replace sampling random 
walks from the input graph with using its adjacency ma-
trix directly, and (iii) replace sampling random walks 
from the generator with solving an eigenvector problem. 
The result of this analysis is our simplified algorithm 
Cross-Entropy Low-rank Logits (CELL), summarized in 
Algorithm 1. It takes the adjacency matrix A of a graph G as 
input and returns a symmetric matrix A: of edge probabili-
ties, from which new graphs G1 can be sampled. For solving 
optimization problem (10), we factorize W “ WdownWup 

with Wdown P RNˆH and Wup P RHˆN to satisfy the rank 
constraint, and optimize with Adam (Kingma & Ba, 2014). 
Training continues until a stopping criterion is met, for 
which we pause at regular intervals and generate new graphs 
to evaluate the stopping criterion. In this paper, we con-
sider the criterion of reaching a predefined edge overlap of 
generated graphs and input graph, see Section 6.1. 

Algorithm 1 Cross-Entropy Low-rank Logits (CELL)1 

input adjacency matrix A P t0, 1uNˆN , rank H N 
output matrix of   A  

,  N
!

edge probabilities : P r0 1s ˆN

1: Solve optimization problem (10) for W ˚ 

2: Compute transition matrix: P ˚ – ‡rowspW ˚q 
3: Solve eigenvalue problem fi˚J

P
˚ “ fi

˚J for fi˚ 

4: Compute score matrix: S – diagpfi˚qP ˚ 

5: Convert score matrix S to edge-independent model A:: 
S

: – maxtS, S
Ju; A

: – S:{sumpS:q 
return A

: 

5. Conceptual analysis 

Our simple reformulation of NetGAN now opens the possi-
bility to formally analyze the inductive bias associated with 
its components and allows for user-specific adaptations. 

5.1. Inductive bias of NetGAN 

Our analysis has shown that the graphs produced by 
NetGAN come from the class of graphs whose logit tran-
sition matrix has a low rank. Note that this does not imply 
that the transition matrix itself 
has low rank. Even if W ˚ is 
trained to have low rank, the 
corresponding synthetic transi-
tion matrix P ˚ “ ‡rowspW ˚q 
can have full rank, as is visu-
alized by the eigenvalues in 
Figure 2. Additionally, our ex-
periments in Section 6.2 sug-
gest that approximating the 
transition matrix with a low 
rank matrix and the Frobenius 
norm as loss function does 
not achieve good generaliza-
tion performance. However, 
minimizing the cross-entropy 
loss for approximation instead yields generalization per-
formance comparable to the one of NetGAN and CELL. 
Since the cross-entropy corresponds to the Kullback-Leibler 
(KL) divergence (see Section B of the supplementary), this 
suggests that using the KL divergence as distance mea-
sure for approximating transition matrices is the rea-
son for the good generalization performance. On a high 
level, NetGAN generalizes a graph by choosing new 
graphs, whose transition matrix is similar in terms of 
KL-divergence, from a restricted set of graphs. Whether 
this restriction is realized by a low-rank assumption on the 
logits or on the transition matrices itself is not essential, 
although the former is computationally more feasible. 

1Code available at https://github.com/hheidrich/CELL 

Figure 2. Portion of abso-
lute eigenvalues (sorted and 
rescaled) for CORA-ML 
with CELL trained to 50% 
edge overlap for H “ 9. 

https://github.com/hheidrich/CELL


ÿN 
flk

FflpW q “ ´  Ak,l log ‡rowspW qk,l . (12)
dk

k,l 1 
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Figure 3. Comparison of an Á-neighborhood graph (top left) with 
graphs generated by Local CELL, a version of our method bi-
ased towards short edges, NetGAN, and our method CELL. Only 
Local CELL does not generate edges between distant points. 

5.2. Bias of the optimization objective and resulting 
hard examples 

We optimize the objective function in Eq. (9) to learn the 
random walk distribution in form of its transition matrix. 
By inspecting the objective, we can understand how this 
is achieved: the synthetic transition matrix ‡rowspW q is 
rewarded directly for putting mass on edges of the input 
graph (Ak,l “ 1). But because the total mass is limited ∞ 
( 

l ‡rowspW qk,l “ 1), it is only penalized indirectly for 
wasting mass on non-edges (Ak,l “ 0). In particular, there 
is no distinction between different non-edges. This hints to-
wards poor performance for graphs with strong restric-
tions on the set of edges we deem realistic, because there 
is no notion of “bad” edges that could prevent their gener-
ation; a possible remedy to this problem is extending the 
objective function with such a notion. 

