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Abstract

This paper studies the sample complexity (aka
number of comparisons) bounds for the active
best-k items selection from pairwise comparisons.
From a given set of items, the learner can make
pairwise comparisons on every pair of items, and
each comparison returns an independent noisy re-
sult about the preferred item. At any time, the
learner can adaptively choose a pair of items to
compare according to past observations (i.e., ac-
tive learning). The learner’s goal is to find the (ap-
proximately) best-k items with a given confidence,
while trying to use as few comparisons as possible.
In this paper, we study two problems: (i) finding
the probably approximately correct (PAC) best-k
items and (ii) finding the exact best-k items, both
under strong stochastic transitivity and stochas-
tic triangle inequality. For PAC best-k items se-
lection, we first show a lower bound and then
propose an algorithm whose sample complexity
upper bound matches the lower bound up to a con-
stant factor. For the exact best-k items selection,
we first prove a worst-instance lower bound. We
then propose two algorithms based on our PAC
best items selection algorithms: one works for
k = 1 and is sample complexity optimal up to a
loglog factor, and the other works for all values
of k and is sample complexity optimal up to a log
factor.
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1. Introduction
1.1. Background and Motivation

Ranking from pairwise comparisons (or pairwise ranking)
is a fundamental problem that has been widely applied to
various areas, such as recommender systems, searching,
crowd-sourcing, and social choices. In a pairwise ranking
system, the learner wants to learn the full or partial ranking
(e.g., best-k items) of a set of items from noisy pairwise
comparisons, where items can refer to various things such as
products, posts, choices, and pages; and comparisons refer
to processes or queries that indicate qualities or users’ pref-
erences over the items. In this paper, for simplicity, we use
the terms “item”, “comparison”, and “users’ preference”.

A noisy pairwise comparison is a query over two items that
returns a noisy result about the preferred one. Here, “noisy”
simply means that the comparison could return the less pre-
ferred one, which may be the result of the uncertain nature
of physics, machines, or humans. Since the comparisons
can reveal some information about the users’ preferences,
by repeatedly comparing these items, the learner may find
a reasonable global ranking (e.g., (Hunter, 2004)) or local
ranking (e.g., (Park et al., 2015)) of these items.

Based on when the comparisons are generated, the ranking
problems can be divided into two classes: passive ranking
(e.g., (Park et al., 2015; Shah et al., 2017)) and active rank-
ing (e.g., (Pfeiffer et al., 2012; Chen et al., 2013; Falahatgar
et al., 2017a; Ren et al., 2019)). In passive ranking, the
learner first has all the comparison data and then develops
a reasonable ranking. In active ranking, the learner does
not have all the comparison data at the beginning, and can
adaptively choose items to compare during the learning
process. This paper studies the fully active ranking (or ac-
tive learning), where for each comparison, the learner can
adaptively choose two items to compare according to past
observations. Chen et al. (2013) showed that in a crowd-
sourcing dataset, their active ranking algorithm uses only
3% comparisons and achieves almost the same performance
as passive ranking.

This paper focuses on the best-k-items-selection problem.
For many applications, ranking all the items may be neither
efficient nor necessary. For instance, in a video sharing
website, filters may generate hundreds of candidate videos,
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but the website may only want to present 30 videos to the
user. Thus, it is not necessary to rank all these videos, and a
more efficient way can be to first select the best 30 videos
and then rank them. The best-k items selection can be of
interest to many different applications.

In previous works (e.g., (Yue and Joachims, 2011; Busa-
Fekete et al., 2014; Szörényi et al., 2015; Falahatgar et al.,
2017b; 2018; Saha and Gopalan, 2019a;b)), the problem
of best item selection has been studied in different settings.
However, the problem of best-k items selection has been
less investigated. We note that best-k items selection is
not a naive extension to the best item selection. For in-
stance, in the deterministic case, finding the max number is
easy by sequentially doing n− 1 comparisons and eliminat-
ing the smaller ones, while finding the largest k numbers in
O(n log k) time needs more complex algorithms (e.g., quick
select (Hoare, 1961)). The same is true in non-deterministic
settings. We do not find a method to extend best item selec-
tion algorithms to an efficient best-k one.

This paper studies both the exact and probably approxi-
mately correct (PAC) best-k items selection. Exact selection
simply means finding the exact best-k items. PAC selec-
tion is to find k items that are approximately best or good
enough (see Section 1.2 for details), which can avoid the
cases where the preferences over two items are extremely
close, making exactly ranking them too costly.

In summary, this paper studies the problem of using fully
active ranking (active learning) to find the exact or PAC
best-k items from noisy pairwise comparisons with a certain
confidence and use as few comparisons as possible.

1.2. Problem Formulation and Notations

Assume that there are n items, indexed by 1, 2, 3, ..., n, and
we use [n] = {1, 2, 3, ..., n}1 to denote the set of these items.
For these items, we make the following assumptions:

A1) Time-invariance. For any items i and j in [n], we as-
sume that the distributions of the comparison outcomes over
items i and j are time-invariant, i.e., there is a number pi,j in
[0, 1] independent of time such that for any comparison over
items i and j, item i wins the comparison with probability
pi,j , where “item i wins the comparison” means that the
comparison returns item i as the preferred one.

A2) Tie Breaking. We assume that for every comparison,
exactly one item wins. If a tie does happen, we randomly
assign one item as the winner. Thus, for any items i and j
in [n], pi,j + pj,i = 1.

A3) Independence. We assume that the comparison results
are independent across time, items, and sets.

1For any positive integerm, we define [m] := {1, 2, 3, ...,m}.

