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Abstract

We investigate the challenge of multi-output learn-
ing, where the goal is to learn a vector-valued
function based on a supervised data set. This
includes a range of important problems in Ma-
chine Learning including multi-target regression,
multi-class classification and multi-label classi-
fication. We begin our analysis by introducing
the self-bounding Lipschitz condition for multi-
output loss functions, which interpolates continu-
ously between a classical Lipschitz condition and
a multi-dimensional analogue of a smoothness
condition. We then show that the self-bounding
Lipschitz condition gives rise to optimistic bounds
for multi-output learning, which attain the mini-
max optimal rate up to logarithmic factors. The
proof exploits local Rademacher complexity com-
bined with a powerful minoration inequality due
to Srebro, Sridharan and Tewari. As an appli-
cation we derive a state-of-the-art generalisation
bound for multi-class gradient boosting.

1. Introduction

Multi-output prediction represents an important class of
problems that includes multi-class classification (Cram-
mer & Singer, 2001), multi-label learning (Tsoumakas &
Katakis, 2007; Zhang & Zhou, 2013), multi-target regres-
sion (Borchani et al., 2015), label distribution learning
(Geng, 2016), structured regression (Cortes et al., 2016)
and others, with a wide range of practical applications (Xu
etal., 2019).

Our objective is to provide a general framework for estab-
lishing guarantees for multi-output prediction problems. A
fundamental challenge in the statistical learning theory of
multi-output prediction is to obtain bounds that allow for
(i) favourable convergence rate with the sample size, and
(ii) favourable dependence of the risk on the dimensionality
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of the output space. Whilst modern applications of multi-
output prediction deal with increasingly large data sets, they
also include problems where the target dimensionality is
increasingly large. For example, the number of categories in
multi-label learning is often of the order of tens of thousands,
an emergent problem referred to as extreme classification
(Agrawal et al., 2013; Babbar & Scholkopf, 2017; Bhatia
etal., 2015; Jain et al., 2019).

Formally, the task of multi-output prediction is to learn a
vector-valued function from a labelled training set. A com-
mon tool in the theoretical analysis of this problem has been
a vector-valued extension of Talagrand’s contraction inequal-
ity for Lipschitz losses (Ledoux & Talagrand, 2013). Both
(Maurer, 2016) and (Cortes et al., 2016) established vector-
contraction inequalities for Rademacher complexity that
gave rise to learning guarantees for multi-output prediction
problems with a linear dependence on the dimensionality of
the output space. More recently, (Lei et al., 2019) has pro-
vided more refined vector-contraction inequalities for both
Gaussian and Rademacher complexity. This approach leads
to a highly favourable sub-linear dependence on the output
dimensionality, which can even be logarithmic, depending
on the degree of regularisation. These structural results lead
to a slow convergence rate O(n~/2). Guermeur (2017)
and Musayeva et al. (2019) explore an alternative approach
based on covering numbers. (Chzhen et al., 2017) derived a
bound for multi-label classification based on Rademacher
complexities. Each of these bounds give rise to favourable
dependence on the dimensionality of the output space, but
with a slow rate of order O(n~1/2).

Local Rademacher complexities provide a crucial tool in
establishing faster rates of convergence (Bousquet, 2002;
Bartlett et al., 2005; Koltchinskii et al., 2006; Lei et al.,
2016). By leveraging local Rademacher complexities, Liu
et al. (2019) have derived guarantees for multi-class learning
with function classes that are linear in an RKHS, building
on their previous margin based guarantees (Lei et al., 2015;
Li et al., 2019). This gives rise to fast rates under suitable
spectral conditions. Fast rates of convergence have also been
derived by Xu et al. (2016) for multi-label classification with
linear function spaces. On the other hand, Chzhen (2019)
have derived fast rates of convergence by exploiting an
analogue of the margin assumption.
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In this paper we establish generalisation bounds for multi-
output prediction, which yields fast rates whenever the em-
pirical error is small. We address this problem by generalis-
ing to vector-valued functions a smoothness based approach
due to (Srebro et al., 2010). A key advantage of our ap-
proach is that it allow us to accommodate a wide variety of
multi-output loss functions, and hypothesis classes, making
our analytic framework applicable to a variety of learning
tasks. Below we summarise the contributions of this paper:

e We give a contraction inequality for the local
Rademacher complexity of vector-valued functions
(Proposition 1). The main ingredient is a self-bounding
Lipschitz condition for multi-output loss functions that
holds for several widely used examples.

e We leverage our localised contraction inequality to
give a general upper bound for multi-output learning
(Theorem 1), which exhibits fast rates whenever the
empirical error is small.

e We demonstrate a concrete use our general result, by
derive from it a state-of-the-art bound for ensembles
of multi-output decision trees (Theorem 7).

Furthermore, the obtained rates on multi-output learning are
minimax optimal up to logarithmic factors. The correspond-
ing lower bounds can be found in the full version (Reeve &
Kaban, 2020).

1.1. Problem Setting

We shall consider multi-output prediction problems in su-
pervised learning. Suppose we have a measurable space X,
a label space Y and an output space V. We shall assume that
there is an unknown probability distribution P over random
variables (X, Y"), taking values in X x Y. The performance
is quantified through a loss function £ : V x Y — R.

Let M(X, V) denote the set of measurable functions f :
X — V. The goal of the learner is to obtain f €
M(X,V) such that the corresponding risk €. (f, P) :=
Ex,yy~p[L(f(X),Y)] is as low as possible. The learner
selects f € M(X,V) based upon a sample D :=
{(Xi,Y5) }iem)» where (X;,Y;) are independent copies of
(X,Y). Welet E4(f,D) :=n~t- Diem A(f(X5),Y5)
denote the empirical risk. When the distribution P and
the sample D are clear from context we shall write & ; (f)
in place of £z (f, P) and ég(f) in place of & (f, D). We
consider multi-output prediction problems in which V C R4,
We let || - || denote the max norm on R? and for a positive
integer m € N we let [m] := {1,--- ,m}.

2. The Self-bounding Lipschitz Condition

We introduce the following self-bounding Lipschitz condi-
tion for multi-output loss functions.