We illustrate this effect with the example of Á-neighborhood 
graphs in Figure 3. Here, we want to avoid the generation 
of edges between nodes with large distance in the Euclidean 
space, which is not taken into account by NetGAN and 
CELL. However, a simple adaptation of our method, de-
noted as “Local CELL”, can prevent long edges without 
loss of generalization performance. The corresponding ex-
periment is provided in Section C.4 of the supplementary. 

5.3. No bias in the reconstruction step 

A natural question is whether our method might be able to 
generalize even without the rank constraint in the learning 
step. Or, phrased differently, whether the reconstruction 
step introduces a generalization bias. This is not the case. 
We derive in Section B of the supplementary that without 
any rank constraint, we exactly recover the input transition 
matrix as P ˚ “ P . Because of diagpfiqP 9 A, this also 
holds for the score matrix 

S diag fi
˚

P
˚ 

A .  (11) “ p q 9

Since A is already symmetric, the edge-independent model 
is given by A: 9 A. This model is equivalent to uniformly 
sampling edges from the input graph G, and sampling epGq 
edges from this model without replacement means sampling 
all of them. Hence it simply returns the input graph with 
zero variance. Therefore, reconstructing the graph with 
an edge-independent model does not contribute to gen-
eralization. Another interpretation of this observation is 
that random walks are sufficient to learn a graph in principle. 

5.4. Influence of the random walk parameters 

For NetGAN it is still unclear how the length T and the 
start distribution for the first node q0 of the random walks 
influence the generated graphs. We derived in Section 4.2 
that it does not exploit any complicated patterns in the ran-
dom walk paths, but simply counts the transitions, which 
comes down to a weighting of the nodes. When translat-
ing NetGAN to our approach, we observe that the random 
walk length controls how much influence the start distri-
bution has on the node weights: instead of taking the limit 
T Ñ 8 in the derivation of Section 4.2, we could have com-∞
pleted the analysis with the node weights T

fl “ 
t“1 qt´1{T 

to arrive at the parametrized objective function 

“

This allows for further interpretation and adaption: 

Random walks of length one are sufficient. The random 
walk parameters T and q0 are relevant for Eq. (12) only 
because they determine the node weights fl. On the other 
hand, all possible node weights Ê can be realized by choos-
ing q0 “ Ê and T “ 1. This implies for NetGAN that 
only using random walks of length one imposes no re-
striction, if the distribution of the start node is considered 
as a hyperparameter instead. 

An example that is now readily explained is the setting 
in Jalilifard et al. (2019). They observe empirically that 
using short random walks in NetGAN reduces the perfor-
mance, and propose to counteract by choosing the start 
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Figure 4. Mean and standard deviation for five trials on CORA-ML, plotted against edge overlap with the input graph. Aside from different 
initializations, NetGAN and CELL display similar behavior. Additional experiments are provided in the supplementary, Section C.6. 

distribution as the density function described in Zhou et al. 
(2009). Within our framework, this is explained by the node 
weights: for short random walks, they are close to the uni-
form distribution (the start distribution of NetGAN), which 
overemphasizes nodes with low degree and results in bad 
performance. Choosing the start distribution closer to the 
stationary distribution instead has the same effect on the 
node weights as using long random walks. 

Node weights fl as a hyperparameter. Instead of indi-
rectly setting the node weights fl through the random walk 
parameters q0 and T as is done in NetGAN, we can treat fl 
as a hyperparameter directly to incorporate beliefs about 
the graph. Weighting nodes according to the stationary dis-
tribution assigns equal weight to all edges in Eq. (12). In 
general, increasing the weight of a node encourages gener-
ated graphs to include its adjacent edges. This enables us, 
for example, to “protect” a certain set of nodes in the sense 
of preserving their neighborhoods in the generated graphs 
by increasing their weight. 

6. Experiments 

The purpose of this section is to (i) verify that CELL has per-
formance comparable to NetGAN while being much faster, 
and (ii) demonstrate the importance of the cross-entropy 
loss and benefit of the logit-transformation by comparing 
with other low-rank approximation baselines. 