We note that assumptions A1) to A3) are common in the
literature (e.g., (Szörényi et al., 2015; Shah and Wainwright,
2017; Falahatgar et al., 2017a;b; 2018; Heckel et al., 2018;
Katariya et al., 2018; Heckel et al., 2019; Saha and Gopalan,
2019a;b; Ren et al., 2019)). In this paper, we make two more
assumptions to restrict our problems to specific conditions.

Before making these two assumptions, we introduce some
notations. For two items i and j in [n], we define ∆i,j :=
|pi,j − 1/2| as the gap of pi,j and 1/2, which can measure
how difficult to order items i and j by comparing them.
Also, we define pi,i := 1/2 for all items i. For real numbers
a, b, we define a∨ b := max{a, b}, and a∧ b := min{a, b}.

A4) Strong stochastic transitivity (SST) (Shah et al., 2017;
Falahatgar et al., 2018). In this paper, the items are said to
satisfy SST if and only if (i) there is a strict order over these
n items, (ii) if i � j2, then pi,j > 1/2,3 and (iii) for any
three items i, j, and l with i � j � l, pi,l ≥ pi,j ∨ pj,l.

A5) Stochastic triangle inequality (STI) (Falahatgar et al.,
2018). The items are said to satisfy STI if for any three
items i, j, and l, ∆i,l ≤ ∆i,j + ∆j,l.

We note that many widely used parametric models such
as the Bradley-Terry-Luce (Bradley and Terry, 1952; Luce,
2012) (BTL) and Thurstone’s model (Thurstone, 1927) sat-
isfy SST and STI, and thus, the algorithms in this paper can
be directly used under these models. In this paper, we do not
restrict our results to specific parametric models. Without
loss of generality, we use r1 � r2 � · · · � rn to denote the
unknown true ranking.

The first problem is the PAC best-k items selection. We
follow the definition of PAC best item of Falahatgar et al.
(2017a;b; 2018) to define the PAC best-k items. We note
that when k = 1, our definition of PAC best items is the
same as that of Falahatgar et al. (2017a;b; 2018).

Definition 1 ((ε, k)-optimal subsets). For a set S, given
k ≤ |S|, and ε ∈ [0, 1], a set U ⊂ S is said to be an (ε, k)-
optimal subset of S if |U | = k and pi,j ≥ 1/2− ε for any
items i in U and j not in U .

If ε < mini∈[n]:rk�i ∆i,rk , an (ε, k)-optimal subset of S is
exactly the set of the best-k items of S. However, if we
do not have a priori knowledge about the gaps, we cannot
use the PAC algorithms to find the exact best items. The
number ε is called the error tolerance. We note that in an
(ε, k)-optimal subset, every item i has pi,rk ≥ 1/2− ε.
Problem 1 (PAC best-k items selection (PAC k-selection)).
Given n items [n], k ≤ n/2, and δ, ε ∈ (0, 1/2), we want to
find an (ε, k)-optimal subset of S with probability at least

2Term i � j means that i ranks higher than j in the true order.
3In some works, we may have pi,j = 1/2 for items i 6= j.

However, in this paper, we do not allow pi,j = 1/2 to avoid the
case where the term “best-k items” is not well defined.
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1− δ, and use as few comparisons as possible.

The second problem is the exact best-k items selection. Un-
der SST, since there is a strict order over these n items, the
best-k items are unique. The best-k items are r1, r2, ..., rk,
and finding the best-k items is to find the set {r1, r2, ..., rk}.
We do not need to order these best-k items but only need to
find a k-sized set that contains all the best-k items.
Problem 2 (Exact best-k items selection (exact
k-selection)). Given n items, k ≤ n/2, and δ ∈ (0, 1/2),
we want to find the best-k items with probability at least
1− δ, and use as few comparisons as possible.

We define the gap of item i as

∆i = 1i�rk+1
·∆i,rk+1

+ 1rk�i ·∆rk,i, (1)

and our sample complexity (aka number of comparisons)
bounds for the exact k-selection depends on these gaps.

1.3. Main Contributions

For the PAC k-selection problem, we first prove an
Ω(nε−2 log(k/δ)) lower bound on the expected number
of comparisons, and then propose an algorithm with sample
complexity O(nε−2 log(k/δ)), which implies that our up-
per bound matches the lower bound up to a constant factor.

For the exact k-selection problem, we first prove
a worst-instance sample complexity lower bound
Ω(

∑
i∈[n][∆

−2
i log δ−1] + log log ∆−1rk ). We then pro-

pose an algorithm for k = 1 with sample complexity
O(

∑
i 6=r1 [∆−2i (log δ−1 + log log ∆−1i )]) based on our

PAC k-selection algorithm, which is optimal up to
a loglog factor. Finally, we propose another algo-
rithm for general values of k with sample complexity
O(

∑
i∈[n][∆

−2
i (log(n/δ) + log log ∆−1i )]), which is

optimal up to a log factor.

2. Related Works
An early work that has studied the exact k-selection was
done by Feige et al. (1994). Feige et al. (1994) have shown
that if ∆i,j ≥ ∆ > 0 for all items i and j where ∆ > 0
is a priori known, then to find the best-k items of [n] with
probability at least 1 − δ, Θ(∆−2 log(k/δ)) comparisons
are sufficient and necessary for worst instances. However,
the work of Feige et al. (1994) requires a priori knowledge
of a lower bound of the values of ∆i,j’s to run, which may
not be possible in practice. This paper does not assume
this knowledge. Further, the sample complexity in Feige
et al. (1994) depends on the minimal gaps, i.e., mini 6=j ∆i,j ,
while the sample complexity in this paper depends on ∆ri,rk

or ∆ri,rk+1
, which exploits unequal gaps better.

