
NetGAN without GAN:
From Random Walks to Low-Rank Approximations

Luca Rendsburg 1 Holger Heidrich 1 Ulrike von Luxburg 1 2

Abstract

A graph generative model takes a graph as input
and is supposed to generate new graphs that “look
like” the input graph. While most classical models
focus on few, hand-selected graph statistics and
are too simplistic to reproduce real-world graphs,
NetGAN recently emerged as an attractive alter-
native: by training a GAN to learn the random
walk distribution of the input graph, the algorithm
is able to reproduce a large number of important
network patterns simultaneously, without explic-
itly specifying any of them. In this paper, we
investigate the implicit bias of NetGAN. We find
that the root of its generalization properties does
not lie in the GAN architecture, but in an incon-
spicuous low-rank approximation of the logits
random walk transition matrix. Step by step we
can strip NetGAN of all unnecessary parts, in-
cluding the GAN, and obtain a highly simplified
reformulation that achieves comparable general-
ization results, but is orders of magnitudes faster
and easier to adapt. Being much simpler on the
conceptual side, we reveal the implicit inductive
bias of the algorithm — an important step towards
increasing the interpretability, transparency and
acceptance of machine learning systems.

1. Introduction

1Department of Computer Science, University of Tübin-
gen, Germany 2Max Planck Institute for Intelligent Systems,
Tübingen, Germany. Correspondence to: Luca Rendsburg
<luca.rendsburg@uni-tuebingen.de>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

structure (such as the community structure, the characteris-
tic path lengths, etc). Being able to create perturbed copies
of a graph is useful in many different scenarios, for example:
comparing a small sample of brain networks for Alzheimer
patients (just one, in the extreme case) to a large population
of healthy subjects, making robustness statements about a
climate network by running a sensitivity analysis on per-
turbed copies, or performing a generic bootstrap analysis.

A graph generative model is a mechanism to achieve the
following task: for a given input graph (or a set of input
graphs), generate new graphs that have a similar structure
as the input graph. The mechanism is supposed to slightly
perturb the graph, but should not change its characteristic

A recent graph generative model that has received a lot of
attention is NetGAN (Bojchevski et al., 2018). First, it sam-
ples a set of random walks from the input graph to train
a GAN (Goodfellow et al., 2014), whose generator learns
to produce node-sequences that resemble random walks
over the input graph. Generated graphs are then obtained
as reconstructions based on these sequences. The inherent
assumption of this approach is that random walks describe
graphs in a reasonably holistic way: local statistics such as
motifs are observable in the individual random walks, while
global statistics such as cluster structure and diameter are
encoded in the distribution over random walk sequences.
As opposed to other approaches, NetGAN does not make
any explicit model assumptions; rather, it is supposed to
implicitly learn many local and global graph statistics simul-
taneously by reproducing random walk statistics. However,
if the goal is to generalize (perturb) the input graph, there
has to be an implicit bias as to which type of generalization
(perturbation) is preferred (no free lunch). The goal of our
paper is to characterize this bias of NetGAN, which we will
achieve by reformulating it in terms of a distance function
between graphs. This formulation provides insights on the
influence of design choices and model parameters, such as
the length of the random walks. Scrutinizing the NetGAN
architecture, we observe that many of its components can
be considerably simplified. Step by step we strip all the
unnecessary parts until we are left with the only crucial
ingredient, a low-rank approximation of the logits random
walk transition matrix. Our main contributions are:

‚ Reformulation of NetGAN. We reformulate NetGAN
as a low-rank approximation with respect to the
Kullback-Leibler divergence between transition matri-
ces, which requires neither a GAN nor any sampling.

‚ Huge speedup. Our algorithm retains the generalization

mailto:luca.rendsburg@uni-tuebingen.de

NetGAN without GAN

NetGAN:

Solve
eigenvector
problem for
score matrix

Convert
score matrix

into edge-

independent
model

Solve
optimization

problem
with rank
constraint

output graph

Sample
random walks

from graph

Train GAN
with LSTM

Sample
random walks
from generator

Count
transitions in
score matrix

Sample
Input
graph

CELL:

Figure 1. Pipelines for NetGAN (upper path) and our proposed method CELL (lower path). CELL is a condensed version of NetGAN
that bypasses the expensive sampling steps and replaces the GAN with an optimization problem.

performance of NetGAN, but runs in seconds instead of
hours. See Table 1 for a comparison of training times.

‚ Transparency. Our algorithm is conceptually much
simpler than NetGAN. This opens the possibility to ana-
lyze it theoretically, and allows for application-specific
adaptions.