6.1. Setup of the experiments 

Data sets and preprocessing. 

in Table 3. We preprocess the graphs by removing loops, 
edge weights, and edge directions. We then restrict them to 
their largest connected component to ensure that they are 
connected. For evaluating the link prediction performance 
during and after training, we split each graph into training-, 
validation-, and test-set by taking out 10% of the edges for 
validaton and another 5% for testing, while ensuring that the 
remaining graph stays connected. The validation set is only 
used for the VAL-criterion, an alternative stopping criterion 
based on link prediction performance that is described in 
Section C.3 of the supplementary. 

We experiment on a vari-
ety of graph data sets: the citation networks CORA-ML 
(McCallum et al., 2000) and CITESEER (Sen et al., 2008), 
the political blogs network POLBLOGS (Adamic & Glance, 
2005), the retweet network RT-GOP, and the web graph 
WEB-EDU (Gleich et al., 2004). All graphs except for 
CORA-ML are taken from Rossi & Ahmed (2015). For 
CORA-ML, we use the same preprocessed version as Bo-
jchevski et al. (2018), an overview of the data sets is given 

Baselines. We compare our model CELL to NetGAN (Bo-
jchevski et al., 2018) and a number of non-parametric base-
lines: the configuration model, which simply rewires some 
randomly chosen edges (Molloy & Reed, 1995), and low-
rank approximations of the adjacency matrix (LR-Adj), the 
random walk transition matrix (LR-Trans), the symmetric 
normalized Laplacian (LR-Lap), and the modularity matrix 
(LR-Mod), in a similar framework as described by Baldesi 
et al. (2018). To investigate the contribution of the logit 
transformation for CELL, we additionally consider a low-
rank approximation of the transition matrix with respect to 
the cross-entropy loss instead of using the Frobenius norm 
(LR-CE). The original paper by Bojchevski et al. (2018) 
also compared to a number of parametric baselines, which 
have the purpose of explicitly fitting some hand-selected 
graph parameters, but fail to reproduce others. For brevity 

   eport the results of these parametric baselines. we do not r

Setup and evaluation metrics. To make the results compa-
rable, we train CELL and NetGAN until the same stopping 
criterion of 52% edge overlap with the input graph is satis-
fied. This is done by pausing the training at regular intervals, 
generating a single graph, and calculating the ratio of shared 
edges to input edges. While NetGAN is trained on a GPU, 
only a CPU is required for training CELL. 

Our first evaluation metric is a set of common graph statis-
tics for input and generated graphs, whose purpose is to 
measure the extent to which the newly generated graphs 
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Table 2. Graph statistics and link prediction performance on CORA-ML for generated graphs from NetGAN, our method CELL, and 
baselines, averaged over five trials. Statistics that are matched by model design for the configuration model are indicated as ˚, and cases 
that are not applicable as ´. CELL produces statistics comparable to NetGAN, but is orders of magnitudes faster. This experiment is 
repeated for all other data sets in Section C.5 of the supplementary. 

GRAPH 
MAX. 

DEGREE 
ASSORT-
ATIVITY 

TRIANGLE 
COUNT 

SQUARE 
COUNT 

POWER 
LAW EXP. 

CLUSTER-
ING COEFF. 

CHARAC. 
PATH LEN. 

ROC-AUC 
SCORE 

TIME 
(IN S) 

CORA-ML 238 -0.076 2,802 14,268 1.86 8.26e-2 5.63 1 ´ 

CONF. MODEL (52% EO) ˚ -0.053 623 3111 ˚ 1.96e-2 4.43 ´ 1 
LR-ADJ (53% EO) 121 -0.042 444 1,128 1.72 2.78e-2 5.17 0.561 32 
LR-TRANS (57% EO) 139 -0.058 558 1,617 1.77 2.94e-2 5.07 0.709 33 
LR-LAP (52% EO) 167 -0.084 691 1942 1.79 2.79e-2 4.76 0.800 38 
LR-MOD (53% EO) 122 -0.043 437 1,135 1.72 2.75e-2 5.17 0.557 48 
LR-CE (52% EO) 193 -0.068 1,388 6,284 1.79 5.68e-2 5.37 0.950 73 

NETGAN (54% EO) 219 -0.071 1,461 5,555 1.80 5.23e-2 5.13 0.950 7,478 
CELL (53% EO) 204 -0.070 1,396 6,880 1.82 5.07e-2 5.26 0.938 21 

Table 3. Data sets used. Nodes and edges refer to the largest con-
nected component. 

