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Abstract

We seek to align agent behavior with a user’s ob-
jectives in a reinforcement learning setting with
unknown dynamics, an unknown reward function,
and unknown unsafe states. The user knows the
rewards and unsafe states, but querying the user
is expensive. We propose an algorithm that safely
and efficiently learns a model of the user’s reward
function by posing ‘what if?” questions about hy-
pothetical agent behavior. We start with a genera-
tive model of initial states and a forward dynam-
ics model trained on off-policy data. Our method
uses these models to synthesize hypothetical be-
haviors, asks the user to label the behaviors with
rewards, and trains a neural network to predict the
rewards. The key idea is to actively synthesize the
hypothetical behaviors from scratch by maximiz-
ing tractable proxies for the value of information,
without interacting with the environment. We call
this method reward query synthesis via trajectory
optimization (ReQueST). We evaluate ReQueST
with simulated users on a state-based 2D naviga-
tion task and the image-based Car Racing video
game. The results show that ReQueST signifi-
cantly outperforms prior methods in learning re-
ward models that transfer to new environments
with different initial state distributions. Moreover,
ReQueST safely trains the reward model to detect
unsafe states, and corrects reward hacking before
deploying the agent.

1. Introduction

Users typically specify objectives for reinforcement learn-
ing (RL) agents through scalar-valued reward functions (Sut-
ton & Barto, 2018). While users can easily define re-
ward functions for tasks like playing games of Go or Star-
Craft, users may struggle to describe practical tasks like
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Figure 1. Our method learns a reward model from user feedback
on hypothetical behaviors, then deploys a model-based RL agent.

driving cars or controlling robotic arms in terms of re-
wards (Hadfield-Menell et al., 2017). Understanding user
objectives in these settings can be challenging — not only
for machines, but also for humans modeling each other and
introspecting on themselves (Premack & Woodruff, 1978).

For example, consider the trolley problem (Foot, 1967): if
you were the train conductor in Figure 1, presented with the
choice of either allowing multiple people to come to harm
by letting the train continue on its current track, or harming
one person by diverting the train, what would you do? The
answer depends on whether your value system leans toward
consequentialism or deontological ethics — a distinction
that may not be captured by a reward function designed
to evaluate common situations, in which ethical dilemmas
like the trolley problem rarely occur. In complex domains,
the user may not be able to anticipate all possible agent
behaviors and specify a reward function that accurately
describes user preferences over those behaviors.

We address this problem by actively synthesizing hypothet-
ical behaviors from scratch, and asking the user to label
them with rewards. Figure 1 describes our algorithm: using
a generative model of initial states and a forward dynamics
model trained on off-policy data, we synthesize hypothetical
behaviors, ask the user to label the behaviors with rewards,
and train a neural network to predict the rewards. We repeat
this process until the reward model converges, then deploy
a model-based RL agent that optimizes the learned rewards.

The key idea in this paper is synthesizing informative hypo-
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theticals. Ideally, we would generate these hypotheticals by
optimizing the value of information (VOI; Savage, 1954),
but the VOI is intractable for real-world domains with high-
dimensional, continuous states. Instead, we use trajectory
optimization to produce four types of hypotheticals that im-
prove the reward model in different ways: behaviors that
(1) maximize reward model uncertainty, to elicit labels that
are likely to change the updated reward model’s outputs;
(2) maximize predicted rewards, to detect and correct re-
ward hacking; (3) minimize predicted rewards, to safely
explore unsafe states; or (4) maximize novelty of trajecto-
ries regardless of predicted rewards, to improve the diversity
of the training data. To ensure that the hypothetical tra-
jectories remain comprehensible to the user and resemble
realistic behaviors, we use a generative model of initial
states and a forward dynamics model for regularization.
We call this method reward query synthesis via trajectory
optimization (ReQueST).

Our primary contribution is an algorithm that synthesizes
hypothetical behaviors in order to safely and efficiently
train neural network reward models in environments with
high-dimensional, continuous states. We evaluate ReQueST
with simulated users in three domains: MNIST classifica-
tion, a state-based 2D navigation task, and the image-based
Car Racing video game in the OpenAl Gym. Our exper-
iments show that ReQueST learns robust reward models
that transfer to new environments with different initial state
distributions, achieving at least 2x better final performance
than baselines adapted from prior work (e.g., see Figure 4).
In the navigation task, ReQueST safely learns to classify
100% of unsafe states as unsafe and deploys an agent that
never visits unsafe states, while the baselines fail to learn
about even one unsafe state and deploy agents with a failure
rate of 75%.