Definition 1 (Self-bounding Lipschitz condition). A loss
Sunction £ :V x Y — R is said to be (), 0)-self-bounding
Lipschitz for A\, 0 > 0 if forally € Y and u,v € V,

£ (u,y) — £(v,9)| < X max{L(u,y), £(v,9)}" - [lu - v]| .

This condition interpolates continuously between a classical
Lipschitz condition (when 6 = 0) and a multi-dimensional
analogue of a smoothness condition (when 6§ = 1/2), and
will be the main assumption that we use to obtain our results.

Our motivation for introducing Definition 1 is as follows.
Firstly, in recent work of (Lei et al., 2019) the classical
Lipschitz condition with respect to the /., norm has been
utilised to derive multi-class bounds with a favourable de-
pendence upon the number of classes q. The role of the
£+ norm is crucial since it prevents the deviations in the
loss function from accumulating as the output dimension
q grows. Our goal is to give a general framework which
simultaneously achieves a favourable dependence upon n.
Secondly, Srebro et al. (2010) introduced a second-order
smoothness condition on the loss function. This condition
corresponds to the special case whereby ¢ = 1 and § = 1/2.
Srebro et al. (2010) showed that this smoothness condition
gives rise to an optimistic bound having a fast rate O(n 1)
in the realisable case. The self-bounding Lipschitz condi-
tion provides a multi-dimensional analogue of this condition
when 6 = 1/2, intended to yield a favourable dependence
on the number of samples n. The results established in
Sections 3 and 5 show that this is indeed the case, while
we also obtain favourable dependence on the number of
classes ¢. Finally, by considering the range of exponents
6 € [0,1/2] we exhibit convergence rates ranging from
slow O(n~1/2) to fast O(n™") in the realisable case. This
is reminiscent of the celebrated Tsybakov margin condition
(Mammen & Tsybakov, 1999), which interpolates between
slow and fast rates in the parametric classification setting.
Crucially, however, whilst the Tsybakov margin condition
(Mammen & Tsybakov, 1999) is a condition on the under-
lying distribution — which cannot be verified in practice —
the self-bounding Lipschitz condition is a property of a loss
function — which may be verified analytically by the learner.

2.1. Verifying the Self-bounding Lipschitz Condition

We start by giving a collection of results which can be used
to verify that a given loss function satisfies the self-bounding
Lipschitz condition. The following lemma is proved in the
Supplementary Appendix A.

Lemma 1. Take any A\ > 0, 6 € [0,1/2]. Suppose that
L:VxY — [0,00) is a loss function such that for any
u €V, y €Y, there exists a non-negative differentiable
function ¢, : R — [0, 00) satisfying

1. @uy(0) = L(u,y);
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2. vt > 0, Supv:\‘u7v|\o@§t{’£’(v7 y)} < ‘Pu,y(t)

3. The derivative ), , (t) is non-negative on [0, 00);

] 6
4. Vo, t1 € R [l (1) = ¢l (b0)] < (3) 77 - [t — to| T2,

Then L :V xY — [0,00) is (A, 0)-self-bounding Lipschitz.

The following Lemma shows that clipping preserves this
condition.

Lemma 2. Suppose that L :V x Y — [0,00) is a (A, 0)-
self-bounding Lipschitz loss function with A > 0, 6 € [0, 1].
Then the loss L : V x Y — [0,b] defined by L(u,y)
min{L(u,y), b} is (A, 0)-self-bounding Lipschitz.

Finally, we note the following monotonicity property, which
follows straightforwardly from the definition.

Lemma 3. Suppose that £ : V x Y — [0,b] is a bounded
(X, 0)-self-bounding Lipschitz loss function with X > 0,

0 € [0,1]. Then given any 0 < 0, the loss £ is also (A, 0)-
self-bounding Lipschitz with A\ = \ - b%~°,

2.2. Examples

We now demonstrate several examples of multi-output loss
functions that satisfy our self-bounding Lipschitz condition.
In each of the examples below we shall show that the self-
bounding Lipschitz condition is satisfied by applying our
sufficient condition (Lemma 1). Detailed proofs are given
in the Supplementary Appendix A.

2.2.1. MULTI-CLASS LOSSES

We begin with the canonical multi-output prediction prob-
lem of multi-class classification in which Y = [g] and
V = R9. A popular loss function for the theoretical anal-
ysis of multi-class learning is the margin loss (Crammer
& Singer, 2001). The smoothed analogue of the margin
loss was introduced by Srebro et al. (2010) in the one-
dimensional setting, and Li et al. (2018) in the multi-class
setting.

Example 1 (Smooth margin losses). Given Y = [g] we de-
fine the margin functionm : VxY — Rbym(u,y) = uy—
max;eq\{y} {t;}- The zero-one loss Lo 1 : V xY — [0,1]
is defined by Lo 1(u,y) = 1{m(u,y) < 0}. Whilst natural,
the zero-one loss has the drawback of being discontinuous,
which presents an obstacle for deriving guarantees. For
each p > 0, the corresponding margin loss L, : V XY —
[0,1] is defined by £ ,(u,y) = 1{m(u,y) < p}. The mar-
gin loss L, is also discontinuous. However, we may define
a smooth margin loss £, : V x Y — [0,1] by £ ,(u, y)

1 if m(u,y) <0
3 2
=02 () 3 () 1 im(u,y) € [0,p)
0 if m(u,y) > p.

By applying Lemma 1 we can show that 2,) is (A, 0)-self-
bounding Lipschitz with A\ = 4v/6 - p~! and 6 = 1/2.
Moreover, the smooth margin loss satisfies Lo 1(u,y) <
Lo(u,y) < Ly(u,y) for (u,y) € V x Y.

The margin loss plays a central role in learning theory
and continues to receive significant attention in the anal-
ysis of multi-class prediction (Guermeur, 2017; Li et al.,
2018; Musayeva et al., 2019), so it is fortuitous that our
self-bounding Lipschitz condition incorporates the smooth
margin loss. More importantly, however, the self-bounding
Lipschitz condition applies to a variety of other loss func-
tions which have received less attention in statistical learn-
ing theory.

One of the most widely used loss functions in practical
applications is the multinomial logistic loss, also known as
the softmax loss.