Chen and Suh (2015); Negahban et al. (2017); Chen et al.
(2019) studied the exact k-selection problem under the

Plackett-Luce (Plackett, 1975; Luce, 2012) (PL) model4,
which is a parametric model that satisfies SST and STI.
They proposed algorithms with adaptivity5 one, which
can find the best-k items of [n] with high probability6 by
O(n∆−2rk,rk+1

log n) comparisons. In contrast, this paper
focuses on fully active algorithms (i.e., the number of adap-
tivity is unlimited) and the algorithms are not restricted to
parametric models. Another work that has focused on the ex-
act k-selection problem under the MNL model is Chen et al.
(2018). Chen et al. (2018) proposed an exact k-selection al-
gorithm from pairwise comparisons with sample complexity
O(n log14(n)). They also studied ranking from multi-wise
comparisons, which is beyond the scope of this paper.

Busa-Fekete et al. (2014) studied the best item selection
problem under Mallows model, and proposed an algorithm
with samples complexityO(n log(n/δ)). Saha and Gopalan
(2019b) studied the exact best item selection problem under
the PL model with subset-wise feedbacks, and proposed
an algorithm withO(

∑
i∈[n][∆

−2
i (log δ−1+log log ∆−1i )])

sample complexity for confidence 1 − δ, which is of the
same order as the algorithm in this paper. Compared to the
work of Saha and Gopalan (2019b), our algorithms work for
all instances satisfying SST and STI, while the PL model is
a special case in our setting.

Another focus of this paper is the PAC k-selection problem.
To the best of our knowledge, we are the first to propose
PAC k-selection algorithms. Prior to this paper, there are
works that focused on the PAC best item selection problem.
Falahatgar et al. (2017a;b) proved that under SST, to find
an item i from [n] with pi,r1 ≥ 1/2 − ε with probability
at least 1− δ, Θ(nε−2 log δ−1) comparisons are sufficient
and necessary. Earlier to this, Yue and Joachims (2011)
proved the same result for cases under the SST and the
STI. The works of Saha and Gopalan (2019a) also proved
the same sample complexity bounds under the PL model.
When k = 1, our upper bound and lower bound for the PAC
k-selection problem is the same as that of Falahatgar et al.
(2017a;b) (ignoring constant factors).

There are also many works that studied the ranking prob-
lems under other models, which are beyond the scope of this
paper. Shah and Wainwright (2017); Heckel et al. (2018);
Katariya et al. (2018); Heckel et al. (2019) studied the active
ranking problems under the Borda-Score (BS) model, which
can be viewed as a superset of SST and STI in some sense.
However, we note that, for instances satisfying SST and STI,
BS ranking algorithms may not be as efficient as their perfor-

4We note that the PL model, the BTL model, and the multi-
nomial logit (MNL) model (McFadden, 1973; Luce, 2012) share
equivalent mathematical formula for pairwise comparisons.

5See Agarwal et al. (2017); Braverman et al. (2019) for details
about learning with limited adaptivity.

6In this paper, “with high probability” means that with proba-
bility at least 1−n−p, where p > 0 is a sufficiently large constant.
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mance on BS problems7. Agarwal et al. (2017); Braverman
et al. (2019) studied the problem of ranking (or finding) the
best-k items with limited adaptivity. Feige et al. (1994);
Szörényi et al. (2015); Falahatgar et al. (2017a;b; 2018);
Ren et al. (2019) studied the (PAC) full ranking problems in
various settings, which is less related to this paper.

3. PAC k-Selection
This section studies the sample complexity lower bound and
upper bound for PAC k-selection. We first prove that for the
worst instances, to find an (ε, k)-optimal subset of [n] needs
Ω(nε−2 log(k/δ)) number of comparisons in expectation.
Then, we design an algorithm that solves all instances with
at most O(nε−2 log(k/δ)) number of comparisons in ex-
pectation, which shows that both our lower bound and upper
bounds are tight (up to a constant factor).

3.1. Lower Bound

We first analyze the lower bound for PAC k-selection, which
is stated in Theorem 2. We prove this bound by reducing
the pure exploration multi-armed bandit (PEMAB) problem
(e.g., (Mannor and Tsitsiklis, 2004; Kalyanakrishnan et al.,
2012)) to the PAC k-selection problem under the MNL
model and using the lower bounds for the PEMAB problem
of Mannor and Tsitsiklis (2004); Kalyanakrishnan et al.
(2012) to get the desired lower bound for PAC k-selection.
We note that Ren et al. (2018) used a similar method and
proved a similar lower bound. However, its definition of
PAC k-selection is different from that in this paper. Thus,
we need to independently find a lower bound in this paper.8

Later in subsection 3.2, we show that the lower bound stated
in Theorem 2 is tight up to a constant factor.

Theorem 2 (Lower bound for PAC k-selection). Given ε ∈
(0, 1/128), δ ∈ (0, e−4/4), n ≥ 2, and 1 ≤ k ≤ n/2, there
is an n-sized instance satisfying SST and STI such that to
find an (ε, k)-optimal subset of [n] with probability 1 − δ,
any algorithm needs to conduct Ω(nε−2 log(k/δ)) number
of comparisons in expectation.

3.2. Upper Bound and the Algorithm

We develop an optimal algorithm in two steps. Step one is to
design a PAC k-selection algorithm with O(nε−2 log(n/δ))
sample complexity. Step two is to develop another algo-
rithm with O(nε−2 log(k/δ)) sample complexity through
the above algorithm. We note that Falahatgar et al. (2018)

7The BS of an item i is 1
n−1

∑
j 6=i pi,j . When pi,j = 2/3

for all i � j, the gap of the BSs between the best two items is
Θ(n−1), and thus, the sample complexity to order them by BS
algorithms (e.g., Active Ranking (Heckel et al., 2019) is Ω(n2).

