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A. Replacing the GAN 

In this section, we derive our objective in Eq. (4) by inspecting the high-level structure of NetGAN. The learnable projection 
matrices are given by Wdown P RNˆH and Wup P RHˆN with H ! N . Given the current node vt as a one-hot vector and 
suppressing the next memory state mt`1 in notation, the generator f◊ can be written as 

` ˘ 
pt`1 “ f◊ pmt, vtq “ g◊ mt, vt 

J
Wdown Wup , (13) 

where g◊ : RH Ñ RH is the part of f◊ that operates on the low-dimensional space. We collect the row vectors ` ˘ 
g◊ mt, vt 

J
Wdown in a matrix WÄdownpmtq P  RNˆH and define the product W pmtq :“ WÄdownpmtqWup P RNˆN to 

obtain 

pt`1 “ vt 
J

WÄdownpmtqWup “ vt 
J

W pmtq . (14) 

Therefore, W pmtq simply serves as logit transition matrix for the random walks. Because of the factorization that defines 
W pmtq, its rank is at most H . 

To derive how exactly we can replace the GAN with a low-rank approximation, we first simplify the update rule in Eq. (14) 
by dropping the LSTM and with it the dependency on the memory state mt; this is justified by the Markov property of 
unbiased random walks. What remains is a matrix W , whose learnable parameters are intertwined with the low-dimensional 
part g◊ of the generator: 

J
W “ g◊ 

` ˘ 
pt`1 “ vt vt 

J
Wdown Wup . (15) 

Motivated by the assumption that the identity function Id : RH Ñ RH can be represented as g◊, we drop the structural 
restriction imposed by g◊, leaving us with W “ WdownWup and update rule 

pt`1 “ vt 
J

WdownWup . (16) 

The new update of node vt is thereby realized by sampling from the categorical distribution of the corresponding row 
‡pWvt q, that is, vt`1 „ Catp‡pWvt qq. In this form, training the GAN is equivalent to learning the random walk transition 
matrix directly from the parametric family P “ t‡rowspW q P RNˆN 

: W P RNˆN 
, rankpW q § Hu, where ‡rows denotes 

the function that applies ‡ to each row of a matrix. We then proceed as described in the main paper by learning the transition 
matrix from this parametric family directly with the maximum likelihood approach. 

B. Information-theoretic representation of objective function F 

When considering distributions in this section, we let any matrix with positive entries refer to the uniquely determined 
distribution that is obtained after normalization. We can reformulate our objective F , defined in Eq. (9), in terms of 
information-theoretic quantities to determine its minimum irrespective of the rank constraint. To do so, we consider node 
transitions as a random variable pv, wq on rN s ˆ rN s. As derived for Eq. (9) in case of node transitions on the input graph, 
pv, wq is distributed according to the adjacency matrix A, wherefore the corresponding conditional distribution of w|v 
is given by P . The synthetic transition matrix ‡rowspW q represents another conditional distribution for w|v. From this 
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perspective, we can reformulate F as 

Nÿ
F pW q “ ´  Av,w log ‡rowspW qv,w 9 ´ Epv,wq„A rlog ‡rowspW qv,ws 

v,w“1 „ ˆ ˙⇢
Av,w “ ´ Epv,wq„A rlog Av,ws ` Epv,wq„A log 

‡rowspW qv,w 

“ HApw|vq ` KL pApw|vq || ‡rowspW qpw|vqq . 

The first term on the right-hand side is the conditional entropy of the true underlying node transition distribution A and does 
not depend on W . The second is the conditional relative entropy between the true node transition distribution A, whose 
conditional is given by P , and the learned conditional ‡rowspW q. This shows that F is minimized by any W satisfying 
‡rowspW q “ P , which makes the low-rank constraint necessary for generalization in the learning step. 

C. Experiments 

C.1. Graph statistics 

Definition of various graph statistics used in this paper. Part of the table is extracted from Bojchevski et al. (2018). 

Table 4. Graph statistics for a graph G “ pV, Eq with N “ |V | nodes and m “ |E| edges. 