Example 2 (Multinomial logistic loss). GivenY = [q], the
multinomial logistic loss £ : V x Y — [0, 00) is defined by

L(ua y) = IOg Z exp(uj - uy) )

J€lq]

where u = (u;) je[q and y € [q]. For each (u,y) € V x [q]
let Ay .y = Zje[q]\{y} exp(u; — uy) and define p,, ,(t) =
log (14 A,y - exp(2t)). By applying Lemma 1 with ¢, ,
we can show that the multinomial logistic loss L is (X, 6)-
self-bounding Lipschitz with A\ = 2 and § = 1/2.

Recently, Lei et al. (2019) pointed out that the multinomial-
logistic loss is 2-Lipschitz with respect to the /,-norm
(equivalently, (2, 0)-self-bounding Lipschitz). This gives
rise to a slow rate of order O(n~'/2). The fact that the
multinomial-logistic loss is also (2, 1/2)-self bounding can
be used to derive more favourable guarantees, as we shall
see in Section 3.

2.2.2. MULTI-LABEL LOSSES

In multi-label prediction instances may be simultaneously
assigned to several categories. We have Y C {0, 1}9, where
q is the total number possible classes. Whilst g is often very
large, the total number of simultaneous labels is typically
much smaller. Hence, we consider the set of k-sparse binary
vectors S(k) = {(yj)jelq € {0,1}7 : Zje[q] y; < k}
denote the set of k-sparse vectors, where k£ < [q]. We
consider the pick-all-labels loss (Menon et al., 2019; Reddi
et al., 2019).

Example 3 (Pick-all-labels). Given Y = S(k), the pick-all-
labels loss £ : V x Y — [0, 00) is defined by

L(u,y) = Zle[q] yilog (ng[q] exp(u; — Ul)),

where u = (uj)jclq € Vand y = (yj)jciq € 9. For
each (u,y) € V x Y we define ¢, , : R — [0,00)
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by Auy = Y jeignqy e¥P(uy — w) and let @y y(t) =
Zle[q] yrlog (1 + A,y - exp(2t)). By applying Lemma 1
with ., ,, we can show that £ is (X, 0)-self-bounding Lips-
chitz with A = 2v/k and 6 = 1/2.

Crucially, the constant A for the pick-all-labels family of
losses is a function of the sparsity k, rather than the total
number of labels. This means that our approach is applicable
to multi-label problems with with tens of thousands of labels,
as long as the label-vectors are k-sparse.

2.2.3. LOSSES FOR MULTI-TARGET REGRESSION

We now return to the problem of multi-target regression in
which Y = R? (Borchani et al., 2015).

Example 4 (Sup-norm losses). Given k, v € [1,2] we can
define a loss-function L : V x Y — R for multi-target
regression by setting L(u,y) = k - ||u — y||X. By applying
Lemma I with @y, 4 (t) = k- (||lu—y||ec +1)Y we can see that
L is a (A, 6)-self-bounding Lipschitz with A = (8x)'~% and
0 = (y—1)/~. This yields examples of (\, 8)-self-bounding
Lipschitz loss functions for all A > 0 and 6 € [0,1/2].

With these examples in mind we are ready to present our
results.

3. Main Results

In this section we give a general upper bound for multi-
output prediction problems under the self-bounding Lips-
chitz condition. A key tool for proving this result will be a
contraction inequality for local Rademacher complexity of
vector valued functions given in Section 4.1, and which may
also be of independent interest. First, we recall the concept
of Rademacher complexity.

Definition 2 (Rademacher complexity). Let Z be a mea-
surable space and consider a function class § C M(Z,R).
Given a sequence z = (z;) € Z"™ we define the empirical
Rademacher complexity of G with respect to z by'

1
R.(G):= sup E, [sup—

oi-g(z)
3C9:|§l<co geg Z ’

i€[n]

where the expectation is taken over sequences of inde-
pendent Rademacher random variables o = (0;)ic[n]
with o; € {—1,+1}". For each n € N, the worst-
case Rademacher complexity of G is defined by R, (9) :=

SUP,cyn 9%;(9).

The Rademacher complexity is defined in the context of
real-valued functions. However, in this work we deal

!Taking the supremum over finite subsets GCGis required
to ensure that the function within the expectation is measurable
(Talagrand, 2014). This technicality can typically be overlooked.

with multi-output prediction so we shall focus on function
classes § C M(X,R9). In order to utilise the theory of
Rademacher complexity in this context we shall transform
function classes ¥ C M(X,R?) into the projected func-
tion classes IT o F C M(X x [¢],R) as follows. Firstly,
for each j € [g] we define w; : R? — R to be the pro-
jection onto the j-th coordinate. We then define, for each
f € M(X,R?), the function ITo f : X X [¢] — R by
(ITo f)(x,7) = m;j(f(x)). Finally, given ¥ C M(X,R?)
weletlloF :={Ilo f: f € F} C M(X x [¢],R).

Our central result is the following relative bound.

Theorem 1. Suppose we have a class of multi-output func-
tions F C M(X, [—3, B]?), and a (), 0)-self-bounding Lip-
schitz loss function £ : V x Y — [0, b] for some 8,b > 1,
A>0,0€][0,1/2]. Take 6 € (0,1), n € N and let

1
1-6

Di0s(@) = (A (Va- 108/ (eBna) -9y (10 9) + 1))
+2£ - (log(1/6) + log(log n)).

There exists numerical constants Cy, C1 > 0 such that given
an i.i.d. sample D the following holds with probability at
least 1 — 0 forall f € F,

Ec(f) < Ec(f)+Co- ( Eo(f) T (3) + F?L:Z,g(’f)) |

Moreover, if f* € argmingc5{E.(f)} minimises the risk
and f € argmin fe&"{é ¢ (f)} minimises the empirical risk,
then with probability at least 1 — 6,

E0(f) < Ec(f)+Cr- ( Ec(f") T2 (3) + r2:2,6<9>).

The proof of Theorem 1 is given in Section 4.2. It builds on
a local contraction inequality result (Proposition 1, Section
4.1), combined with techniques from (Bousquet, 2002).