2. Related Work

In this work, we align agent behavior with a user’s objec-
tives by learning a model of the user’s reward function and
training the agent via RL (Ng & Russell, 2000; Ziebart
et al., 2008; Leike et al., 2018). The idea behind model-
ing the user’s reward function — as opposed to the user’s
policy (Pomerleau, 1991; Ross et al., 2011; Ho & Ermon,
2016), value function (Dvijotham & Todorov, 2010; Warnell
etal., 2018; Reddy et al., 2018), or advantage function (Mac-
Glashan et al., 2017) — is to acquire a compact, transferable
representation of the user’s objectives; not just in the training
environment, but also in new environments with different
dynamics or initial states.

The closest prior work is on active learning methods for
learning rewards from pairwise comparisons (Sadigh et al.,
2017; Bryik & Sadigh, 2018; Wirth et al., 2017), cri-
tiques (Cui & Niekum, 2018), demonstrations (Ibarz et al.,

2018; Brown et al., 2018), designs (Mindermann et al.,
2018), and numerical feedback (Daniel et al., 2014). Re-
QueST differs in three key ways: it produces hypothet-
ical trajectories using a generative model, in a way that
enables trading off between producing realistic vs. informa-
tive queries; it optimizes queries not only to reduce model
uncertainty, but also to detect reward hacking and safely ex-
plore unsafe states; and it scales to learning neural network
reward models that operate on high-dimensional, continuous
state spaces.

ReQueST shares ideas with prior work (Saunders et al.,
2018; Prakash et al., 2019) on learning to detect unsafe
behaviors by initially seeking out catastrophes, selectively
querying the user, and using model-based RL. ReQueST
differs primarily in that it learns a complete task specifi-
cation, not just an unsafe state detector. ReQueST is also
complementary to prior work on safe exploration, which
typically assumes a known reward function and side con-
straints, and focuses on ensuring that the agent never visits
unsafe states during policy optimization (Dalal et al., 2018;
Garcia & Fernandez, 2015).

3. Learning Rewards from User Feedback on
Hypothetical Behavior

We formulate the reward modeling problem as follows. We
assume access to a training environment that follows a
Markov decision process (MDP; Sutton & Barto, 2018)
with unknown state transition dynamics 7, unknown initial
state distribution S(‘_{ai“, and an unknown reward function R
that can be evaluated on specific inputs by querying the user.
We learn a model of the reward function R by querying the
user for reward signals. At test time, we train an RL agent
with the learned reward function R in a new environment
with the same dynamics 7, but a potentially different initial
state distribution S§*'. The goal is for the agent to perform
well in the test environment with respect to the true reward
function R.

Our approach to this problem is outlined in Figure 1, and can
be split into three steps. In step (1) we use off-policy data to
train a generative model py (7) that can be used to evaluate
the likelihood of a trajectory 7 = (sq, ag, $1, 1, ---, ST),
which enables us to synthesize hypothetical trajectories that
can be shown to the user. In step (2) we produce synthetic
trajectories, which consist of sequences of state transitions
(s,a,s’), that seek out different kinds of hypotheticals (de-
tailed in Section 3.3). We ask the user to label each transi-
tion with a scalar reward R(s, a, s’), and fit a reward model
]A%(s7 a, s') using standard supervised learning techniques.
In step (3) we use standard RL methods to train an agent
using the learned rewards.



Learning Human Objectives by Evaluating Hypothetical Behavior

3.1. Learning a Generative Model of Trajectories

In order to generate hypothetical behaviors with uncertain
rewards, we first learn a generative model of initial states
and a forward dynamics model. We use these models to syn-
thesize plausible trajectories, without requiring that an agent
actually perform those behaviors in the real environment.