8Due to space limitation, all proofs in this paper are relegated
to the supplementary material.

proposed an algorithm for finding the PAC full ranking with
high probability, and has sample complexity O(nε−2 log n).
In a PAC ranking, the top-k items form an (ε, k)-optimal
subset of [n], and thus, this PAC full ranking algorithm can
be used as a PAC k-selection algorithm. However, the al-
gorithm of Falahatgar et al. (2018) can only guarantee to
return correct results with confidence 1− 1/n, while in the
construction of the k-selection algorithm with sample com-
plexity O(nε−2 log(k/δ)), we need the confidence to be
larger than 1−1/n. Thus, this algorithm is not sufficient for
us to obtain the O(nε−2 log(k/δ)) sample complexity. In
this paper, we propose a k-selection algorithm with sample
complexity O(nε−2 log(n/δ)) to achieve this purpose.

3.2.1. STEP ONE: EPSILON-QUICK-SELECT

Our first PAC k-selection algorithm is similar to a classical
deterministic k-selection algorithm, Quick Select (Hoare,
1961). In each round, Quick Select randomly picks (some
versions may have different picking strategies) an item as a
pivot and splits the other items into two piles: one contains
items no less than the pivot and the other contains items
less than the pivot. After the splitting, according to the sizes
of these two piles, we do Quick Select again on one pile.
This will be repeated until we find the k-th best item. The
expected time complexity of Quick Select is O(n).

When the comparisons are noisy, we need more effort to
find the (PAC) best-k items, but the basic idea is similar
to Quick Select. For each round t, we randomly pick an
item vt as the pivot, and compare every other item with the
pivot for certain times. According to these comparisons, we
distribute each item i into one of the following three piles: (i)
Sup:={item i is “sure” to be better than vt, i.e., pi,vt > 1/2
with a large probability}; (ii) Smid:={item i is “close to” vt,
i.e., 1/2 − ε ≤ pi,vt ≤ 1/2 + ε with a large probability};
and (iii) Sdown:={item i is “sure” to be worse than vt, i.e.,
pi,vt < 1/2 with a large probability}. After the splitting,
there can be three cases. If Sup contains at least k items,
then we run our algorithm again on Sup. If Sup contains less
than k items, and Sup ∪ Smid contains at least k items, then
the items in Sup along with (k − |Sup|) arbitrary items in
Smid form an (ε, k)-optimal subset. If Sup ∪ Smid contains
less than k items in total (say the number is k′), then we
run the algorithm on Sdown to find the PAC best (k − k′)
items, and the returned items along with Sup and Smid form
an (ε, k)-optimal subset. The properties of SST and STI
guarantee the correctness, and the choice of input confidence
for each round guarantees the sample complexity.

The “Quick-Select-like” algorithm is described in Al-
gorithm 2 Epsilon-Quick-Select (EQS). Subroutine 1
Distribute-Item (DI) is a subroutine, which splits the items
into three piles. DI is called by EQS with two shifts su
and sd being equal to zero, and later in Section 4, the algo-
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Subroutine 1 Distribute-Item (DI)
(i, v, ε, su, sd, δ, Sup, Smid, Sdown)

1: Set tmax := d 2
ε2 log 4

δ e, ∀t ∈ Z, bt :=
√

1
2t log π2t2

3δ ;
2: t← 0, and w0 ← 0;
3: repeat
4: t← t+ 1 and compare i and v once;
5: if i wins, wt ← wt−1 + 1; otherwise wt ← wt−1;
6: if wtt − bt >

1
2 + su then

7: Add i to Sup and return;
8: else if wtt + bt <

1
2 − sd then

9: Add i to Sdown and return;
10: end if
11: until t = tmax;
12: if wtmaxtmax

> 1
2 + 1

2ε+ su then
13: Add i to Sup;
14: else if wtmaxtmax

< 1
2 −

1
2ε− sd then

15: Add i to Sdown;
16: else
17: Add i to Smid;
18: end if

Algorithm 2 Epsilon-Quick-Select(S, k, ε, δ) (EQS)
1: Randomly pick an item from S and denote it by v;
2: Sup, Sdown ← ∅; Smid ← {v}; δ1 ← δ

|S|(|S|−1) ;
3: for item i in S and i 6= j do
4: DI(i, v, ε2 , 0, 0, δ1, Sup, Smid, Sdown).
5: end for
6: if |Sup| > k then
7: return EQS(Sup, k, ε,

(n−1)δ
n ); # n = |S|.

8: else if |Sup|+ |Smid| ≥ k then
9: return Sup ∪ (k − |Sup|) random items of Smid;

10: else
11: k′ ← k − |Sup| − |Smid|;
12: return Sup ∪ Smid∪ EQS(Sdown, k

′, ε, (n−1)δn );
13: end if

rithms for exact k-selection will also call DI as a subroutine.
Lemma 3 states the theoretical performance of DI, and The-
orem 4 states the theoretical performance of EQS.

Lemma 3 (Theoretical Performance of DI). DI terminates
after at most O(ε−2 log δ−1) comparisons, and with proba-
bility at least 1− δ, one the following five events happens:
(i) pi,v ≥ 1/2 + ε + su and item i is added to Sup; (ii)
pi,v ∈ (1/2 + su, 1/2 + ε+ su) and item i is not added to
Sdown; (iii) pi,v ∈ [1/2− sd, 1/2 + su] and item i in added
to Smid; (iv) pi,v ∈ (1/2− ε− sd, 1/2− sd) and item i is
not added to Sup; and (v) pi,v ≤ 1/2− ε− sd and item i is
added to Sdown.