2. Background: NetGAN

2.1. Graph and random walk notation

Like NetGAN, we consider an unweighted, undirected, and
connected graph G “ pV, E with nodes V N

, . . . , N E V
q

V
“ r

s “
t1

e G E

u, edges Ñ ˆ , and number of edges
p q “

|

|. It has adjacency matrix A 0, 1 NˆN , de-

gree vector d P RN
P t u

, degree matrix D “ diagpdq P RNˆN ,
and the transition matrix for unbiased random walks on G
is given by P “ D

´1
A P RNˆN . We additionally as-

sume G to be non-bipartite so that the random walk de-
scribed by P has a unique stationary distribution fi P RN .
A single random walk of length T is an ordered tuple
R “ pv0, . . . , vT q P V

T ̀ 1 , and a set of n random walks
is denoted by R “ tR1, . . . , Rnu. The score matrix
SpRq P RNˆN counts the transitions in R, that is, Sv,w

equals the total number of times random walks in R tran-
sition from v to w. If clear from the context, we drop the
dependency on R and write S instead of SpRq. An edge-
independent random graph model, sometimes also called
inhomogeneous Erdos-Rén˝ yi model, is a symmetric matrix
A

: P r0, 1sNˆN of edge probabilities. Graphs on the same
vertices rN s are sampled from this model by drawing epGq
edges tv, wu with probability A:

v,w independently and with-
out replacement. We use bold symbols, if we consider an
object as a random variable (e. g. R instead of R).

2.2. NetGAN

Table 1. Training time (in seconds) for NetGAN and our proposed
method CELL on a variety of networks. NetGAN requires a GPU
for training, while CELL runs on a CPU.

DATA SET (NODES/ EDGES) NETGAN CELL

CORA-ML (2,810/ 7,981) 7,478 21
CITESEER
POLBLOGS

(2,110/
(1,222/

3,668)
16,779)

4,654
55,276

10
15

RT-GOP (4,687/ 5,529) 14,800 23
WEB-EDU (3,031/ 6,474) 11,000 16

learns the distribution over random walks drawn from the
input graph in the learning step. It then reconstructs the
graph based on “synthetic” random walks sampled from this
learned distribution in the reconstruction step. See Figure 1
for a schematic overview.

In this section, we give a high-level overview of the NetGAN
algorithm; for more details, we refer the reader to Bo-
jchevski et al. (2018). NetGAN is a graph generative model:
given a single input graph G, it returns graphs G1 on the
same set of nodes by proceeding in two main steps. First, it

Learning step. Given an input graph G, NetGAN samples
a large set R of random walks of fixed length T with ran-
domly chosen start nodes. These random walks form the
training set for a GAN: the generator tries to produce node
sequences of length T that resemble the observed random
walks in R, while the discriminator tries to distinguish real
from generated sequences. Both generator and discrimina-
tor use the Long short-term memory architecture (LSTM)
(Hochreiter & Schmidhuber, 1997), and they are trained
with the Wasserstein loss (Arjovsky et al., 2017). Training
finishes once an early stopping criterion is met, after which
the generator is used to sample synthetic random walks.

During and after training, the generator constructs each
synthetic random walk pv0, . . . , vT q in a step-by-step proce-
dure. First, random noise z is used to initialize the memory
state m0 of the LSTM architecture and the start node v0 of
the sequence. A function f◊ with learnable parameters ◊
then repeatedly updates the two values: given the current
memory state mt and node vt, it outputs the next memory
state mt`1 and the distribution pt`1 over the next node vt`1

in form of logits. The next node vt`1 is then obtained as a
sample from this distribution. In equations, this update is

maxtSk,l, Sl,ku
A

: “ . (2)
k,l ∞

N
k1,l1“1 maxtSk1,l1 , Sl1,k1 u

NetGAN without GAN

described by

pmt`1, pt`1q “ f◊pmt, vtq ,
(1)

vt`1 „ Cat p‡ppt`1qq ,

where Cat denotes the categorical distribution and ‡ the
softmax function, which converts the logits into a probability
distribution on rN s. This procedure is repeated until the
sequence has the desired length T .

Reconstruction step. After training is finished, NetGAN
uses the generator to generate a large set of n synthetic ran-
dom walks. Their transitions are counted in a joint score
matrix S, which is then converted into an edge-independent
random graph model A: by symmetrizing and then normal-
izing it, that is,

To obtain the new graph G1, NetGAN samples epGq edges
independently and without replacement from A: while pre-
venting self-loops and isolated nodes.

3. What causes the generalization?

In this section, we identify those parts of NetGAN that we
believe to be absolutely necessary to achieve the two goals
of producing new graphs that (i) resemble the input graph
by mimicking its graph statistics, but (ii) also generalize the
input graph by sharing only a certain amount of its edges.
The complicated GAN- and LSTM-based architecture used
by NetGAN disguises its underlying bias and makes a direct
analysis difficult. Therefore, we examine all the individual
steps of NetGAN, not in terms of how they work, but what
they aim to achieve.

The random walks? The intuition of NetGAN is that
graphs with a similar random walk distribution also share
many of their topological properties. In fact, as we observe
in Section 5.3, learning the transition matrix of random
walks by counting their transitions is sufficient for perfectly
reconstructing the input graph. This excludes the possibility
that by reducing graphs to their random walk statistics, we
introduce an irreversible systematic bias.