GRAPH STATISTIC COMPUTATION DESCRIPTION 

ASSORTATIVITY 

POWER LAW EXPONENT 

COVpX,Y q 
‡X ‡Y 

´ ∞ ¯ ́ 1
1 ` n log dpvq 

vPV dmin 

PEARSON CORRELATION OF DEGREES OF CON-
NECTED NODES, WHERE THE pxi, yiq PAIRS ARE THE 
DEGREES OF CONNECTED NODES. 

EXPONENT OF THE POWER LAW DISTRIBUTION, 
WHERE dMIN DENOTES THE MINIMUM DEGREE IN 
A NETWORK. 

RELATIVE EDGE 
DISTRIBUTION ENTROPY 

GINI COEFFICIENT 

∞1 dpvq´ log dpvq
log N vPV 2m 2m 

∞N2 i“1 i ̂di ´ N`1∞
N N ˆ N 

i“1 
di 

NORMALIZED ENTROPY OF THE DEGREE DISTRIBU-
TION, 1  MEANS UNIFORM, 0  MEANS A SINGLE NODE 
IS CONNECTED TO ALL OTHERS. 

COMMON MEASURE FOR INEQUALITY IN A DISTRI-
BUTION, WHERE d̂ IS THE SORTED LIST OF DEGREES 
IN THE GRAPH. 

CHARACTERISTIC 
PATH LENGTH 

∞1 
dpu, vqNpN´1q u‰v AVERAGE SHORTEST PATH LENGTH, WHERE dpu, vq 

IS THE SHORTEST PATH LENGTH BETWEEN NODES u 
AND v. 

SPECTRAL GAP ⁄1pLq SMALLEST NON-ZERO EIGENVALUE 
GRAPH LAPLACIAN L “ D ´ A. 

⁄1 OF THE 

MOTIF COUNT ´ NUMBER OF COPIES OF H CONTAINED IN G AS A 
SUBGRAPH. CONSIDERED MOTIFS ARE WEDGES, 
TRIANGLES, AND SQUARES. 

C.2. Baselines 

• Configuration model. We randomly sample a fraction of the edges in the input graph (fraction stated in brackets), and 
then rewire the remaining edges by severing them and randomly matching the stubs. This yields a graph with the same 
degree distribution as in the input graph. Because the resulting graph is not simple in general, we then remove all loops 
and multiple edges (with high probability, there are only few of them). 

• Low-rank approximations with respect to Frobenius norm. A class of graph generative models similar in spirit to 
our method is the Spectral Graph Forge framework, which is based on performing low-rank approximations of matrices 
derived from the input adjacency matrix A. The pipeline consists of the following steps: 
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1. Transform A into any derived matrix M “ M pAq. 
2. Perform a low-rank approximation of M to obtain M̃ . 
3. Back-transform M̃ to Ã by applying the inverse of the transformation. 
4. Obtain edge-independent model A: by making Ã symmetric and then normalizing it. 
5. Sample the new adjacency matrix A1 „ A: . 

We apply this framework to the adjacency matrix A (no transformation), the random walk transition matrix P 
, and the modularity matrix B “ A ´ dd

J{p2epGqq. The1
2 

1
2 

“ D´1
A, 

the symmetric normalized Laplacian Lsym “ I ´ D´ 
A

´ 

rank of the approximation is chosen so that the desired edge overlap with the input graph is reached: on CORA-ML, 
“ Lsymwe use rank 1600 for M P tA, P, Bu and rank 2520 for M . For the transition matrix, we choose the same 

back-transformation Ã “ diagpfĩqP̃  as in our method instead of Ã “ DP̃ , which uses the degree matrix of the input 
graph. Given Ã, we proceed like NetGAN and our method with S “ Ã. For link prediction, we also use the score 
matrix. 