Theorem 4 (Theoretical Performance of EQS). Given an
input set S with |S| = n, 1 ≤ k ≤ n/2, and ε, δ ∈ (0, 1/2),
EQS(S, k, ε, δ) terminates after O(nε−2 log(n/δ)) number

of comparisons in expectation, and with probability at least
1− δ, returns an (ε, k)-optimal subset of S.

3.2.2. STEP TWO: TOURNAMENT-k-SELECTION

In this section, we use EQS to develop a PAC k-selection
algorithm with sample complexity O(nε−2 log(k/δ)). The
algorithm runs like a tournament and consists of rounds.
At each round t, we split the remaining items (use Rt to
denote the set of the remaining items at the beginning of
round t) into subsets with size around 2k, and for each
subset we use EQS to find an (εt, k)-optimal subset with
confidence 1−δt/k. We then keep the items in these (εt, k)-
optimal subsets, and remove all the other items. We can
show that with probability at least 1− δt, the items kept in
round t (i.e., Rt+1) contain an (εt, k)-optimal subset of Rt,
which implies that for any t, Rt+1 contains a subset Ut+1

such that for any item i in Ut+1 and item j in Rt − Ut+1,
pi,j ≥ 1/2 − εt. We can also show that with probability
at least 1 − δt − δt−1, for any item i in Ut+1 and j in
Rt−1−Ut+1, pi,j ≥ 1/2−εt−εt−1. Repeating this, we can
show that with probability at least 1−

∑t
r=1 δr, for any item

i in Ut+1 and item j in [n]− Ut+1, pi,j ≥ 1/2−
∑t
r=1 εr.

Thus, by repeating the rounds until only k items remain, we
have that with probability at least 1−

∑∞
t=1 δt, for any item

i in the returned set and j not in the returned set, pi,j ≥
1/2 −

∑∞
t=1 εt, which implies that the returned set is a

(
∑∞
t=1 εt, k)-optimal subset of [n]. Choosing

∑∞
t=1 εt ≤ ε

and
∑∞
t=1 δt ≤ δ, we can get that with probability at least

1− δ, the returned set is an (ε, k)-optimal subset of [n]. The
algorithm is described in Algorithm 3, and its theoretical
performance is stated in Theorem 5.

Algorithm 3 Tournament-k-Selection([n], k, ε, δ) (TKS)

1: For any t ∈ Z+, set εt := 1
4 ( 4

5 )t and δt := 6δ
π2t2 ;

2: Initialize t← 0, R1 ← [n];
3: repeat
4: t← t+ 1;
5: Split Rt into mt = d |Rt|2k e sets (St,i, i ∈ [mt]),

where ∀i ∈ [mt], |St,i| ≤ 2k;
6: for i ∈ [mt] do
7: At,i ←EQS(St,i,min{k, |St,i|}, εt, δtk );
8: end for
9: Rt+1 ← At,1 ∪At,2 ∪ · · · ∪At,mt ;

10: until |Rt+1| = k;
11: return Rt+1;

Theorem 5 (Theoretical Performance of TKS). Given input
1 ≤ k ≤ n/2, and ε, δ ∈ (0, 1/2), TKS terminates after
O(nε−2 log(k/δ)) number of comparisons in expectation,
and with probability at least 1− δ, returns an (ε, k)-optimal
subset of [n].

Remark. i) The sample complexity upper bound of TKS
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matches the lower bound stated in Theorem 2 up to a con-
stant factor. Thus, in order sense, our upper and lower
bounds for PAC k-selection are tight. ii) When k = 1,
our upper bound is the same as that of Falahatgar et al.
(2017a;b). We note that the algorithms given by Falahatgar
et al. (2017a;b) only work for k = 1, and it is not obvious
how to generalize them to cases with general k-values.

4. Exact k-Selection
4.1. Lower Bound

In this subsection, we prove a lower bound for the exact
k-selection problem. We note that the sample complex-
ity lower bound not only depends on the gaps between
items i and items rk or rk+1 as in PEMAB problems (e.g.,
(Jamieson et al., 2014; Chen et al., 2017)), but also depends
on other comparisons probabilities. In fact, even if the val-
ues of ∆i’s are the same, different instances may have differ-
ent lower bounds on the sample complexity for finding the
best-k items. For some instances, even the Ω(∆−2i ) lower
bound for ordering two items stated in Theorem 6 and Ren
et al. (2019) may not hold if there are more than two items.
For instance, Example 13 in Ren et al. (2019) states an in-
stance with three items such that O(∆−1r1,r2 log(∆−1r1,r2δ

−1))
comparisons are sufficient to find the best item with prob-
ability 1 − δ, which indicates the difficulty in finding an
instance-wise lower bound for all instances.