In step (1) we collect off-policy data by interacting with
the training environment in an unsupervised fashion; i.e.,
without the user in the loop. To simplify our experiments,
we sample trajectories 7 by following random policies that
explore a wide variety of states. We use the observed trajec-
tories to train a likelihood model,

T-1

Pe(T) X pg(s0) H Po(St+1]st, ar), (1
t=0

where pg(sg) models the initial state distribution,
D (St+1|5t, ar) models the forward dynamics, and ¢ are
the model parameters (e.g., neural network weights). We
train the model py using maximum-likelihood estimation,
given the sampled trajectories. As described in the next
section, we use the likelihood model to generate realistic
synthetic trajectories to show to the user.

In environments with high-dimensional, continuous states,
such as images, we also train a state encoder fy : S = Z
and decoder f(;l : Z — S, where S = R", Z = R%, and
d << n. As described in Section 3.4, embedding states in
a low-dimensional latent space Z enables us to synthesize
realistic hypotheticals. In our experiments, we train fg
and f(;l using the variational auto-encoder method (VAE;
Kingma & Welling, 2013).

3.2. Representing the Reward Model as a Classifier

Our goal is to learn a model R of the user’s reward function.
In step (2) we represent R by classifying state transitions as
good, unsafe, or neutral — similar to Cui & Niekum (2018)
— and assigning a known, constant reward to each of these
three categories:

R(s,a,8") = > po(cls,a,s")Re,  (2)

c€{good,unsafe,neutral }

where pg(c|s,a,s’) = L 3" pg,(c|s, a,s’) is the mean

of an ensemble of m classifiers {pg, }!”,, and 0, are the
weights of the i-th neural network in the ensemble. R, is
the constant reward for any state transition in class ¢, where
Runsate < Rneural < Rgood- Modeling the reward function
as a classifier simplifies our experiments and makes it easier
for the user to provide labels. In principle, our method
can also work with other architectures, such as a regression
model R = Rp.

3.3. Designing Objectives for Informative Queries

Our approach to reward modeling involves asking the user
to label trajectories with reward signals. In step (2) we
synthesize query trajectories to elicit user labels that are
informative for learning the reward model.

To generate a useful query, we synthesize a trajectory 7
that maximizes an acquisition function (AF) denoted by
J(7). The AF evaluates how useful it would be to elicit
reward labels for 7, then update the reward model given the
newly-labeled data. Since we do not assume knowledge of
the initial state distribution of the test environment where
the agent is deployed, we cannot optimize the ideal AF: the
value of information (VOI; Savage, 1954), defined as the
gain in performance of an agent that optimizes the updated
reward model in the test environment. Prior work on ac-
tive learning tackles this problem by optimizing proxies for
VOI (Settles, 2009). In this work, we synthesize a separate
trajectory for each of four AFs defined in the following
paragraphs.

Maximizing uncertainty. The first AF J,(7) implements
one of the simplest query selection strategies from the active
learning literature: uncertainty sampling (Lewis & Gale,
1994). The idea is to elicit labels for examples that the
model is least certain how to label, and thus reduce model
uncertainty. To do so, we train an ensemble of neural net-
work reward models, and generate trajectories that maxi-
mize the disagreement between ensemble members. Follow-
ing Lakshminarayanan et al. (2017), we measure ensemble
disagreement using the average KL-divergence between the
output of a single ensemble member and the ensemble mean
(Equation 5 in the appendix).

Maximizing reward. The second AF J (1) is intended
to detect examples of false positives, or ‘reward hacking’:
behaviors for which the reward model incorrectly outputs
high reward (Amodei et al., 2016; Christiano et al., 2017).
The idea is to show the user what the reward model predicts
to be good behavior, with the expectation that some of these
behaviors are actually suboptimal, and will be labeled as
such by the user. To do so, we simply synthesize trajectories

that maximize J (1) = > R(s,a,s).

s,a,s’')ET

Minimizing reward. The third AF J_(7) is intended to
augment the training data with more examples of unsafe
states than would normally be encountered, e.g., by a reward-
maximizing agent acting in the training environment. The
idea is to show the user what the reward model considers
unsafe behavior, so the user can confirm whether the model
has captured the correct notion of unsafe states. To do so,
we produce trajectories that maximize J_(7) = —J, (7).