Theorem 1 gives an upper bound for the generalisation gap
(Ec(f) — &£ (f)), framed in terms of a complexity term
I‘Q’Z 5(J), which depends upon both the Rademacher com-
plexity of the projected function class Rpg(Il o F) and
the self-bounding Lipschitz parameters A\, . When the
empirical error is small in relation to the complexity term
Ec(f) < TN (F)), the generalisation gap is of order

n,q,6
2,0 .
Iy 5(F). In less favourable circumstances we recover a

bound of order 4 /F;\L:g,a(?)~

3.1. Comparison with State of the Art

In this section we compare our main result (Theorem 1)
with a closely related guarantee due to Lei et al. (2019).
Observe that a loss function £ is A-Lipschitz if it is (A, 6)-
self-bounding Lipschitz with § = 0.

Theorem 2. (Lei et al., 2019) Suppose we have a class
of multi-output functions T C M(X, [—5, 0]?), and a M-
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Lipschitz loss function L : V x Y — [0, b] for some 5,b > 1
and X > 0. Take 6 € (0,1), n € N and let

3 5(F) = A (\/cj 1082 (efng) - Rng(Il 0 F) + ﬁ)

There exists numerical constants Co, C3 > 0 such that given
an i.i.d. sample D the following holds with probability at
least1 — 0 forall f € T,

85 (f) S éL (f) + CQ -Sz)q)é(f}“) + b 10g(1/5)

n

Moreover, if f* € argmingc5{E.(f)} minimises the risk

and f € argmin fe:f{é ¢ (f)} minimises the empirical risk,
then with probability at least 1 — 6,

Ec(f) S Ec(f)+Cs 3 q5(F) +2b M.

Theorem 2 is a mild generalisation of Theorem 6 from (Lei
et al., 2019), originally formulated for multi-class classi-
fication and F an RKHS. For completeness we show that
Theorem 2 follows from Proposition 1 in the Supplemen-
tary Appendix B. . Note that by the monotonicity property
(Lemma 3) any loss function £ : V x Y — [0, b] which is
(A, 0)-self-bounding Lipschitz is also \ - b?-Lipschitz, so the
additive bound in Theorem 2 also applies.

To gain a deeper intuition for the bound in Theorem 1 we
compare with the bound in Theorem 2. Let’s suppose that
Rnq(oF) = O((ng)~*/?) (for a concrete example where

this is the case see Section 5). We then have szz,a(?) =

O(n_ﬁ). For large values of & ¢ (f) Theorem 1 gives
a bound on generalisation gap (&4 (f) — €. (f)) of order
O(n_ﬁ), which is slower than the rate achieved by
Theorem 2 whenever § < 1/2. However, when & ¢ (f) is
small (€2 (f) < O(n~ 20 )), Theorem 1 gives rise to a
bound of order O(n~ B ), yielding faster rates than can
be obtained through the standard Lipschitz condition alone
whenever 6§ > 0. Finally note that if the loss £ is (A, 6)-
self-bounding Lipschitz with = 1/2 then the rates given
by Theorem 1 always either match or outperform the rates
given by Theorem 2. Moreover, § = 1/2 occurs for several
practical examples discussed in Section 2.2 including the
multinomial-logistic loss.

4. Proofs of Main Results

We now turn to stating and proving the key ingredient of our
main result, Proposition 1.

4.1. A Contraction Inequality for the Local
Rademacher Complexity of Vector-valued
Function Classes

First we introduce some additional notation. Suppose f €
M(X, V). Given a loss function £ : V x Y — R we define
Lof:XxY—Rby (Lo f)lz,y) = L(f(x),y). We
extend this definition to function classes ¥ C M(X, V) by
LoF ={Lof: f e F} Moreover, for each z €
(XxY)mandr > 0,asubset F|Z := {f € F: &.(f, 2) <
r}. Intuitively, the local Rademacher complexity allows us
to zoom in upon the neighbourhood of the empirical risk
minimiser. This is the subset that matters in practice and is
typically much smaller than the full IT o J.

Proposition 1. Suppose we have a class of multi-output
functions I C M(X, [-5, 8]?), where 8 > 1. Given a
(A, 0)-self-bounding Lipschitz loss function L : V x Y —
[0,R], where A > 0,0 € [0,1/2] and z € (X x Y)™, r > 0,
we have the following bound,

LoTF|))

R (
< (29\/5 10g>2 (efng) - Rng (I o F) + n*l/Q) .
The proof of Proposition 1, given later in this section, relies

upon covering numbers.

Definition 3 (Covering numbers). Let (M, p) be a semi-
metric space. Given a set A C M and an € > 0, a subset
A C Ais said to be a (proper) e-cover of A if, for all a € A,
there exists some @ € A with p(a,a) < e. We let N(e, A, p)
denote the minimal cardinality of an e-cover for A.

We shall consider covering numbers for two classes of data-
dependent semi-metric spaces. Let Z be a measurable space
and take § C M(Z, R). For each n € N and each sequence
z = (zi)ieln) € ™ we define a pair of metrics p » and
Pz,00 Y

pea(g0r0) = | 3 (golz0) — ga(20))?

1€[n]

Pz00(90,91) = ?elﬁ{lgo(zz') — g1z},

where gg, g1 € G. The first stage of the proof of Proposition
1 will be using the following lemma which bounds the cov-
ering number of £ o F|7 in terms of an associated covering
number for II(F).

Lemma 4. Suppose that F C M(X,R?) and L is (A, 0)-
self-bounding Lipschitz with 6 € [0,1/2]. Take £ : V x
Y — 0,0, 2 = {(i,¥i) biepn) € (X x Y)", r > 0 and
define w = {(x4,7) }i.j)ein)x[q € (X % [q])"?. Given any
fo, f1 € F|L we have

pz,2('C o vaL o fl) S 29>\T9 . pw,oo(H © f07H © fl)
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Moreover, for any € > 0,

N (2N e, L 0T, pz2) S N (6110 F, puyoc) -

Proof of Lemma 4. To prove the first part of the lemma
we take fo, f1 € F|, and let { = py,00(IL 0 fo,IL 0 f1).
It follows from the construction of w that |m;(fo(z;)) —
75 (F1(@)| <  for each (i, ) € [n] % [g], 50 || fo(zs) —
f1(z:)]|oe < ¢ foreachi € [n].