Thus, in this paper, we prove a lower bound for a specific
model: Thurstone’s model. In Thurstone’s model, each item
i holds a real number θi representing the users’ preference
for this item. We name these numbers as scores. The higher
the score, the more preferred the item, and thus, the scores
imply a true order of these items. Under Thurstone’s model
with variance σ2, for any two items i and j, we have

pi,j=P{θi + Z1 > θj + Z2}=
1√

4πσ2

∫ θi−θj

−∞
e−

x2

4σ2 dx,

where Z1 and Z2 are two independent Gaussian(0, σ2) ran-
dom variables. The definitions of the gaps ∆i,j’s and ∆i’s
remain the same as in Section 1.2. It can be verified that
Thurstone’s model satisfies SST and STI. Under Thurstone’s
model, we prove the following lower bound for exact k-
selection, which can be viewed as a worst-instance lower
bound. Here, the worst-instance lower bound means that
under the same values of gaps δi’s, the lower bound for
the Thurstone’s model is no higher than the actual worst-
instance lower bound. In the proof, we invoke the results
shown by Jamieson et al. (2014); Chen et al. (2017).
Theorem 6 (Lower bound for exact k-selection under Thur-
stone’s model). Under Thurstone’s model with variance one,
given δ ∈ (0, 1/100), n items with scores θ1, θ2, ..., θn ∈
[0, 1], and 1 ≤ k ≤ n/2, to find the best-k items with prob-
ability at least 1− δ, any algorithm must conduct at least

Ω(
∑
i∈[n][∆

−2
i log δ−1] + log log ∆−1rk ) number of compar-

isons in expectation.

4.2. Algorithm for Best Item Selection

We first use the PAC algorithm TKS to establish a best item
selection algorithm called Sequential-Elimination-Exact-
Best-Selection (SEEBS). SEEBS runs in rounds. In each
round t, it chooses a threshold αt, uses TKS to choose a
PAC best item vt with error tolerance αt/3, and uses DI
to identify items i with pi,r1 ≤ 1/2 − αt and removes
them. By choosing a proper confidence δt for each round
t, the properties of DI and TKS stated in Lemma 2 and
Theorem 3 guarantee that with probability at least 1− δ, the
best item r1 will not be removed. If αt is diminishing so that
limt→∞ αt = 0 and the confidences satisfy

∑∞
t=1 δt ≤ δ,

the algorithm will, with probability at least 1− δ, discard
all items other than r1 and keep the best item r1. TKS is
described in Algorithm 4, and its theoretical performance is
stated in Theorem 7.

Algorithm 4 Sequential-Elimination-Exact-Best-Selection
([n], δ) (SEEBS)

1: For all t ∈ Z+, set αt := 2−t and δt := 6δ
π2t2 ;

2: Initialize t← 1, R1 ← [n];
3: repeat
4: {vt} ←TKS(Rt, 1,

αt
3 ,

2δt
3 );

5: Sup ← ∅, Smid ← {vt}, Sdown ← ∅;
6: for items i in Rt − {vt} do
7: DI(i, vt, αt3 , 0,

αt
3 ,

δt
3 , Sup, Smid, Sdown);

8: end for
9: Rt+1 ← Rt − Sdown;

10: t← t+ 1;
11: until |Rt| = 1
12: return the only item in Rt;

Theorem 7 (Theoretical Performance of SEEBS). With
probability at least 1 − δ, SEEBS terminates after
O(

∑
i 6=r1 [∆−2i (log δ−1 + log log ∆−1i )]) number of com-

parisons in expectation and returns the best item in [n].

Remark. i) According to the lower bound stated in The-
orem 6, SEEBS is worst-instance optimal up to a loglog
factor. If ∆i’s are not too small, the term log log ∆−1i will
be dominated by log δ−1, i.e., if ∆−1i ≤ e1/δ, then our
upper bound is worst-instance optimal up to a constant fac-
tor. ii) The phrase “in expectation” in Theorem 7 does
not only come from the sample complexity of TKS, but
also comes from the choice of input confidences of DI. At
each round t, by inputting δt/3 to DI, one cannot guaran-
tee that the executions of DI correctly assign all non-best
items i with pi,r1 ≤ 1/2 − αt to Sdown with probabil-
ity 1 − δt, and thus, more rounds may be needed to re-
move these non-best items. Therefore, in expectation, the
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number of comparisons over item i is upper bounded by
O(∆−2i (log δ−1 + log log ∆−1i )).

4.3. Algorithm for Best-k Items Selection

In this subsection, we develop an exact best-k items se-
lection algorithm called Sequential-Elimination-Exact-k-
Selection (SEEKS). The basic idea of SEEKS is similar to
SEEBS. SEEKS runs in rounds. At each round t, it calls
TKS and TKS2 (where TKS2 is almost the same as TKS
except that it finds the PAC worst items) to find a pivot vt
such that ∆vt,rk ≤ αt/3. Then it uses DI to distribute the
items such that with probability at least 1− δt, (i) all items
i with pi,rk ≥ 1/2 + αt are added to St+1; (ii) all items
i with pi,rk ≤ 1/2 − αt are discarded (i.e., not added to
St+1 or Rt+1); (iii) none of the items with pi,rk ≥ 1/2
is discarded; and (iv) all items added to St+1 are of the
best-k items. By choosing proper confidence δt for each
round t, we guarantee that with probability at least 1 − δ,
none of the best-k items is discarded, and all items added to
St+1 are of the best-k items. Thus, with probability at least
1−

∑∞
t=1 δt = 1− δ, in all rounds, none of the best items

is discarded, and St only contains the best-k items. When
|St| ≤ k or |St ∪ Rt| ≤ k, the algorithm terminates, and
thus, if the algorithm returns, with probability at least 1− δ,
it returns the set of the best-k items. Since limt→∞ αt = 0,
there is a large enough t such that either all of the best-k
items have been added to some St, or all items except the
best-k are discarded. Therefore, the algorithm terminates in
finite time. The sample complexity follows from the choice
of αt’s and δt’s. SEEKS is described in Algorithm 5. Its
theoretical performance is stated in Theorem 8.