Maximizing novelty. The fourth AF .J,,(7) is intended to
produce novel trajectories that differ from those already
in the training data, regardless of their predicted reward;
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akin to prior work on geometric AFs (Sener & Savarese,
2018). This is especially helpful early during training,
when uncertainty estimates are not accurate, and the re-
ward model has not yet captured interesting notions of
reward-maximizing and reward-minimizing behavior. To
do so, we produce trajectories 7 that maximize the dis-
tance between 7 and previously-labeled trajectories 7/ € D,
In(T) = ﬁ > repd(r, 7). In this work, we use a dis-
tance function d that computes the Euclidean distance be-
tween state embeddings (Equation 6 in the appendix).

3.4. Query Synthesis via Trajectory Optimization

The four AFs defined in the previous section specify the
types of hypotheticals we would like to show the user. In
this section, we discuss how to optimize each AF, then use
the resulting hypotheticals to learn a reward model.

We synthesize a query trajectory,

J(7) + Mogpg(7),  (3)

max

Tquery =
dauery 20,0021+ +,2T

where z; is the embedding of state s; in the latent
space of the encoder f trained in step (1), 7 =
(f~(20), a0, f1(21), a1, ..., f "1 (2r)) is the decoded tra-
jectory, J is the acquisition function (Section 3.3), A € R
is a regularization constant, and p is the generative model
of trajectories (Section 3.1). In this work, we assume pg(7)
is differentiable, and optimize Tquery using Adam (Kingma
& Ba, 2014). Optimizing latent states z instead of high-
dimensional states s reduces computational requirements,
and regularizes the optimized states to be more realistic.

The regularization constant A from Equation 3 controls the
trade-off between how realistic Tquery is and how aggres-
sively it maximizes the AF. Setting A = 0 can result in
query trajectories that are incomprehensible to the user and
unlikely to be seen in the test environment, while setting A to
a high value can constrain the query trajectories from seek-
ing interesting hypotheticals. The experiments in Section
A.3 in the appendix analyze this trade-off.

Our reward modeling algorithm is summarized in Algorithm
1. Given a generative model of trajectories pgy(7), it gen-
erates one query trajectory Tquery for each of the four AFs,
asks the user to label the states in the query trajectories,
retrains the reward model ensemble {6}, on the updated
training data D using maximum-likelihood estimation, and
repeats this process until the user is satisfied with the out-
puts of the reward model. The ablation study in Section 4.5
analyzes the effect of using different subsets of the four AFs
to generate queries.

3.5. Deploying a Model-Based RL Agent

Given the learned reward model R, the agent can, in princi-
ple, be trained using any RL algorithm in step (3). Since our

Algorithm 1 Reward Query Synthesis
via Trajectory Optimization (ReQueST)

1: Require A, pg

2: Initialize D < ()

3: while 6 not converged do

4: for J € {Ju,Jy,J_,Jn} do

5: Tquery <— max- J(7) + Alog pg(T)
6: for (s, a, s") € Tquery do
7.
8

¢ < ¢ ~ puser(c|s, a, s") {Query the user}
: D+ DU{(s,a,5,c)
9: end for

10:  end for

11:  forie {1,2,...,m} do

12: 0; < argmaxg, 3, , o ;e 08 Pe, (c|s, a,s")
13:  end for

14: end while R
15: Return reward model R {Defined via € in Equation 2}

method learns a forward dynamics model in step (1), model-
based RL is a good fit for step (3). In this work, we deploy
an agent 7ype that combines planning with model-predictive
control (MPC):

Tmpe(@|s) =1 |a = argmax max R(s,a0)
ao al,...,afg

+ R(Eg[s1]s, a0),a1) + ...

+1:2(E¢[SH|876L07G17~~~7aH—1]aaH)}, €]

where the future states Eg[s|s, ag, a1, ..., a;—1] are pre-
dicted using the forward dynamics model py, trained in step
(1), H is the planning horizon, and R is the reward model
trained in step (2). We solve the optimization problem in
the right-hand side using Adam (Kingma & Ba, 2014).