Furthermore, by the self-bounding Lipschitz condition we
deduce that for each i € [n],

|L(folzi), yi) — L(f1(z:), z)|

< - max {£(fo(@), 30), £(fa(i), 9}
N folzi) — fr(@i)llso
< max {£(fo(wa), i), £(Fr(wi), v} - ¢
Hence, by Jensen’s inequality we have
Pz2(50f0750f1)2
- Z (fo(zs), L(fr(zi), 2))2
ze[n]
<O T 2[31 mace (£ (fo(r). ). £(F (1), )}
1en
20
<O | £ 3 max (Lo, 1), £ () 3))
i€[n]
R X 26
< (0% (Eelfo2) +E2(f1,2)) < (0% (20,
where we use the fact that § € [0,1/2] and

maX{éL (anz)7éL(f1’z)} <.
Thus, pz,Q(L o anL o fl)
=200

SQG)\’I”e 'pw,oc(HOf07HOf1)'

This completes the proof of the first part of the lemma.

To prove the second part of the lemma we note that since
o J|7 C I oF we have?

N(2¢, 1o F|L, pw,oc) <N(6,I0TF, pa,so)

so we may choose fi, -, fm € JF|L with m <
N(e,II0F, pw. o) such that IT o fy,--- Il o f,, forms a
2e-cover of IT o F|7, with respect to the pq, oo metric.

To complete the proof it suffices to show that Lo fy,--- , Lo
fim is a2 0r? . e-cover of £ o F|7 with respect to the p o
metric.

>The factor of 2 is required as we are using proper covers,
which are subsets of the set being covered (see Definition 3).

r. 50§ = Lo f for some f € F|..
Since ITo f1,--- Il o f,, forms a 2e-cover of IT o F|_, we
may choose | € [m] so that py, o (ITo fi,TT o f) < 2¢. By
the first part of the lemma we deduce that

pz,Z(L o fl7g) = pz,2(£’ o fl7£’ © f) S 21+GAT6 T €

Since this holds for all g € £ o JF|,, we see that £ o
fi,oo Lo fois a 2908 . ecover of £ o F|7, which
completes the proof of the lemma. O

To prove Proposition 1, we shall also utilise two technical
results to move from covering numbers to Rademacher com-
plexity and back. First, we shall use the following powerful
result from (Srebro et al., 2010) which gives an upper bound
for worst-case covering numbers in terms of the worst-case
Rademacher complexity.

Theorem 3 (Srebro et al. (2010)). Given a measurable
space Z and a function class G C M(Z, -8, 8]), any € >
2-R,(9) and any z € 2",

2471

1o N(€,5. ) < (a(9)? - 2 - log 2P,

We can view this result as an analogue of Sudakov’s mino-
ration inequality for ¢/, covers, rather than /5 covers.

Secondly, we shall use Dudley’s inequality (Dudley, 1967)
which allows us to bound Rademacher complexities in terms
of covering numbers. We shall use the following variant due
to (Guermeur, 2017) as it yields more favourable constants.

Theorem 4 (Guermeur (2017)). Suppose we have a mea-
surable space Z, a function class § C M(Z,R) and a
sequence z € Z". For any decreasing sequence (€x)57,
with hm e = = 0 with €9 > Supy, 4, g Pz, 2(90,91), the

followmg inequality holds for all K € N,

K
log N N
<23 (ex+er) \/Og(ek»w e
k=1

n

We are now ready to complete the proof of our local
Rademacher complexity inequality.

Proof of Proposition 1. Take z = {(z4,¥i) }iem] € (X X
Y)" and r > 0 and define w = {(2i, )} i j)em]x]q €
(X x [¢q])™. By Lemma 4 combined with Theorem 3 applied
to IT o F we see that for each £ > 2 - R, (I o F) we have

log N (21+9)\r9 &, Lo T, Pz,2)
<logN(&, I 0 F, pap,co)
4 2
< (Rpg(T o F))2 - g;q log ei”q. (1)
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Moreover, given any go = Lo fy, g1 = Lo f1 € LoT|, s0
Pw.co(IT 0 fo,IT o f1) < 28, so by the first part of Lemma
4 we have p, 2(g0,91) < 217900 . 3.

Now construct (€)%, by e = 2\ . 3. 27F and
choose

K = [log, (8- min{(2- R,e(Ilo F)) "1, (8v/n)})] — 1
Hence, supy, g, crior; P2,2(90,91) < €9 and - 27571 <
max{2 - R,,( o F),(8/n)"1} < 3- oK

Furthermore, for k < K by letting &, = 3 - 27", we have
e, = 2190r?-¢ and &, > max{2-R,,, (I1oF), (8y/n) 1},
so by eq. (1)

log N (e, Lo F|7, pz,2)

< (Rpg(Io 3"))2 . 74712q -log 2efing
gk fk
4
< (207 - R, (Mo F)) - 5L - log (eﬁ(nq)3/2)
€k
< (2" - R, (Il o 3"))2 : G—Zq -log (efng) .
€k

Note also that by construction K < 4log(efngq).

By Theorem 4 and €1 = 2 - ¢;, we deduce that

(L0 T7)
K
log N(ex, £ o T2, pa
§2-Z(ek+6k_1)'\/og (€ no | p’2)+eK
k=1

IN

n
<6K - (207 Ry (o F)) - /6g - log (efing) + ex
<25/q- (Wr? - Ry (T F)) -log™? (efing) + ex
< M (29\/6 1og®/? (efng) - Rpg (I o F) + n_1/2> .

K
log N(eg, £ o F|Z, p,
6§ :Gk'\/og (Gk, o |z7p ,2) +€K
k=1

This completes the proof of the proposition. O

4.2. Proof of Theorem 1

To complete the proof of Theorem 1 we combine Proposition
1 with some results due to Bousquet (2002).

Theorem 5. Suppose we have a measurable space Z and
a function class G C M(Z,[0,b]). For each z € Z™ and
geSweletE,(g) =n" 2 ieqn) 9(%3). Suppose we have
a function ¢, : [0,00) — [0,00) which is non-negative,
non-decreasing, not identically zero, and ¢,,(r)/+/7 is non-
increasing. Suppose further that for all z € Z"™ and r > 0,

R-({g € §: E=(9) <r}) < dnlr).

Let 7y, be the largest solution of the equation ¢, (r) = r.
Suppose that Z is a random variable with distribution P,

where P is a distribution on Z and let D = {Z;};c[n) € 2"
be an i.i.d. sample, where each Z; ~ P is an independent
copy of Z. For any 6 € (0,1), the following holds with
probability at least 1 — 0, forall g € G:

E(g) < Ep(g) + 907 + 70) + 4\/Ep (9)(Fn + 70).

where 1o = b (log(1/6) + 6loglogn)/n.