Algorithm 5 Sequential-Elimination-Exact-k-Selection
([n], k, δ) (SEEKS)

1: For all t ∈ Z+, set αt := 2−t and δt := 6δ
π2t2 ;

2: Initialize t← 1, R1 ← [n], S1 ← ∅, k1 ← k;
3: repeat
4: At ←TKS(Rt, kt,

αt
3 ,

δt
3 );

5: {vt} ←TKS2(At, 1,
αt
3 ,

δt
3 )

6: Sup ← ∅, Smid ← {vt}, Sdown ← ∅;
7: for items i in Rt − {vt} do
8: DI(i, vt, αt3 ,

αt
3 ,

αt
3 ,

δt
3(|Rt|−1) , Sup, Smid, Sdown);

9: end for
10: St+1 ← St ∪ Sup;
11: Rt+1 ← Rt − Sup − Sdown;
12: kt+1 ← kt − |Sup|;
13: t← t+ 1;
14: until |St| ≥ k or |St ∪Rt| ≤ k
15: return St∪ {k − |St| items in Rt};

Theorem 8 (Theoretical Performance of SEEKS). With
probability at least 1 − δ, SEEKS terminates after
O(

∑
i∈[n][∆

−2
i (log(n/δ) + log log ∆−1i )]) number of com-

parisons in expectation, and returns the best-k items.

Remark. i) According to the lower bound stated in The-
orem 6, SEEKS is worst-instance optimal up to a log fac-
tor. We conjecture that the true lower bound and upper
bound of the exact k-selection depend on log(k/δ), just as
that of the PAC k-selection, but it remains an open prob-
lem for future studies. ii) Different from Theorem 4, the
phrase “in expectation” in Theorem 8 comes from the sam-
ple complexity of TKS (stated in Theorem 5). If one can
find a PAC k-selection algorithm that uses no more than
O(nε−2 log(n/δ)) comparisons with probability 1−δ, then
by replacing TKS and TKS2 with this algorithm, we can
remove “in expectation” in Theorem 8.

5. Numerical Results
In this section, we perform experiments on the synthetic
dataset with equal noise-levels (i.e., ∆i,j is a constant) and
public election datasets provided by PrefLib (Mattei and
Walsh, 2013). In the supplementary material, we present
the results of the synthetic dataset with unequal noise-levels
and the numerical illustrations of the growth rates of the
exact best-k items selection bounds. The codes and datasets
can be found in our GitHub page.9

5.1. Numerical Results on Synthetic Data

In this subsection, we provide numerical simulations for
our algorithms and those in related works under equal noise
levels, i.e., we set pi,j = 0.6 for all items i and j with i � j.
This dataset has also been used in previous works (Yue and
Joachims, 2011; Busa-Fekete et al., 2014; Falahatgar et al.,
2017a;b; 2018). The results are presented in Figure 1, and
every data point of it is averaged over 100 independent trials.

5.1.1. PAC BEST ITEM SELECTION

For PAC best item selection, the algorithms we compare
with our EQS and TKS algorithms are: i) Knockout (Fala-
hatgar et al., 2017b), ii) Seq-Eliminate (Falahatgar et al.,
2017a), iii) Opt-Maximize (Falahatgar et al., 2017a), iv) Ac-
tive Ranking (Heckel et al., 2019), v) Beat-the-Mean (Yue
and Joachims, 2011), and vi) MallowsMPI (Busa-Fekete
et al., 2014). Knockout and Opt-Maximize are two PAC best
item selection algorithms, and their sample complexities are
upper bounded by O(nε−2 log δ−1), which is of the same
order as TKS. Seq-Eliminate and Beat-the-Mean are also
PAC best item selection algorithms, but their sample com-
plexities are O(nε−2 log(n/δ)), higher than that of TKS
by a log factor. Active Ranking (Heckel et al., 2019) and
MallowsMPI are exact selection algorithms with sample

9https://github.com/WenboRen/Topk-Ranking-from-Pairwise-
Comparisons.git
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(a) PAC best one selection with
ε = 0.08 and δ = 0.01.
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(b) PAC best one selection with
ε = 0.001 and δ = 0.01.
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(c) PAC k-selection with k = 2,
ε = 0.08, and δ = 0.01.
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(d) PAC k-Selection with k =
4, ε = 0.08, and δ = 0.01.
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(e) PAC k-selection with n =
1000, ε = 0.08, and δ = 0.01.

101 102 103

n

104

105

106

nu
m

be
r 

of
 c

om
pa

ris
on

s

SEEKS
SEEKS-v2
Active Ranking
SEEBS

(f) Exact k-selection with k =
1 and δ = 0.01.
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(g) Exact k-selection with k =
50 and δ = 0.01.
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(h) Exact k-selection with n =
1000 and δ = 0.01.

Figure 1. Numerical results on the equal noise-level dataset, i.e., pi,j = 0.6 for any items i � j.

complexity O(n log(n/δ)).

The numerical results are summarized in Figure 1 (a) (b).
We set δ = 0.01, and examine how the number of compar-
isons conducted increases with n. In Figure 1 (a), we set
ε = 0.08, and in Figure 1 (b), we set ε = 0.001.

According to the illustrated results, we can see that when
ε is small (i.e., ε = 0.001), the performance of our algo-
rithm TKS is almost the same as those of Knockout and
MallowsMPI, the best of previous works. We note that
Knockout and MallowsMPI are only designed for best item
selection and it is not obvious how to extend them to cases
with k > 1. Thus, although our TKS works for all values of
k, its performance is close to the best of the state-of-the-art
when k = 1.

5.1.2. PAC k-SELECTION

For the PAC k-selection, we provide the simulation results
for EQS, TKS, and Active Ranking.