• Low-rank approximation with respect to cross-entropy loss. This baseline is a version of our method CELL, but 
without the logit space. That is, we solve the optimization problem 

Nÿ
min ´ Ak,l log P̃k,l , 

P̃ PRNˆN 
k,l“1 (17) 

s. t. rankpP̃ q § H and P̃  P P , 

where P is the set of stochastic matrices on RNˆN . Similar to how we proceed in CELL, we enforce this constraint 
with the parametrization 

˜ C D ´1 C D
P “ Dpe e q e e , (18) 

where C P RNˆH 
, D  P RHˆN , the exponential function is taken element-wise, and DpeC 

e
Dq denotes the diagonal 

matrix of row sums for eC 
e

D . We then optimize the objective in Eq. (17) over C and D with Adam. 

C.3. Stopping criteria 

In addition to the rank constraint, CELL and NetGAN both use an early stopping criterion for learning the random walk 
distribution. 

EO-criterion. The EO-criterion is the stopping criterion used in this paper and by NetGAN, and generates graphs with a 
predefined edge overlap with the input graph (e. g. 50%). To employ it, training is stopped during regular intervals, the 
edge-independent model is constructed, and a single graph G1 is generated. If the fraction of edges epG X G1q{epGq is 
smaller than the predefined threshold, training is continued, otherwise it is stopped. 

VAL-criterion. The VAL-criterion is a stopping criterion proposed by NetGAN and represents an alternative to the edge 
overlap (EO) criterion used in this paper. It is employed by evaluating the link prediction performance on the validation set 
during training of the optimization problem, and then stopping the training as soon as the link prediction performance does 
not improve for a predefined amount of training iterations. For evaluation after training, the test set is used instead of the 
validation set. 

C.4. Example of a bias of NetGAN and CELL: Á-neighborhood graphs 

This section demonstrates the concepts discussed in Section 5.2 on Á-neighborhood graphs. These graphs arise by choosing 
the nodes as points in a metric space, and connecting those pairs of points by an unweighted, undirected edge whose distance 
is smaller than a constant Á ° 0 (see Figure 3 for an illustration). Given an Á-graph as input, there is one major property that 
a graph generative model should keep intact: edges should occur between points with a small distance in the underlying 
space, but not for points with a large distance. Figure 3 shows that NetGAN and CELL do not comply with this desired 
tendency: both algorithms generate long edges. We can easily counteract this mismatch in inductive bias for CELL by 
extending our loss function with an additional term that penalizes long edges. Because the underlying distances of the metric 
space are not directly represented in the Á-neighborhood graph anymore, we use its shortest path distances D P RNˆN as a 
proxy (which is sensible as one can prove that the shortest path distances in Á-graphs converge to the underlying metric 
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distances (Tenenbaum et al., 2000; Orlitsky, 2005)). We refer to the resulting method as “Local CELL”, whose loss function 
is given by 

N Nÿ ÿ
F pW q “ ´  Ak,l log ‡rowspW qk,l ´ Ak,l rDk,l § ks log ‡rowspW qk,l , (19) 

k,l“1 k,l“1 

where rAs “ 1, if statement A is true, and 0 otherwise. A comparison of NetGAN, CELL, and Local CELL is given in 
Table 5, see also Figure 3 for an illustration. As expected, NetGAN and CELL generate graphs with long edges, resulting in 
a large average edge length and small characteristic path length. Local CELL on the other hand is significantly closer to 
the input graph in this regard without a loss in performance for other statistics. It even improves on some other statistics, 
because the objective function is more appropriate for this type of graph. 

Table 5. Statistics of Á-neighborhood graph and generated graphs from three generative models, averaged over five trials. For the generated 
graphs, “avg. edge len.” is computed only from generated edges that are not present in the input graph. 

CHARAC. AVG. SPECTRAL ASSORT- POWER TRIANGLE WEDGE GRAPH 
PATH LEN. EDGE LEN. GAP ATIVITY LAW EXP. COUNT COUNT 

Á-NEIGHBORHOOD GRAPH 8.97 0.10 2.04e-3 0.75 1.51 2,319 11,557 

NETGAN (51% EO) 3.54 0.41 4.49e-2 0.09 1.50 895 10,638 

CELL (52% EO) 4.01 0.50 3.57e-2 0.38 1.50 1,144 11,030 

LOCAL CELL (52% EO) 5.92 0.21 5.13e-3 0.47 1.51 1,088 11,377 

C.5. Additional baseline experiments 

Graph statistics and link prediction performance on all data sets described in Section 6 for generated graphs from NetGAN, 
our method CELL, and baselines, averaged over five trials. Statistics that are matched by model design for the configuration 
model are indicated as ˚, and cases that are not applicable as ´. For a visualization and interpretation of the results, see 
Section C.7. 