4. Experimental Evaluation

We seek to answer the following questions. Q1: Does syn-
thesizing hypothetical trajectories elicit more informative
labels than rolling out a policy in the training environment?
Q2: Can our method detect and correct reward hacking?
Q3: Can our method safely learn about unsafe states? Q4:
Do the proposed AFs improve upon random sampling from
the generative model? QS: How does the regularization
constant A control the trade-off between realistic and infor-
mative queries? Q6: How much do each of the four AFs
contribute to performance? To answer these questions under
ideal assumptions, we run experiments in MNIST (LeCun,
1998), state-based 2D navigation (Figure 2), and image-
based Car Racing from the OpenAl Gym (Brockman et al.,
2016), with simulated users that label trajectories using a
ground-truth reward function. Section A.4 in the appendix
discusses implementation details.

MNIST classification. This domain enables us to focus on
testing the active learning component of our method, since
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Figure 2. Left: The 2D navigation task, where the agent navigates
to the goal region (green) in the lower left while avoiding the trap
region (red) in the upper right. The agent starts in the lower left
corner in the training environment, and starts in the upper right
corner in the test environment. Right: Examples of hypothetical
states synthesized throughout learning, illustrating the qualitative
differences in the behaviors targeted by each AF.

the standard digit classification task does not involve sequen-
tial decision-making. When we generate queries, we syn-
thesize an image so € R?®%28, and ask the simulated user
to label it with an action a € {0, 1, ...,9}. The initial state
distribution of the training environment S§*" puts a uniform
probability on sampling sg € {5,6,7,8,9}, and a probabil-
ity of 0 on sampling so € {0, 1,2, 3,4}. We intentionally in-
troduce a significant shift in the test environment, by putting
a uniform probability on sampling sg € {0,1,2,3,4} and
a probability of 0 on sampling sy € {5,6,7,8,9}. This
mismatch is intended to test how well the learned classifier
performs under distribution shift.

State-based 2D navigation. This domain enables us to
focus on the challenges of sequential decision-making, with-
out dealing with high-dimensional states. Here, the state
s € R? is the agent’s position, and the action a € R? is
a velocity vector. The task requires navigating to a target
region, while avoiding a trap region (Figure 2). The task is
harder to complete in the test environment, since the agent
starts closer to the trap, and must navigate around the trap
to reach the goal.

Image-based Car Racing. This domain enables us to test
whether our method scales to learning sequential tasks with
high-dimensional states. Here, the state s € R4*64%3 jg an
RGB image with a top-down view of the car (Figure 3), and
the action a € R? controls steering, gas, and brake. Here,
we set the same initial state distribution for the training
and test environments, since the reward modeling problem
is challenging even when the initial state distributions are
identical. We train a generative model of images and a
forward dynamics model in step (1) using the unsupervised
method from Ha & Schmidhuber (2018).

Figure 3. Left: A screenshot of the image-based Car Racing video
game in the OpenAl Gym. Right: Examples of synthesized hypo-
thetical behaviors, including going off road (J_), making progress
(J+), driving on the edge (J.,), and seeking unusual car configura-
tions (J,,). See Figure 13 in the appendix for synthesized videos.

4.1. Robustness Compared to Baselines

Our first experiment tests whether our method can learn
a reward model that is robust enough to perform well in
the test environment, and tracks how many queries to the
user it takes to learn an accurate reward model. To answer
Q1, we compare our method to a baseline that, instead of
generating hypothetical trajectories for the user to label,
generates trajectories by rolling out a policy that optimizes
the current reward model in the training environment — an
approach adapted from prior work (Christiano et al., 2017).
The baseline generates Tgyery in line 5 of Algorithm 1 by
rolling out the MPC policy in Equation 4, instead of solving
the optimization problem in Equation 3. To test how gener-
ating queries using a reward-maximizing policy compares
to using a policy that does not depend on the reward model,
we also evaluate a simpler baseline that generates query
trajectories using a uniform random policy, instead of the
MPC policy. We measure performance in MNIST using the
agent’s classification accuracy in the test environment; in
2D navigation, the agent’s success rate at reaching the goal
while avoiding the trap in the test environment; and in Car
Racing, the agent’s true reward, which rewards progress and
penalizes going off-road.