The results are summarized in Figure 1 (c)-(e). In Fig-
ure 1 (c)-(d), we set ε = 0.08 and δ = 0.01, vary the values
of n, and compare EQS of TKS with k = {2, 4}. In Fig-
ure 1 (e), we set ε = 0.08, δ = 0.01, and n = 1000, and
compare EQS and TKS with different values of k.

As presented in Figure 1 (c)-(e), we can see that when k is

small (i.e., k ≤ 2), TKS outperforms EQS, but when k is not
too small, EQS uses fewer comparisons. The sample com-
plexity upper bound of TKS is O(nε−2 log(k/δ)), which
is lower than the O(nε−2 log(n/δ)) complexity of EQS.
However, in practice, for most values of k, EQS consumes
fewer comparisons. One explanation is that the constant
factor of TKS is larger than that of EQS. There may be two
reasons: First, in each call of EQS on S, the sub-call of EQS
is executed on Sup or Sdown, whose expected sizes are less
than |S|/2, while in TKS, each iteration removes no more
than a half of the items. Second, in TKS, the value εt input
to DI is less than ε, which is used in EQS.

5.1.3. EXACT k-SELECTION

For the exact k-selection algorithm, we only provide nu-
merical results for the algorithms proposed in this paper:
SEEBS, SEEKS, and SEEKS-v2, a variation of SEEKS.
Here, SEEKS-v2 is almost the same as SEEKS. But in
Line 4, TKS is replaced with EQS, since EQS has a better
empirical performance than TKS when k is not too small.
We note that the sample complexity upper bound of SEEKS-
v2 is of the the same order as SEEKS (ignoring constant
factors). We do not compare the algorithm proposed by
Chen et al. (2018) because it is unclear how to choose the
parameters to let the confidence be 1−δ. We do not compare
the algorithm given by Saha and Gopalan (2019b) since it
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Figure 2. Numerical results on public election datasets. MallowsMPI is not in (1) because its correct probability does not reach 1− δ for
the Irish election dataset. Beat-the-mean and Active Ranking are not in some subfigures because they do not return in a reasonable time.

requires the system to be able to conduct comparisons over
more than two items, which is not assumed in this paper.

In Figure 1 (f), we compare SEEBS, SEEKS, and SEEKS-
v2 with k = 1 and δ = 0.01. In Figure 1 (g), we fix k = 50
and δ = 0.01, vary n, and compare the two versions of
SEEKS. In Figure 1 (h), we fix n = 1000 and δ = 0.01,
vary k, and compare the two versions of SEEKS.

From Figure 1 (f), we can see that SEEBS is slightly better
than SEEKS, which is due to the choices of confidences
input to the calls of DI in these two algorithms. Also, we
can see that SEEBS and SEEKS are better than SEEKS-v2,
especially when n is large. This is because the empirical
performance of EQS is worse than TKS when k = 1. Ac-
cording to Figure 1 (g) and (h), SEEKS-v2 consumes fewer
comparisons when k is not too small. An explanation is that
in practice, EQS uses fewer comparisons than TKS when k
is not too small.

5.2. Numerical Results on Public Election Data

In this subsection, we perform numerical experiments
on public election datasets provided in PrefLib (Mattei
and Walsh, 2013). To be specific, we use the Irish elec-
tion dataset “ED-00001-00000001.pwg” (Lu and Boutilier,
2011) and the clean web search dataset “ED-00015-
00000047.pwg” (Betzler et al., 2014). Both datasets are
included in the supplementary material.

The Irish Election dataset contains n = 12 candidates and
43,942 votes on them. The web search dataset contains
n = 28 pages and 1134 samples of pairwise preferences on
them. For every pair of items i and j in each dataset, the
dataset records the number of votes or samples Ni,j that
show preference on item i to item j. From these records,
we extract pi,j := Ni,j/(Ni,j + Nj,i) for any two items i
and j. We note that these two dataset do not satisfy the SST
or the STI and do not imply a strict order. Thus, we use the
Borda-Scores for them to get the true rankings.

In the experiments, we set ε = 0.001, δ = 0.01, and
k = {1, 4}. Surprisingly, although these two datasets do
not satisfy SST or STI, our algorithms EQS, TKS, SEEBS,
and SEEKS can still return correct results with correct prob-
ability at least 1 − δ (in the experiments, all runs of them
return correct results). In fact, we have done experiments
on more datasets and find that if there is a small num-
ber γ > 1 (e.g., γ < 5) such that for any i � j � k,
pi,k ≥ γ−1 max{pi,j , pj,k} and ∆i,k ≤ γ(∆i,j + ∆j,k),
then our algorithms can guarantee at least 1 − δ correct
probability.

From the results presented in Figure 2, we can see that
for the Irish election dataset, the performances of our algo-
rithms EQS and TKS are close to the best of the previous
works, which indicates that even if they are not designed for
k = 1 and these types of datasets, they still have promising
performances on some real-world datasets. The results also
show positive evidence on our theoretical results, i.e., TKS
(SEEKS) performs better than EQS (SEEKS-v2) when k is
small (k = 1) and performs worse when k is large (k = 4).

6. Conclusion
This paper studied the sample complexity bounds for
selecting the PAC or exact best-k items from pairwise
comparisons. For PAC k-selection, we first proved an
Ω(nε−2 log(k/δ)) lower bound, and then proposed an algo-
rithm with expected sample complexity O(nε−2 log(k/δ)),
which implies that both our upper bound and lower bound
are tight up to a constant factor. For exact k-selection, we
first proved a worst-instance lower bound, and then pro-
posed an algorithm for k = 1 that is optimal up to a loglog
factor. Finally, we proposed an algorithm for general k-
values that is optimal up to a log factor. The numerical
results in this paper also confirm our theoretical results.
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