Table 6. CORA-ML (2,810 nodes, 7,981 edges). 

GRAPH 
MAX. 

DEGREE 
ASSORT-
ATIVITY 

TRIANGLE 
COUNT 

SQUARE 
COUNT 

POWER 
LAW EXP. 

CLUSTER-
ING COEFF. 

CHARAC. 
PATH LEN. 

ROC-AUC 
SCORE 

TIME 
(IN S) 

CORA-ML 238 -0.076 2,802 14,268 1.86 8.26e-2 5.63 1 ´ 

CONF. MODEL (52% EO) ˚ -0.053 623 3111 ˚ 1.96e-2 4.43 ´ 1 

LR-ADJ (53% EO) 121 -0.042 444 1,128 1.72 2.78e-2 5.17 0.561 32 

LR-TRANS (57% EO) 139 -0.058 558 1,617 1.77 2.94e-2 5.07 0.709 33 

LR-LAP (52% EO) 167 -0.084 691 1942 1.79 2.79e-2 4.76 0.800 38 

LR-MOD (53% EO) 122 -0.043 437 1,135 1.72 2.75e-2 5.17 0.557 48 

LR-CE (52% EO) 193 -0.068 1,388 6,284 1.79 5.68e-2 5.37 0.950 73 

NETGAN (54% EO) 219 -0.071 1,461 5,555 1.80 5.23e-2 5.13 0.950 7,478 

CELL (53% EO) 204 -0.070 1,396 6,880 1.82 5.07e-2 5.26 0.938 21 
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Table 7. CITESEER (2,110 nodes, 3,668 edges). 

GRAPH 
MAX. 

DEGREE 
ASSORT-
ATIVITY 

TRIANGLE 
COUNT 

SQUARE 
COUNT 

POWER 
LAW EXP. 

CLUSTER-
ING COEFF. 

CHARAC. 
PATH LEN. 

ROC-AUC 
SCORE 

TIME 
(IN S) 

CITESEER 72 -0.015 483 1,866 2.24 8.70e-2 10.68 1 ´ 

CONF. MODEL (56% EO) ˚ -0.014 108 282 ˚ 1.95e-2 6.33 ´ 1 

LR-ADJ (57% EO) 34 4.75e-2 89 188 2.09 2.62e-2 8.17 0.608 12 

LR-TRANS (57% EO) 36 -0.022 119 364 2.15 3.20e-2 8.58 0.825 8 

LR-LAP (57% EO) 48 0.019 108 161 2.18 2.45e-2 7.82 0.362 12 

LR-MOD (56% EO) 32 5.33e-4 87 162 2.09 2.67e-2 8.17 0.603 108 

LR-CE (56% EO) 47 -0.076 138 549 2.13 3.50e-2 8.57 0.903 19 

NETGAN (57% EO) 52 -0.074 361 478 2.15 8.50e-2 9.03 0.951 4,654 

CELL (56% EO) 44 -0.093 106 318 2.17 2.54e-2 7.36 0.858 10 

Table 8. POLBLOGS (1,222 nodes, 16,779 edges). 

GRAPH 
MAX. 

DEGREE 
ASSORT-
ATIVITY 

TRIANGLE 
COUNT 

SQUARE 
COUNT 

POWER 
LAW EXP. 

CLUSTER-
ING COEFF. 

CHARAC. 
PATH LEN. 