The GAN? The role of the GAN is to learn the random walk
distribution of the input graph. We prove in Section 5.3 that
if the GAN perfectly learns the random walk distribution,
NetGAN will simply reproduce the input graph instead of
generalizing it. However, the results reported by Bojchevski
et al. (2018) show that even if NetGAN is trained for a long
time, it produces graphs that are considerably different from
the input graph as measured by edge overlap. Consequently,
there has be be another mechanism that prevents the GAN
from memorizing the input graph.

The LSTM? As the authors of NetGAN pointed out them-
selves, the LSTM architecture, which is supposed to capture
long-term dependencies, seems to be an odd choice for
learning Markov sequences that by construction do not have
any such dependencies. It is possible that this architecture
choice injects noise into the learning process, which pre-
vents memorization of the input graph. Yet, this type of
noise seems to be rather uncontrolled, and we consider it
unlikely that this aspect of the LSTM cannot be replaced by
a simpler, more direct mechanism.

Computational trick: low-rank approximation. What is
left? In our opinion, the only component that explains why
NetGAN successfully generalizes graphs is a computational
trick: the LSTM is not operating on the high-dimensional
space RN directly. In order to reduce computational com-
plexity, it uses learnable down- and up-projections Wdown
RN

P
ˆH and Wup P RHˆN with H ! N . As we derive in

Section A of the supplementary, these projections force the
update rule of a node and memory state pair pvt, mtq with
vt as one-hot vector to be of the form

pt`1 “ vt
J

W pmtq ,
(3)

vt`1 „ Cat p‡ppt`1qq ,

where W pmtq P R NˆN depends on mt and has rank at
most H . Because W mt is the transition matrix after
applying ‡,

p q
we refer to it as the logit transition matrix.

NetGAN forces this matrix to have low rank, which leads
us the following conjecture:

Conjecture: The key ingredient of NetGAN is to learn
the random walk distribution by performing a low-
rank approximation of the logit transition matrix.

To validate this conjecture, we derive a simplified method
that applies this low-rank approximation directly and demon-
strate its comparable performance in experiments.

4. Stripping NetGAN

We now gradually simplify NetGAN by stripping it
of all unnecessary components in Section 4.1. Addi-
tionally, we observe in Section 4.2 that sampling ran-
dom walks can be circumvented with a limit argument.
This leads to our new, highly simplified method called
Cross-Entropy Low-rank Logits (CELL), see Section 4.3
for a summary and Figure 1 for a schematic outline.

4.1. Low-rank approximation replaces the GAN

Motivated by the above conjecture, we now prune the update
rule in Eq. (3) until we arrive at a rank-constrained optimiza-
tion problem. Justified by the Markov property of unbiased
random walks, we first drop the LSTM and the memory
state mt. In Section A of the supplementary, we derive

ÿT ÿn ÿT
a. s.S “

1
Q̂tpRjq ››› Ñ Qt . (6)

n n nÑ8
t“1 j“1 t“1

S a. s. ›››››Ñ diagpfiqP . (7)
nT n,T Ñ8

NetGAN without GAN

that the GAN learns the random walk distribution by choos-
ing its transition matrix directly from the parametric family
P “ t‡rowspW q P RNˆN

: W P RNˆN
, rankpW q § Hu,

where ‡rows denotes the function that applies the softmax ‡
to each row of a matrix. The training set for this problem
consists only of the transitions of random walks in , and
the noise random

R

variable z plays the subordinate role of
choosing the first node. This parametric family formulation
defeats the purpose of using a GAN at all, which is why
instead we revert to the classical maximum likelihood ap-
proach (or, equivalently, the cross-entropy loss) on P : using
the notation pk, lq P R to denote all transitions (with multi-
ple counting) of random walks in R, the resulting problem
is given by

ÿ
min ´ log ‡rowspW qk,l ,

W PRN ̂ N
pk,lqPR (4)

s. t. rankpW q § H .

In short: instead of learning the random walk distribution
by training a GAN, we approximate its transition matrix
directly by solving a rank-constrained optimization problem.

4.2. Bypassing random walk sampling

There is another aspect of NetGAN that is somewhat puz-
zling: even to learn a graph of moderate size, for exam-
ple the graph CORA-ML with about 3,000 vertices and
8,000 edges, NetGAN needs to sample 7,500,000 random
walks of length 15 from the input graph, which are worth
112,500,000 edges. In other words, we see every edge of the
input graph about 14,000 times on average — with which
any edge-frequency statistic would be very close to its ex-
pected value. The same order of magnitude applies to the
sampling of random walks from the generator in the recon-
struction step. With that observation, a natural question
is whether we can circumvent the random walk sampling,
and the answer is yes. Since the random walks are only
used in form of the score matrix that contains the frequency
of node transitions, and this matrix converges for a large
number of random walks, we can substitute the actual score
matrix with its limit value. The remainder of this section
formalizes this idea in Eq. (7) and applies it to NetGAN at
both sampling steps.