Proof. The following result is given in the penultimate line
of the proof of (Theorem 6.1, Bousquet (2002)):

E(g) < En(g) + 457, + /87,E(g) + /470 - E(g) + 2070,

with probability at least 1 — 4, for all g € G. So,

E(g) < Ep(g) + 457, + 2070 + 4v/(Fr 4+ 10) - E(g)-

We also need the following inequality (Lemma 5.11, Bous-
quet (2002)): Suppose that ¢, B,C' > 0 satisfy ¢t <
Byt + C. Thent < B? 4+ C + BV/C. Applying this
with B = 4./(7, + o) and C' = Eqp (g) + 457, + 207
we have

E(g) < 16(# + 1) + (En(g) + 457, + 2070)

< Eop(g) 4 90(Fp 4 o) + 4/ Ep (9) (7 + 7o),

which completes the proof. O

Theorem 5 is a uniform upper bound in terms of the em-
pirical risk. We can deduce a performance bound on the
empirical risk minimiser by combining with Bernstein’s in-
equality — see Theorem 2.10 from (Boucheron et al., 2013)

Theorem 6 (Bernstein (1924)). Let W;,--- ,W,; € [0, ]
be bounded independent random variables with mean | =

E[W;]. Then with probability at least 1 — 6 we have

2ublog(1/4) n blog(1/0)

1
w2 Wispby T "

3b1
, 3log(1/)
2n

< 2u

Corollary 1. Suppose that the assumptions of Theorem 5
hold and choose g* € argmin,cg{E(g)}. Given z € 2"

we choose §, € argmingeg{sz (9)}. Foranyd € (0,1),
the following holds with probability at least 1 — 2§

E(§p) < E(g*) + 9VE(g*) - (7 + 10) + 100 (7, +70) .

We can now complete the proof of Theorem 1.
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Proof of Theorem 1. Firstlet § = L o F = {(z,y) —
L(f(z),y): f € F}. Note thatfor g = Lo f with f € F
and Z = (X,Y) ~ P wehave Ez(g) = E,(f, P) and
given z € (XxY)" we have B, (¢) = &, (f). Note also that
under this correspondence £ o F|, = {g € G : E.(g) < r}.

Now define ¢,, : [0,00) — [0, 00) by

(bn(’f") = r? (29\/6 . ]0g3/2 (eﬁnq> . {}{nq(H o) + n—l/Q) )

By Proposition 1, for each z € (X x Y)",

- ({9€9:Balg) S7}) = Ra (Lo TIL) < 60 (r).

Observe that ¢, 1is non-negative, non-decreasing
and ¢,(r)/y/r is non-increasing, since 6 €
[0,1/2]. So it remains to solve the fixed

point equation ¢,(r) = r and find 7, =

_1
(x\ (29\/(3 log®/? (efng) - Rpg (o F) + n_l/z)) o
Hence, the two bounds in Theorem 1 follow from Theorem
5 and Corollary 1, respectively. O

5. An application to ensembles

In this section we highlight applications of our general multi-
output learning framework. Specifically, here we consider
ensembles of decision trees (Schapire & Freund, 2013), as
they represent an effective and widely used tool in practice
(Chen & Guestrin, 2016).

Throughout this section we shall assume that X = R
We consider sets of decision tree functions 9—(1 -
M(X, [-1,1]?) constructed as follows. Let T}, 4 be the
set of decision trees ¢ : RY — [p] with p leaves, where
each internal node performs a binary split along a single
feature. Let 3(, , C M(X,RY) be the set of all functions
of the form h(z) = (wy(a),j)jelq» Where t € Tpqis a
decision tree and w = (w1,j)(1,j)ep)x[q € RPY satisfies
the ¢, constraint |lwy. |1 = 3=, [wi;| < 7. Finally, let
H, = Hpr N M(X, [-1,1]%). We now give a bound for
convex combinations of such decision trees.

Theorem 7. Suppose we have 5,0 > 1, A > 0,0 € [0,1/2]
and a (X, 0)-self-bounding Lipschitz loss function £ : 'V x
Y — [0,b]. Given § € (0,1), n € N we define for each
a = (a)eir), T = (Te)te[r) € (0,00)7,

1
-0

Cro(a,T) = <% (\/;T)logQ(?,npqdﬁ) . ZtE[T] o T+ 1>)

- (log(1/6) + log(logn)).

There exists a numerical constant Cy such that given an i.i.d.
sample D the following holds with probability at least 1 — 6,
for all ensembles | = Zte[T] oy - hy where ZtE[T] ay <
and h; € ﬂ{;’ﬂ,

4L

eanssan+%'(eun ndaﬂ+%daﬂ>

Before giving the proof, we highlight several interesting
features of this result:

e First and foremost, Theorem 7 gives guarantees for
ensembles of decision trees with respect to a wide
variety of losses including the multinomial logistic loss
for multi-class classification and the one versus all
loss for multi-label classification, as well as implying
margin based guarantees (see Section 2.2).

e Theorem 7 has a favourable dependency upon the num-
ber of examples whenever & ¢ (f) is sufficiently small,
as is often the case for large ensembles of decision
trees. For example, if we are using the multinomial
logistic loss and &r (f) =~ 0, then Theorem 7 gives rise
to a fast rate of O(n™1).

e Theorem 7 has only logarithmic dependency upon the
dimensionality of the output space q. This contrasts
starkly with previous guarantees for multi-class learn-
ing with ensembles of decision trees (Kuznetsov et al.,
2014; 2015) which are linear with respect to the num-
ber of classes q.

5.1. Proof of Theorem 7

The proof of Theorem 7 is a consequence of Theorem 1
combined with the following lemma.

Lemma 5. Forallm € Nand z € (X x [q])"™ we have,

R, (MToH, ) <27- \/p -log(2 - max{p-d-m,q})/m

We begin by counting the number of possible partitions that
can be made by a decision tree in T}, 4 on a given sequence
of points Given a sequence T = (a:,)ze[m] € X™ we let

{ x;))ic [m] tE‘Ipd} p|™.
Lemma 6. For al m € Nand x € X™, we have
Tpa(x)] < (p—1!-(d- (m+1))P~!