ROC-AUC 
SCORE 

TIME 
(IN S) 

POLBLOGS 298 -0.222 60,873 2,631,731 1.44 0.189 2.82 1 ´ 

CONF. MODEL (52% EO) ˚ -0.140 31,364 1,263,826 ˚ 0.118 2.72 ´ 1 

LR-ADJ (52% EO) 171 -0.022 15,497 430,846 1.36 0.082 2.66 0.63 1 

LR-TRANS (52% EO) 200 -0.114 27,428 918,543 1.40 0.114 2.73 0.861 1 

LR-LAP (51% EO) 234 -0.214 19,593 511,781 1.36 0.086 2.55 0.745 2 

LR-MOD (51% EO) 170 -0.028 15,528 433,669 1.36 0.082 2.66 0.624 16 

LR-CE (54% EO) 248 -0.226 34,942 1,303,305 1.40 0.126 2.66 0.943 17 

NETGAN (52% EO) 261 -0.244 37,849 1,438,174 1.41 0.132 2.70 0.950 55,276 

CELL (51% EO) 268 -0.243 49,366 2,043,407 1.43 0.160 2.78 0.949 15 

Table 9. RT-GOP (4,687 nodes, 5,529 edges). 

GRAPH 
MAX. 

DEGREE 
ASSORT-
ATIVITY 

TRIANGLE 
COUNT 

SQUARE 
COUNT 

POWER 
LAW EXP. 

CLUSTER-
ING COEFF. 

CHARAC. 
PATH LEN. 

ROC-AUC 
SCORE 

TIME 
(IN S) 

RT-GOP 270 -0.135 0 2 4.29 0 14.01 1 ´ 

CONF. MODEL (51% EO) ˚ -0.092 56 241 ˚ 1.89e-3 5.68 ´ 1 

LR-ADJ (52% EO) 239 -0.117 0 87 3.74 0 12.05 0.559 7 

LR-TRANS (55% EO) 328 -0.111 0 139 4.53 0 6.18 0.676 19 

LR-LAP (52% EO) 162 -0.070 5 1 3.09 5.15e-4 14.61 0.466 164 

LR-MOD (51% EO) 192 -0.101 0 34 3.41 0 21.10 0.550 84 

LR-CE (51% EO) 233 -0.122 0 29 3.74 0 20.08 0.874 129 

NETGAN (52% EO) 221 -0.112 14 15 3.64 6.74e-4 16.33 0.738 14,800 

CELL (51% EO) 253 -0.142 0 6 4.11 0 16.90 0.704 23 
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Table 10. WEB-EDU (3,031 nodes, 6,547 edges). 

GRAPH 
MAX. 

DEGREE 
ASSORT-
ATIVITY 

TRIANGLE 
COUNT 

SQUARE 
COUNT 

POWER 
LAW EXP. 

CLUSTER-
ING COEFF. 

CHARAC. 
PATH LEN. 

ROC-AUC 
SCORE 

TIME 
(IN S) 

WEB-EDU 99 -0.183 4491 35,423 2.11 0.167 4.56 1 ´ 

CONF. MODEL (52% EO) ˚ -0.109 873 4,913 ˚ 0.032 4.59 ´ 1 

LR-ADJ (53% EO) 58 -0.114 1,096 3,932 1.97 0.081 6.66 0.579 18 

LR-TRANS (53% EO) 166 -0.034 2,692 20,424 2.13 0.120 5.13 0.862 12 

LR-LAP (53% EO) 103 -0.098 514 1,637 2.01 0.028 5.25 0.360 30 

LR-MOD (53% EO) 58 -0.121 989 3,292 1.97 0.075 6.44 0.595 97 

LR-CE (52% EO) 74 -0.136 1,194 4,330 1.99 0.080 6.41 0.994 72 

NETGAN (53% EO) 92 -0.174 1,244 3,022 2.02 0.064 5.51 0.992 11,000 

CELL (54% EO) 63 -0.234 1,176 4,710 2.03 0.069 6.67 0.977 16 
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C.6. Evolution of graph statistics during training 

To compare the generated graphs of CELL and NetGAN for different edge overlaps, we fix all hyperparameters and stop 
training at regular intervals to compute the graph statistics of the generated graphs. Since we fix the ranks for the low-rank 
constraint, the generated graphs will not converge to 100% edge overlap. But this area of high edge overlap is of little 
interest anyway, because the shared edges alone force the generated graphs to reproduce many graph statistics. Note that 
in order to reduce computational complexity, NetGAN uses less random walks to compute statistics during training (for 
example to evaluate the stopping criteria): instead of sampling many random walks from the generator, it keeps track of the 
random walks generated in the last 1,000 iterations during training to build the score matrix. For our method CELL there is 
no such distinction, we complete our pipeline as described in the main paper. 