Convergence of the score matrix S. First, we consider a
single random walk R “ pv0, . . . , vT q of length T as a ran-
dom variable, whose distribution depends on the distribution
q0 P RN of the first node v0 and the transition matrix P .
For t P t1, . . . , T u, let Qt P RNˆN denote the distribution
of the t-th transition pvt´1, vtq in R. Its marginal vt´1

is distributed as qt´1 P RN and its conditional vt|vt´1 is
distributed as P , which yields the matrix decomposition

Qt “ diagpqt´1qP . (5)

From this perspective, counting the transitions of a single
random walk R in a score matrix S R RNˆN can be ∞
expressed as p q “ T ˆ

p q P
S R ˆ

t
 “1 Qt R , where Qt R is the em-

pirical
p q p q

version of Qt based on one sample. The score matrix
S “ SpR1, . . . , Rnq based on n random walks ∞ R1, . . . , Rn

decomposes into n
S “

j“1 SpRjq, and with the above
∞ ∞

considerations we have n T
S “ Q̂

j tpRjq. By the “1 t“1
Glivenko-Cantelli theorem for empirical distributions, we
can compute the limit of S n for n as { Ñ 8

Using Eq. (5), the normalized right-hand side is given by∞
T ∞

T
t“1 Qt{T “ diagpflT qP , where flT “

t“1 qt´1{T . In
that sense, using a large number of random walks reduces to
node weights flT . Since the underlying graph is by assump-
tion connected and non-bipartite, the stationary distribution
fi of P exists and is unique, that is, fi “ limtÑ8 qt. Hence
the Cesàro mean flT also converges to fi as T Ñ 8. Or, in
other words: for any initial distribution q0, the node weights
induced by sufficiently long random walks are given by
fi. In conjunction with Eq. (6), we obtain the limit of the
normalized score matrix

Note that we take two limits to approximate S. We take the
first limit with respect to the amount of random walks n,
because NetGAN samples many random walks. The second
limit with respect to the length T dilutes the influence of the
initial distribution (fl1 “ q0) in favor of the stationary distri-
bution (limT flT “ fi). This is appropriate because most Ñ8
real-world networks have small diameter, and the length
T “ 15 used in NetGAN already ensures that flT is close to
its limit distribution. Furthermore, the authors of NetGAN
already observed that taking longer random walks increases
performance. Finally, in Section 5.4 we will see that the
information encoded in the start distribution of the random
walk can be more directly incorporated by the node weights.

Replacing random walks from the input graph. The
objective in Eq. (4) sums over all node transitions in R.
We count the transitions in a corresponding score matrix
S “ SpRq to rewrite the objective function as

Nÿ
´ Sk,l log ‡rowspW qk,l . (8)

k,l 1 “

Normalizing S does not change the minimum, and allows
us to approximate it with the limit diagpfiqP in Eq. (7).
Since we consider unbiased random walks according to
P “ D

´1
A, the stationary distribution fi is proportional

to the degrees d, hence diagpfiqP 9 diagpdqD´1
A “ A.

NetGAN without GAN

This means that we observe every edge in every direction
with the same frequency, see Lovász et al. (1993) for a
survey on random walks on graphs. We use this new weight-
ing A to define our final objective function

Nÿ
F pW q “ ´ Ak,l log ‡rowspW qk,l (9)

k,l 1 “

and our final objective

min F pW q ,
W PRNˆN

s. t. rankpW q § H ,
(10)

whose solution is denoted as W ˚ . Note that the sum in
Eq. (9) grows only as OpepGqq, and we can enforce the
rank-constraint in Eq. (10) with the factorization W “
WdownWup, where Wdown P RNˆH

, Wup P RHˆN , result-
ing in OpNHq trainable parameters and a non-convex opti-
mization problem.

Replacing random walks from the generator. In prin-
ciple, we could use the synthetic transition matrix P ˚ “
‡rowspW ˚q defined with the solution W ˚ of Eq. (10) in
place of the generator: we produce synthetic random walks
of length T , with transition matrix P ˚, and with the same
distribution over the first node as in the training set, and
then count their transitions in a score matrix. But since the
score matrix is needed only up to proportionality for the
edge-independent model, we can use the limit in Eq. (7) in-
stead, which replaces sampling random walks with solving
the eigenvector problem fi˚J

P
˚ “ fi

˚J . That is, we skip
sampling random walks and simply set S “ diagpfi˚qP ˚ .