Proof. By induction, it suffices to show that |T},11 ¢(x)| <
|Tp,a(x)| - p-d-(m+1). Now observe that each element
of Tp11.4(x) may be constructed by taking an element of
Tp,a(x) and then making a choice of one of p existing leaf
nodes to partition, one of d dimensions to split upon, and
one of at most m + 1 possible split points. O

We complete the proof of Lemma 5 as follows.

Proof of Lemma 5. For a given 7 > 0 we let A, =
{(aj)jeq + 2jerqlajl < 7} Let {e(j)}jelq S R? be
the canonical orthonormal basis. Let AY* C A; denote
the subset of extreme points in A, so A§ = {u - e(j) :
u € {—1,+1}andj € [¢]}. Note that |Af| = 2¢. Fix
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z = (2i)icim] € (X x [q])™ with each z;
x = (T4)iemm) € X™. Then 9, (IT o K,

o) =
1
=E, sup {m Z (Iloh) m“]z}
i€[m]

= sup O+ Ty,
he%p r { Z n }
=E, sup su Oi * Wi(ey),j;
t€Tp.a {wE(A P { Z )i }}
E sup 1 Z w,
=Eo : Ti Wi,
()ieim)ETp,al@) | T WG(A )P

Observe that for w € (A;)? and (I;) € [p]™,

§ Oi - Wiy, j5;

i€[m]

-T T

re(p] s€lq
<Z{<Z|wm>-§éﬁ. oo

r€(p] s€lq] vl =r&j;=s
>, o

il =r&j;=s

(24,7:) and let

Z o

l=r&j;=s

<rT- max
s€(q]

r€[p]

re(p) (wr, S)GE[q itl;=r & j;=s
=T- { Z Z Up,s ( Z Ui) }
(ur,s >€(A“> relp] seld] iily=r & ji=s

=7 sup Z o UL,
(ur,s)€(AS)P ic[m]

Plugging this bound into the above yields R. (IToHp,r)

<Eo sup L sup Z Oi * Uly,j;
)ietm €Tp.a@) | ™ (ur e(83)? | sepm)

<7 sup Z ulZzh ’
(1) ie(m€Tp,a(®); (ur,s)E(AT)P i€[m]

V2log ([Tp.a(z)] - [AT[?)

m

< s \/2((1)* 1) log(p - Zm) +p - log(2q))

(@)

SQT,\/p-log(?~rna><~{p~d-m,q}),

m
where (2) follows from Massart’s lemma (eg. Theorem 3.3
from (Mohri et al., 2012)) and the penultimate inequality
follows from Lemma 6. O

We can now deduce Theorem 7 from Theorem 1 with the
help of a re-weighting argument along with the convexity
property of Rademacher complexities.

Proof of Theorem 7. Take ¢ > 0 and let

hy € K}

DTt

Qg 2 Oa
te[T]

—{f—Zat-ht:
Zat 7 < ¢ and Zat</3}

te[T)

Observe that F C conv (H, ). Indeed, given f =
ZtE[T] (6T AN ht Wlth h,t S U{Il,m and ZtE[T] Q- Tt S C,
we can rewrite

= Z(Oét Tt) -t hy),
te[T)
with 37, ¢y (o - 7 - ¢71) < 1 and for each t € [T, we
have (-7~ !-hy € 3, ¢. Thus, [IoF C Ioconv (H,¢) =
conv (IT o H,, ). Hence, by the convexity of Rademacher
complexities (Boucheron et al., 2005, Theorem 3.3, eq. (5))
and z € (X x [¢])™ combined with Lemma 5 we have,

R. (Mo F) <R, (conv (ITo K, ) < R, (IT
\/p -log(2 - max{pd - (nqg), q})

nq

o Hpc)

<2¢-

p - log(2pdnq)
ng '

=2¢-

Taking a supremum over all z € (X x [g])"? we have
Rpg(Il o F) < 2¢ - /(p - log(2pdng))(ng)~1. Note also

that F C M(X, [, 8]9), since each f € F is of the form
f = ZtG[T] Q- h,t with ht € j{;)ﬂ' g M(DC [ 17_’_1]11)

and ZtE[T] a; < f3. Thus, plugging the bound on R, (I o
F) into Theorem 1 yields the bound in Theorem 7. O

6. Conclusions

We presented a theoretical analysis of multi-output learn-
ing, based on a self-bounding Lipschitz condition. Un-
der this condition, we obtained favourable dependence on
both the sample size and the output dimension. The main
analytic tool is a new contraction inequality for the local
Rademacher complexity of vector valued function classes
with a self-bounding Lipschitz loss, which may be of inde-
pendent interest. Theorem 1 can be applied to any multi-
output prediction problem where one can obtain an upper
bound on the Rademacher complexity $R,,q(II o F). We
demonstrate this by applying our approach to ensembles of
decision trees, yielding state of the art results.



Optimistic bounds for multi-output prediction

Acknowledgement

This work is funded by EPSRC (grant EP/P004245/1) and
partially by the Turing Institute (grant EP/N510129/1).

References

Agrawal, R., Gupta, A., Prabhu, Y., and Varma, M. Multi-
label learning with millions of labels: Recommending
advertiser bid phrases for web pages. In Proceedings of
the 22nd international conference on World Wide Web,
pp. 13-24, 2013.

Babbar, R. and Schélkopf, B. Dismec: Distributed sparse
machines for extreme multi-label classification. In Pro-
ceedings of the Tenth ACM International Conference on
Web Search and Data Mining, pp. 721-729, 2017.

Bartlett, P. L., Bousquet, O., Mendelson, S., et al. Local
rademacher complexities. The Annals of Statistics, 33(4):
1497-1537, 2005.

Bernstein, S. On a modification of chebyshev’s inequality
and of the error formula of laplace. Ann. Sci. Inst. Sav.
Ukraine, Sect. Math, 1(4):38-49, 1924.

Bhatia, K., Jain, H., Kar, P, Varma, M., and Jain, P. Sparse
local embeddings for extreme multi-label classification.
In Advances in neural information processing systems,
pp- 730-738, 2015.

Borchani, H., Varando, G., Bielza, C., and Larrafiaga, P. A
survey on multi-output regression. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 5(5):
216-233, 2015.