The results in Figure 4 show that our method produces re-
ward models that transfer to the test environment better than
the baselines. Our method also learns to outperform the sub-
optimal demonstrations used to initialize the reward model
(Figure 10 in the appendix). In MNIST, our method per-
forms substantially better than the baseline, which samples
queries sg from the initial state distribution of the training
environment. The reason is simple: the initial state distribu-
tion of the test environment differs significantly from that of
the training environment. Since our method is not restricted
to sampling from the training environment, it performs bet-
ter than the baseline.

In 2D navigation, our method substantially outperforms both
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Figure 4. Experiments that address Q1 — does synthesizing hypothetical trajectories elicit more informative labels than rolling out a policy
in the training environment? — by comparing our method, which uses synthetic trajectories, to baselines that only use real trajectories
generated in the training environment. The results on MNIST, 2D navigation, and Car Racing show that our method (orange) significantly
outperforms the baselines (blue and gray), which never succeed in 2D navigation. The x-axis represents the number of queries to the user,
where each query elicits a label for a single state transition (s, a, s”). The shaded areas show standard error over three random seeds.

baselines, which never succeed in the test environment. This
is unsurprising, since the training environment is set up in
such a way that, because the agent starts out in the lower left
corner, they rarely visit the trap region in the upper right by
simply taking actions — whether reward-maximizing actions
(as in the first baseline), or uniform random actions (as in
the second baseline). Hence, when a reward model trained
by the baselines is transferred to the test environment, it is
not aware of the trap, so the agent tends to get caught in the
trap on its way to the goal. Our method, however, is not
restricted to feasible trajectories in the training environment,
and can potentially query the label for any position in the
environment — including the trap (see Figure 2). Hence,
our method learns a reward model that is aware of the trap,
which enables the agent to navigate around it in the test
environment.

In Car Racing, our method outperforms both baselines. The
baselines tend to generate queries that are not diverse and
rarely visit unsafe states, so the resulting reward models are
not able to accurately distinguish between good, unsafe, and
neutral states. Our method, on the other hand, explicitly
seeks out a wide variety of states by maximizing the four
AFs, which leads to more diverse training data, and a more
accurate reward model.

4.2. Detecting Reward Hacking

One of the benefits of our method is that it can detect and
correct reward hacking before deploying the agent, using
reward-maximizing synthetic queries. In the next exper-
iment, we test this claim. We replicate the experimental
setup in Section 4.1 for 2D navigation, including the same
baselines. We measure performance using the false pos-
itive rate of the reward model: the fraction of neutral or

unsafe states incorrectly classified as good, evaluated on the
offline dataset of trajectories described in Section 4.1. A
reward model that outputs false positives is susceptible to
reward hacking, since a reward-maximizing agent can game
the reward model into emitting high rewards by visiting
incorrectly classified states.

The results in Figure 9 in the appendix show that our method
drives down the false positive rate in 2D navigation: the
learned reward model rarely incorrectly classifies an unsafe
or neutral state as a good state. As a result, the deployed
agent actually performs the desired task (center plot in Fig-
ure 4), instead of seeking false positives. As discussed in
Section 4.3 and illustrated in the right-most plot of Figure
5, the baselines learn a reward model that incorrectly ex-
trapolates that continuing up and to the right past the goal
region is good behavior. For a concrete example of reward-
maximizing synthetic queries that detect reward hacking,
consider the reward-maximizing queries in the upper right
corner of Figure 2, which are analyzed in Section A.2 in the
appendix.

4.3. Safe Exploration

One of the benefits of our method is that it can learn a
reward model that accurately detects unsafe states, without
having to visit unsafe states during the training process.
In the next experiment, we test this claim. We replicate
the experimental setup in Section 4.1 for 2D navigation,
including the same baselines. We measure performance
using the true negative rate of the reward model: the fraction
of unsafe states correctly classified as unsafe, evaluated on
the offline dataset of trajectories described in Section 4.1.
We also use the crash rate of the deployed agent: the rate at
which it gets caught in the trap region.
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Figure 5. Experiments that address Q3 — can our method safely learn about unsafe states? — by comparing our method, which uses
synthetic trajectories, to baselines that only use real trajectories generated in the training environment. The results on 2D navigation show
that our method (orange) significantly outperforms the baselines (blue and gray). The x-axis represents the number of queries to the user,
where each query elicits a label for a single state transition (s, a, s"). The shaded areas show standard error over three random seeds. The
heat maps represent the reward models learned by our method (left) and by the baselines (right).
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Figure 6. Experiments that address Q4 — do the proposed AFs improve upon random sampling from the generative model? — by comparing
our method, which synthesizes trajectories by optimizing AFs, to a baseline that ignores the AFs and randomly samples from the generative
model. The results on MNIST, 2D navigation, and Car Racing show that our method (orange) significantly outperforms the baseline (blue)
in Car Racing, and learns faster in MNIST and 2D navigation. The x-axis represents the number of queries to the user, where each query
elicits a label for a single state transition (s, a, s"). The shaded areas show standard error over three random seeds.