4.3. Our proposed algorithm:
Cross-Entropy Low-rank Logits (CELL)

In the previous section, we have shown how to (i) re-
place the LSTM and GAN architecture with a low-rank
approximation of the logit transition matrix with respect
to the cross-entropy loss, (ii) replace sampling random
walks from the input graph with using its adjacency ma-
trix directly, and (iii) replace sampling random walks
from the generator with solving an eigenvector problem.
The result of this analysis is our simplified algorithm
Cross-Entropy Low-rank Logits (CELL), summarized in
Algorithm 1. It takes the adjacency matrix A of a graph G as
input and returns a symmetric matrix A: of edge probabili-
ties, from which new graphs G1 can be sampled. For solving
optimization problem (10), we factorize W “ WdownWup

with Wdown P RNˆH and Wup P RHˆN to satisfy the rank
constraint, and optimize with Adam (Kingma & Ba, 2014).
Training continues until a stopping criterion is met, for
which we pause at regular intervals and generate new graphs
to evaluate the stopping criterion. In this paper, we con-
sider the criterion of reaching a predefined edge overlap of
generated graphs and input graph, see Section 6.1.

Algorithm 1 Cross-Entropy Low-rank Logits (CELL)1

input adjacency matrix A P t0, 1uNˆN , rank H N
output matrix of A

, N
!

edge probabilities : P r0 1s ˆN

1: Solve optimization problem (10) for W ˚

2: Compute transition matrix: P ˚ – ‡rowspW ˚q
3: Solve eigenvalue problem fi˚J

P
˚ “ fi

˚J for fi˚

4: Compute score matrix: S – diagpfi˚qP ˚

5: Convert score matrix S to edge-independent model A::
S

: – maxtS, S
Ju; A

: – S:{sumpS:q
return A

:

5. Conceptual analysis

Our simple reformulation of NetGAN now opens the possi-
bility to formally analyze the inductive bias associated with
its components and allows for user-specific adaptations.

5.1. Inductive bias of NetGAN

Our analysis has shown that the graphs produced by
NetGAN come from the class of graphs whose logit tran-
sition matrix has a low rank. Note that this does not imply
that the transition matrix itself
has low rank. Even if W ˚ is
trained to have low rank, the
corresponding synthetic transi-
tion matrix P ˚ “ ‡rowspW ˚q
can have full rank, as is visu-
alized by the eigenvalues in
Figure 2. Additionally, our ex-
periments in Section 6.2 sug-
gest that approximating the
transition matrix with a low
rank matrix and the Frobenius
norm as loss function does
not achieve good generaliza-
tion performance. However,
minimizing the cross-entropy
loss for approximation instead yields generalization per-
formance comparable to the one of NetGAN and CELL.
Since the cross-entropy corresponds to the Kullback-Leibler
(KL) divergence (see Section B of the supplementary), this
suggests that using the KL divergence as distance mea-
sure for approximating transition matrices is the rea-
son for the good generalization performance. On a high
level, NetGAN generalizes a graph by choosing new
graphs, whose transition matrix is similar in terms of
KL-divergence, from a restricted set of graphs. Whether
this restriction is realized by a low-rank assumption on the
logits or on the transition matrices itself is not essential,
although the former is computationally more feasible.

1Code available at https://github.com/hheidrich/CELL

Figure 2. Portion of abso-
lute eigenvalues (sorted and
rescaled) for CORA-ML
with CELL trained to 50%
edge overlap for H “ 9.

https://github.com/hheidrich/CELL

ÿN
flk

FflpW q “ ´ Ak,l log ‡rowspW qk,l . (12)
dk

k,l 1

NetGAN without GAN

Figure 3. Comparison of an Á-neighborhood graph (top left) with
graphs generated by Local CELL, a version of our method bi-
ased towards short edges, NetGAN, and our method CELL. Only
Local CELL does not generate edges between distant points.

5.2. Bias of the optimization objective and resulting
hard examples

We optimize the objective function in Eq. (9) to learn the
random walk distribution in form of its transition matrix.
By inspecting the objective, we can understand how this
is achieved: the synthetic transition matrix ‡rowspW q is
rewarded directly for putting mass on edges of the input
graph (Ak,l “ 1). But because the total mass is limited ∞
(

l ‡rowspW qk,l “ 1), it is only penalized indirectly for
wasting mass on non-edges (Ak,l “ 0). In particular, there
is no distinction between different non-edges. This hints to-
wards poor performance for graphs with strong restric-
tions on the set of edges we deem realistic, because there
is no notion of “bad” edges that could prevent their gener-
ation; a possible remedy to this problem is extending the
objective function with such a notion.

We illustrate this effect with the example of Á-neighborhood
graphs in Figure 3. Here, we want to avoid the generation
of edges between nodes with large distance in the Euclidean
space, which is not taken into account by NetGAN and
CELL. However, a simple adaptation of our method, de-
noted as “Local CELL”, can prevent long edges without
loss of generalization performance. The corresponding ex-
periment is provided in Section C.4 of the supplementary.