Aside from few exceptions, for example the triangle count and the related clustering coefficient on CITESEER, we observe 
the same behavior as described in Section 6.2 of the main paper: after a short initialization phase, CELL and NetGAN 
display comparable behavior. 

Figure 5. Graph statistics during training for NetGAN and CELL on CORA-ML, plotted against edge overlap. 



NetGAN without GAN 

Figure 6. Graph statistics during training for NetGAN and CELL on CITESEER, plotted against edge overlap. 
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C.7. Comparison of relative errors 

p1q pKqFor a graph statistic s on the input graph, let sM “ ps , . . . , s  q denote the estimates of model M for s in K trials. The M -M -∞
K - pkq-average relative error is then defined by srelpMq “ 1{K -s ´ s - { |s|. In Figure 7, we depict the relative errors for 
k“1 M 

NetGAN, CELL, and baselines on a variety of data sets and graph statistics. Small relative errors indicate good performance 
in the sense that the generated graphs are close to the input graph. Over all data sets, a general trend can be observed: 
on most instances, the three models NetGAN, CELL, and LR-CE behave similarly and better as compared to the other 
baselines. Occasional deviations of this behavior might be attributed to the different optimization procedures and the early 
stopping. For some networks, for example CITESEER, NetGAN seems to outperform CELL, but for others like POLBLOGS, 
CELL performs better; this reflects that their different optimization procedures might or might not contribute to the goal of 
learning the network at hand. 

C.8. Hyperparameters 

For all our considered models except the configuration model and NetGAN, we choose the rank parameter H such that 
the generated graphs achieve the predefined edge overlap with the input graph. For example on CORA-ML with 2,810 
nodes, we choose H “ 1600 for LR-Adj, LR-Trans, and LR-Mod, H “ 2520 for LR-Lap, H “ 950 for LR-CE, and only 
H “ 9 for our method CELL. In general, a higher rank increases the ability of the model to generate graphs with a high 
edge overlap. For NetGAN, we only consider unbiased random walks (p “ q “ 1) with batch size 128 and length 16. 
The dimensions Hg and Hd for the low-rank projection for generator and discriminator are both 128. Both generator and 
discriminator have a single hidden layer with 40 hidden units for the generator and 30 hidden units for the discriminator. 
The temperature · is annealed from · “ 5 to · “ 0.5 with a multiplicative decay of 1 ´ 10

´5 every step. 

We optimize the methods LR-CE, NetGAN and CELL using Adam. For LR-CE and CELL, we use a learning rate of 0.1 
and weight decay of 10

´7, and for NetGAN the learning rate is 0.0003 with L2-regularization of 10
´7 for the generator and 

5 ¨ 10
´5 for the discriminator. The Wasserstein gradient penalty is set to 10. 
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Figure 7. Relative errors of NetGAN, CELL and baselines, trained until the EO-stopping criterion given in brackets, and averaged over 
five trials. Rows represent the input graphs, columns represent the graph statistics. The y-axis ranges from 0 to 1 in every cell; values that 
exceed 1 are capped and indicated with an arrow. For the Conf. model, statistics that are matched exactly (0 relative error) are indicated 
by ‹, and the non-existent ROC-AUC score is indicated by a ´. The three statistics triangle count, square count and clustering coefficient 
for the extremely sparse network RT-GOP are omitted, because their value is zero and the relative errors are not defined (triangle count, 
clustering coefficient), or it is too small to be produce a meaningful relative error (square count is 2). For the actual graph statistics of 
generated and input graphs, see Section C.5. 