Boucheron, S., Bousquet, O., and Lugosi, G. Theory of
classification: A survey of some recent advances, 2005.

Boucheron, S., Lugosi, G., and Massart, P. Concentration
inequalities: A nonasymptotic theory of independence.
Oxford university press, 2013.

Bousquet, O. Concentration inequalities and empirical pro-
cesses theory applied to the analysis of learning algo-
rithms. PhD Thesis, 2002.

Chen, T. and Guestrin, C. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd inter-
national conference on knowledge discovery and data
mining, pp. 785-794, 2016.

Chzhen, E. Classification of sparse binary vectors. arXiv
preprint arXiv:1903.11867, 2019.

Chzhen, E., Denis, C., Hebiri, M., and Salmon, J. On the
benefits of output sparsity for multi-label classification.
arXiv preprint arXiv:1703.04697, 2017.

Cortes, C., Kuznetsov, V., Mohri, M., and Yang, S. Struc-
tured prediction theory based on factor graph complexity.

In International Conference on Machine Learning, pp.
2522-2530, 2016.

Crammer, K. and Singer, Y. On the algorithmic implementa-
tion of multiclass kernel-based vector machines. Journal
of machine learning research, 2(Dec):265-292, 2001.

Dudley, R. M. The sizes of compact subsets of hilbert
space and continuity of gaussian processes. Journal of
Functional Analysis, 1(3):290-330, 1967.

Geng, X. Label distribution learning. IEEE Transactions
on Knowledge and Data Engineering, 28(7):1734—1748,
2016.

Guermeur, Y. Lp-norm sauer—shelah lemma for margin
multi-category classifiers. Journal of Computer and Sys-
tem Sciences, 89:450-473, 2017.

Jain, H., Balasubramanian, V., Chunduri, B., and Varma, M.
Slice: Scalable linear extreme classifiers trained on 100
million labels for related searches. In Proceedings of the
Twelfth ACM International Conference on Web Search
and Data Mining, pp. 528-536, 2019.

Koltchinskii, V. et al. Local rademacher complexities and
oracle inequalities in risk minimization. The Annals of
Statistics, 34(6):2593-2656, 2006.

Kuznetsov, V., Mohri, M., and Syed, U. Multi-class deep
boosting. In Advances in Neural Information Processing
Systems, pp. 2501-2509, 2014.

Kuznetsov, V., Mohri, M., and Syed, U. Rademacher com-
plexity margin bounds for learning with a large number
of classes. In ICML Workshop on Extreme Classification:
Learning with a Very Large Number of Labels, 2015.

Ledoux, M. and Talagrand, M. Probability in Banach
Spaces: isoperimetry and processes. Springer Science &
Business Media, 2013.

Lei, Y., Dogan, U., Binder, A., and Kloft, M. Multi-class
svms: From tighter data-dependent generalization bounds
to novel algorithms. In Advances in Neural Information
Processing Systems, pp. 2035-2043, 2015.

Lei, Y., Ding, L., and Bi, Y. Local rademacher complexity
bounds based on covering numbers. Neurocomputing,
218:320-330, 2016.

Lei, Y., Dogan, U., Zhou, D.-X., and Kloft, M. Data-
dependent generalization bounds for multi-class classifi-

cation. IEEE Transactions on Information Theory, 65(5):
2995-3021, 2019.



Optimistic bounds for multi-output prediction

Li, J.,, Liu, Y., Yin, R., Zhang, H., Ding, L., and Wang,
W. Multi-class learning: From theory to algorithm. In
Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 31, pp. 1586—
1595. Curran Associates, Inc., 2018.

Li, J., Liu, Y., Yin, R., and Wang, W. Multi-class learning
using unlabeled samples: theory and algorithm. In Pro-
ceedings of the 28th International Joint Conference on
Artificial Intelligence, pp. 2880-2886. AAAI Press, 2019.

Liu, Y., Li, J,, Ding, L., Liu, X., and Wang, W. Learning
vector-valued functions with local rademacher complexity
and unlabeled data, 2019.

Mammen, E. and Tsybakov, A. B. Smooth discrimination
analysis. Ann. Statist., 27(6):1808-1829, 12 1999. doi:
10.1214/a0s/1017939240.

Maurer, A. A vector-contraction inequality for rademacher
complexities. In International Conference on Algorithmic
Learning Theory, pp. 3—17. Springer, 2016.

Menon, A. K., Rawat, A. S., Reddi, S., and Kumar, S. Mul-
tilabel reductions: what is my loss optimising? In Ad-
vances in Neural Information Processing Systems, pp.
10599-10610, 2019.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of machine learning. MIT press, 2012.

Musayeva, K., Lauer, F., and Guermeur, Y. Rademacher
complexity and generalization performance of multi-
category margin classifiers. Neurocomputing, pp. 615,
112019.

Reddi, S. J., Kale, S., Yu, F., Holtmann-Rice, D., Chen,
J., and Kumar, S. Stochastic negative mining for learn-
ing with large output spaces. In The 22nd International

Conference on Artificial Intelligence and Statistics, pp.
1940-1949, 2019.

Reeve, H. W. and Kaban, A. Optimistic bounds for multi-
output prediction, 2020.

Schapire, R. E. and Freund, Y. Boosting: Foundations and
algorithms. Kybernetes, 2013.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low
noise and fast rates. In Advances in neural information
processing systems, pp. 2199-2207, 2010.

Talagrand, M. Upper and lower bounds for stochastic pro-
cesses: modern methods and classical problems, vol-
ume 60. Springer Science & Business Media, 2014.

Tsoumakas, G. and Katakis, I. Multi-label classification:
An overview. International Journal of Data Warehousing
and Mining (IJDWM), 3(3):1-13, 2007.

Xu, C., Liu, T., Tao, D., and Xu, C. Local rademacher
complexity for multi-label learning. IEEE Transactions
on Image Processing, 25(3):1495-1507, March 2016.

Xu, D., Shi, Y., Tsang, I. W., Ong, Y.-S., Gong, C., and Shen,
X. Survey on multi-output learning. IEEE transactions
on neural networks and learning systems, 2019.

Zhang, M.-L. and Zhou, Z.-H. A review on multi-label
learning algorithms. IEEE transactions on knowledge
and data engineering, 26(8):1819-1837, 2013.