5.3. No bias in the reconstruction step

A natural question is whether our method might be able to
generalize even without the rank constraint in the learning
step. Or, phrased differently, whether the reconstruction
step introduces a generalization bias. This is not the case.
We derive in Section B of the supplementary that without
any rank constraint, we exactly recover the input transition
matrix as P ˚ “ P . Because of diagpfiqP 9 A, this also
holds for the score matrix

S diag fi
˚

P
˚

A . (11) “ p q 9

Since A is already symmetric, the edge-independent model
is given by A: 9 A. This model is equivalent to uniformly
sampling edges from the input graph G, and sampling epGq
edges from this model without replacement means sampling
all of them. Hence it simply returns the input graph with
zero variance. Therefore, reconstructing the graph with
an edge-independent model does not contribute to gen-
eralization. Another interpretation of this observation is
that random walks are sufficient to learn a graph in principle.

5.4. Influence of the random walk parameters

For NetGAN it is still unclear how the length T and the
start distribution for the first node q0 of the random walks
influence the generated graphs. We derived in Section 4.2
that it does not exploit any complicated patterns in the ran-
dom walk paths, but simply counts the transitions, which
comes down to a weighting of the nodes. When translat-
ing NetGAN to our approach, we observe that the random
walk length controls how much influence the start distri-
bution has on the node weights: instead of taking the limit
T Ñ 8 in the derivation of Section 4.2, we could have com-∞
pleted the analysis with the node weights T

fl “
t“1 qt´1{T

to arrive at the parametrized objective function

“

This allows for further interpretation and adaption:

Random walks of length one are sufficient. The random
walk parameters T and q0 are relevant for Eq. (12) only
because they determine the node weights fl. On the other
hand, all possible node weights Ê can be realized by choos-
ing q0 “ Ê and T “ 1. This implies for NetGAN that
only using random walks of length one imposes no re-
striction, if the distribution of the start node is considered
as a hyperparameter instead.

An example that is now readily explained is the setting
in Jalilifard et al. (2019). They observe empirically that
using short random walks in NetGAN reduces the perfor-
mance, and propose to counteract by choosing the start

NetGAN without GAN

Figure 4. Mean and standard deviation for five trials on CORA-ML, plotted against edge overlap with the input graph. Aside from different
initializations, NetGAN and CELL display similar behavior. Additional experiments are provided in the supplementary, Section C.6.

distribution as the density function described in Zhou et al.
(2009). Within our framework, this is explained by the node
weights: for short random walks, they are close to the uni-
form distribution (the start distribution of NetGAN), which
overemphasizes nodes with low degree and results in bad
performance. Choosing the start distribution closer to the
stationary distribution instead has the same effect on the
node weights as using long random walks.

Node weights fl as a hyperparameter. Instead of indi-
rectly setting the node weights fl through the random walk
parameters q0 and T as is done in NetGAN, we can treat fl
as a hyperparameter directly to incorporate beliefs about
the graph. Weighting nodes according to the stationary dis-
tribution assigns equal weight to all edges in Eq. (12). In
general, increasing the weight of a node encourages gener-
ated graphs to include its adjacent edges. This enables us,
for example, to “protect” a certain set of nodes in the sense
of preserving their neighborhoods in the generated graphs
by increasing their weight.

6. Experiments

The purpose of this section is to (i) verify that CELL has per-
formance comparable to NetGAN while being much faster,
and (ii) demonstrate the importance of the cross-entropy
loss and benefit of the logit-transformation by comparing
with other low-rank approximation baselines.

6.1. Setup of the experiments

Data sets and preprocessing.

in Table 3. We preprocess the graphs by removing loops,
edge weights, and edge directions. We then restrict them to
their largest connected component to ensure that they are
connected. For evaluating the link prediction performance
during and after training, we split each graph into training-,
validation-, and test-set by taking out 10% of the edges for
validaton and another 5% for testing, while ensuring that the
remaining graph stays connected. The validation set is only
used for the VAL-criterion, an alternative stopping criterion
based on link prediction performance that is described in
Section C.3 of the supplementary.

We experiment on a vari-
ety of graph data sets: the citation networks CORA-ML
(McCallum et al., 2000) and CITESEER (Sen et al., 2008),
the political blogs network POLBLOGS (Adamic & Glance,
2005), the retweet network RT-GOP, and the web graph
WEB-EDU (Gleich et al., 2004). All graphs except for
CORA-ML are taken from Rossi & Ahmed (2015). For
CORA-ML, we use the same preprocessed version as Bo-
jchevski et al. (2018), an overview of the data sets is given