NAME NODES EDGES 

CORA-ML 2,810 7,981 
CITESEER 2,110 3,668 
POLBLOGS 1,222 16,779 
RT-GOP 4,687 5,529 
WEB-EDU 3,031 6,474 

reproduce network patterns of the input graph. Since mem-
orizing the input graph trivially reproduces all of its graph 
statistics, we additionally evaluate the generalization prop-
erties in a link prediction task. To do so, we use the edges 
in the test set and an equal amount of randomly chosen 
non-edges from the original graph. After training, these 
are presented to the generative models, which try to clas-
sify them as existent or non-existent in the original graph 
on the basis of the score matrix (or, equivalently, the edge-
independent model A:). This matrix is produced by all 
considered models except for the configuration model. A 
high value in the score matrix suggests the existence of the 
corresponding edge, while a low value suggests that the 
edge did not exist in the original graph. The performance 
is measured by the ROC-AUC score (Area Under Curve 
for Receiver Operating Characteristic curve), applied to the 
score matrix evaluated at the edges in question. 

6.2. Evaluation 

CELL vs. NetGAN. 

tributed to the noise of the LSTM used by NetGAN, and 
to the different optimization procedures. The latter can be 
observed in Figure 4, which shows the evolution of gen-
erated graph statistics during training: NetGAN starts off 
with a different initialization, but as training continues, the 
generated graph statistics get close to the target well before 
memorizing the input graph. Further confirmation of this 
behavior is given in Sections C.6 and C.7 of the supplemen-
tary. However, the most striking difference is the training 
time, for which our method is orders of magnitudes faster, 
see Table 1. 

The results for graphs generated on 
CORA-ML are presented in Table 2. Compared to the 
other baselines, CELL generates graphs with statistics 
close to those of NetGAN and has similar link prediction 
performance; some of their small differences might be at-

CELL vs. baselines. Almost all baselines fail to repro-
duce most of the graph statistics, while CELL is reason-
ably close to all of them. Only LR-CE, the version of our 
method without the logit space, has performance very sim-
ilar to CELL. This hints towards the importance of the 
cross-entropy loss rather than the logit space for success-
fully generalizing a graph. However, using the logit space 
still has the advantage of requiring only a small rank (H “ 9 
for CELL as compared to H “ 950 for LR-CE), which re-
sults in less trainable parameters and shorter training time. 

7. Discussion and future work 

We derived a condensed version of NetGAN by identifying 
its essential steps and performing them directly. We verified 
experimentally that it retains the generalization performance 
of NetGAN, but is much faster. Additionally, our simple 
formulation of the algorithm makes it more accessible for 
analysis and application-specific extensions. 

Analysis. In essence, we revealed the initial random-walk-
based approach to be a low-rank approximation of the ran-
dom walk transition matrix in the logit space. More naive 
low-rank approximations of matrices related to the input 
graph do not achieve competitive performance when ap-
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proximating with respect to the Frobenius norm, but do so 
for the cross-entropy loss — a curious fact that we plan to 
investigate in future work. Based on our new, simplified 
methods we could analyze the inductive biases of the differ-
ent components and the role of the parameters of NetGAN. 
For example, we discover that length and choice of start 
node of the random walks amount to a weighting of the 
nodes, which controls their importance in the graph genera-
tion process. Based on our better understanding of the bias, 
we can construct examples which both NetGAN and our 

       algorithm cannot treat in a satisfactory manner.

Extensions. We demonstrated that our method is easily 
extendable by manipulating the loss function. An additional 
loss term can prevent the generation of edges we deem 
undesired, and node weights can emphasize user-specified 
nodes. Because learning step and reconstruction step are 
independent, each of them could be replaced by a different 
procedure. For example, instead of sampling from an edge-
independent model, a more general method would sample 
independent paths to further emphasize locality. 

Conclusion. Beyond the particular case of NetGAN, o
work is part of a more high-level agenda. Machine learnin
is used in diverse applications, often not by machine learnin
experts, and the outcome of algorithms might have consi
erable impact in science and society. In such a context it i
particularly important that our community actively attempt
to understand the inherent inductive biases, strengths, an
also the weaknesses of algorithms. Finding examples wher
an algorithm works is important — but maybe even mor
important is to understand under which circumstances th
algorithm produces misleading results. For graph generativ
models, this might concern medical studies on brain graph
or geoscience studies on climate graphs. We should wor
hard to make our algorithms as transparent and interpretabl
as possible. This paper is a small step in that direction. 
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