Baselines. We compare our model CELL to NetGAN (Bo-
jchevski et al., 2018) and a number of non-parametric base-
lines: the configuration model, which simply rewires some
randomly chosen edges (Molloy & Reed, 1995), and low-
rank approximations of the adjacency matrix (LR-Adj), the
random walk transition matrix (LR-Trans), the symmetric
normalized Laplacian (LR-Lap), and the modularity matrix
(LR-Mod), in a similar framework as described by Baldesi
et al. (2018). To investigate the contribution of the logit
transformation for CELL, we additionally consider a low-
rank approximation of the transition matrix with respect to
the cross-entropy loss instead of using the Frobenius norm
(LR-CE). The original paper by Bojchevski et al. (2018)
also compared to a number of parametric baselines, which
have the purpose of explicitly fitting some hand-selected
graph parameters, but fail to reproduce others. For brevity

 eport the results of these parametric baselines. we do not r

Setup and evaluation metrics. To make the results compa-
rable, we train CELL and NetGAN until the same stopping
criterion of 52% edge overlap with the input graph is satis-
fied. This is done by pausing the training at regular intervals,
generating a single graph, and calculating the ratio of shared
edges to input edges. While NetGAN is trained on a GPU,
only a CPU is required for training CELL.

Our first evaluation metric is a set of common graph statis-
tics for input and generated graphs, whose purpose is to
measure the extent to which the newly generated graphs

NetGAN without GAN

Table 2. Graph statistics and link prediction performance on CORA-ML for generated graphs from NetGAN, our method CELL, and
baselines, averaged over five trials. Statistics that are matched by model design for the configuration model are indicated as ˚, and cases
that are not applicable as ´. CELL produces statistics comparable to NetGAN, but is orders of magnitudes faster. This experiment is
repeated for all other data sets in Section C.5 of the supplementary.

GRAPH
MAX.

DEGREE
ASSORT-
ATIVITY

TRIANGLE
COUNT

SQUARE
COUNT

POWER
LAW EXP.

CLUSTER-
ING COEFF.

CHARAC.
PATH LEN.

ROC-AUC
SCORE

TIME
(IN S)

CORA-ML 238 -0.076 2,802 14,268 1.86 8.26e-2 5.63 1 ´

CONF. MODEL (52% EO) ˚ -0.053 623 3111 ˚ 1.96e-2 4.43 ´ 1
LR-ADJ (53% EO) 121 -0.042 444 1,128 1.72 2.78e-2 5.17 0.561 32
LR-TRANS (57% EO) 139 -0.058 558 1,617 1.77 2.94e-2 5.07 0.709 33
LR-LAP (52% EO) 167 -0.084 691 1942 1.79 2.79e-2 4.76 0.800 38
LR-MOD (53% EO) 122 -0.043 437 1,135 1.72 2.75e-2 5.17 0.557 48
LR-CE (52% EO) 193 -0.068 1,388 6,284 1.79 5.68e-2 5.37 0.950 73

NETGAN (54% EO) 219 -0.071 1,461 5,555 1.80 5.23e-2 5.13 0.950 7,478
CELL (53% EO) 204 -0.070 1,396 6,880 1.82 5.07e-2 5.26 0.938 21

Table 3. Data sets used. Nodes and edges refer to the largest con-
nected component.

NAME NODES EDGES

CORA-ML 2,810 7,981
CITESEER 2,110 3,668
POLBLOGS 1,222 16,779
RT-GOP 4,687 5,529
WEB-EDU 3,031 6,474

reproduce network patterns of the input graph. Since mem-
orizing the input graph trivially reproduces all of its graph
statistics, we additionally evaluate the generalization prop-
erties in a link prediction task. To do so, we use the edges
in the test set and an equal amount of randomly chosen
non-edges from the original graph. After training, these
are presented to the generative models, which try to clas-
sify them as existent or non-existent in the original graph
on the basis of the score matrix (or, equivalently, the edge-
independent model A:). This matrix is produced by all
considered models except for the configuration model. A
high value in the score matrix suggests the existence of the
corresponding edge, while a low value suggests that the
edge did not exist in the original graph. The performance
is measured by the ROC-AUC score (Area Under Curve
for Receiver Operating Characteristic curve), applied to the
score matrix evaluated at the edges in question.

6.2. Evaluation

CELL vs. NetGAN.

tributed to the noise of the LSTM used by NetGAN, and
to the different optimization procedures. The latter can be
observed in Figure 4, which shows the evolution of gen-
erated graph statistics during training: NetGAN starts off
with a different initialization, but as training continues, the
generated graph statistics get close to the target well before
memorizing the input graph. Further confirmation of this
behavior is given in Sections C.6 and C.7 of the supplemen-
tary. However, the most striking difference is the training
time, for which our method is orders of magnitudes faster,
see Table 1.

The results for graphs generated on
CORA-ML are presented in Table 2. Compared to the
other baselines, CELL generates graphs with statistics
close to those of NetGAN and has similar link prediction
performance; some of their small differences might be at-

CELL vs. baselines. Almost all baselines fail to repro-
duce most of the graph statistics, while CELL is reason-
ably close to all of them. Only LR-CE, the version of our
method without the logit space, has performance very sim-
ilar to CELL. This hints towards the importance of the
cross-entropy loss rather than the logit space for success-
fully generalizing a graph. However, using the logit space
still has the advantage of requiring only a small rank (H “ 9
for CELL as compared to H “ 950 for LR-CE), which re-
sults in less trainable parameters and shorter training time.

7. Discussion and future work

We derived a condensed version of NetGAN by identifying
its essential steps and performing them directly. We verified
experimentally that it retains the generalization performance
of NetGAN, but is much faster. Additionally, our simple
formulation of the algorithm makes it more accessible for
analysis and application-specific extensions.

Analysis. In essence, we revealed the initial random-walk-
based approach to be a low-rank approximation of the ran-
dom walk transition matrix in the logit space. More naive
low-rank approximations of matrices related to the input
graph do not achieve competitive performance when ap-

NetGAN without GAN

proximating with respect to the Frobenius norm, but do so
for the cross-entropy loss — a curious fact that we plan to
investigate in future work. Based on our new, simplified
methods we could analyze the inductive biases of the differ-
ent components and the role of the parameters of NetGAN.
For example, we discover that length and choice of start
node of the random walks amount to a weighting of the
nodes, which controls their importance in the graph genera-
tion process. Based on our better understanding of the bias,
we can construct examples which both NetGAN and our

 algorithm cannot treat in a satisfactory manner.

Extensions. We demonstrated that our method is easily
extendable by manipulating the loss function. An additional
loss term can prevent the generation of edges we deem
undesired, and node weights can emphasize user-specified
nodes. Because learning step and reconstruction step are
independent, each of them could be replaced by a different
procedure. For example, instead of sampling from an edge-
independent model, a more general method would sample
independent paths to further emphasize locality.

Conclusion. Beyond the particular case of NetGAN, o
work is part of a more high-level agenda. Machine learnin
is used in diverse applications, often not by machine learnin
experts, and the outcome of algorithms might have consi
erable impact in science and society. In such a context it i
particularly important that our community actively attempt
to understand the inherent inductive biases, strengths, an
also the weaknesses of algorithms. Finding examples wher
an algorithm works is important — but maybe even mor
important is to understand under which circumstances th
algorithm produces misleading results. For graph generativ
models, this might concern medical studies on brain graph
or geoscience studies on climate graphs. We should wor
hard to make our algorithms as transparent and interpretabl
as possible. This paper is a small step in that direction.

ur
g
g
d-
s
s
d
e
e
e
e
s
k
e

Acknowledgements

This work has been supported by the German Research
Foundation through the Cluster of Excellence “Machine
Learning – New Perspectives for Science” (EXC 2064/1
number 390727645), the BMBF Tübingen AI Center (FKZ:
01IS18039A), and the International Max Planck Research
School for Intelligent Systems (IMPRS-IS).

References

erative adversarial networks. In Proceedings of the 34th
International Conference on Machine Learning, 2017.

Baldesi, L., Butts, C. T., and Markopoulou, A. Spectral
graph forge: Graph generation targeting modularity. In
Conference on Computer Communications, 2018.

Boguná, M., Pastor-Satorras, R., Díaz-Guilera, A., and Are-
nas, A. Models of social networks based on social dis-
tance attachment. In Physical review E, 2004.

Bojchevski, A., Shchur, O., Zügner, D., and Günnemann,
S. NetGAN: Generating graphs via random walks. In
Proceedings of the 35th International Conference on Ma-
chine Learning, 2018.

Gleich, D. F., Zhukov, L., and Berkhin, P. Fast parallel
PageRank: A linear system approach. Technical report,
Yahoo! Research Labs, 2004.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems 27, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
In Neural computation, 1997.

Jalilifard, A., Caridá, V., Mansano, A., and Cristo, R. Can
netgan be improved by short random walks originated
from dense vertices? arXiv preprint arXiv:1905.05298,
2019.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2014.

Lovász, L. et al. Random walks on graphs: A survey. In
Combinatorics, Paul erdos is eighty, 1993.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore,
K. Automating the construction of internet portals with
machine learning. In Information Retrieval, 2000.

Molloy, M. and Reed, B. A critical point for random graphs
with a given degree sequence. In Random Structures &
Algorithms, 1995.

Orlitsky, A. Estimating and computing density based dis-
tance metrics. In Proceedings of the 22nd international
conference on Machine learning, 2005.

Rossi, R. A. and Ahmed, N. K. The network data repository
Adamic, L. A. and Glance, N. The political blogosphere with interactive graph analytics and visualization. In

and the 2004 US election: divided they blog. In Proceed- Association for the Advancement of Artificial Intelligence,
ings of the 3rd international workshop on Link discovery, 2015.
2005. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,

and Eliassi-Rad, T. Collective classification in network
Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen- data. In AI magazine, 2008.

NetGAN without GAN

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A
global geometric framework for nonlinear dimensionality
reduction. In science, 2000.

Zhou, Y., Cheng, H., and Yu, J. X. Graph clustering based
on structural/attribute similarities. In Proceedings of the
VLDB Endowment, 2009.