The results in Figure 5 show that our method learns a reward
model that classifies all unsafe states as unsafe, without
visiting unsafe states during training (second and third figure
from left); in fact, without visiting any states at all, since
the queries are synthetic. This enables the agent to avoid
crashing during deployment (first figure from left). The
baselines differ from our method in that they actually have
to visit unsafe states in order to query the user for labels
at those states. Since the baselines tend to not visit unsafe
states during training, they do not learn about unsafe states
(second and fourth figure from left), and the agent frequently
crashes during deployment (first figure from left).

4.4. Query Efficiency Compared to Baselines

The previous experiment compared to baselines that are re-
stricted to generating query trajectories by taking actions
in the training environment. In this experiment, we lift this
restriction on the baselines: instead of taking actions in the
training environment, the baselines can make use of the

generative model trained in step (1). To answer Q4, we
compare our method to a baseline that randomly samples
trajectories from the generative model pg — using uniform
random actions in Car Racing, samples from the VAE prior
in MNIST, and uniform positions across the map in 2D
navigation. We measure performance in MNIST using the
reward model’s predicted log-likelihood of the ground-truth
user labels in the test environment; in 2D navigation, the
reward model’s classification accuracy on an offline dataset
containing states sampled uniformly throughout the envi-
ronment; and in Car Racing, the true reward collected by
an MPC agent that optimizes the learned reward, where the
true reward gives a bonus for driving onto new patches of
road, and penalizes going off-road.

The results in Figure 6 show that our method, which opti-
mizes trajectories using various AFs, requires fewer queries
to the user than the baseline, which randomly samples trajec-
tories. This suggests that our four AFs guide query synthesis
toward informative trajectories. These results, and the re-
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Figure 7. Experiments that address Q6 — how much do each of the four AFs contribute to performance? — by comparing our method
to ablated variants that drop each AF, one at a time, from the set of four AFs in line 4 of Algorithm 1. The results on MNIST, 2D
navigation, and Car Racing show that our method (orange) generally outperforms its ablated variants (blue, gray, red, and pink), although
the usefulness of each AF depends on the domain and amount of training data.. The x-axis represents the number of queries to the user,
where each query elicits a label for a single state transition (s, a, s"). The shaded areas show standard error over three random seeds.

sults from Section 4.1, suggest that our method benefits not
only from using a generative model instead of the default
training environment, but also from optimizing the AFs
instead of randomly sampling from the generative model.

4.5. Acquisition Function Ablation Study

We propose four AFs intended to produce different types
of hypotheticals. In this experiment, we investigate the
contribution of each type of query to the performance of
the overall method. To answer Q6, we conduct an ablation
study, in which we drop out each the four AFs, one by one,
from line 4 in Algorithm 1, and measure the performance
of only generating queries using the remaining three AFs.

The results in Figure 7 show that the usefulness of each
AF depends on the domain and the amount of training data
collected. In MNIST, dropping J,, hurts performance, sug-
gesting that uncertainty-maximizing queries elicit useful
labels. Dropping J,, also hurts performance when the num-
ber of queries is small, but actually improves performance
if enough queries have already been collected. Novelty-
maximizing queries tend to be repetitive in practice: al-
though they are distant from the training data in terms of
Equation 6, they are visually similar to the existing training
data in that they appear to be the same digits. Hence, while
they are helpful at first, they hurt query efficiency later in
training.

In 2D navigation, dropping J,, hurts performance, while
dropping any of the other AFs individually does not
hurt performance. These results suggest that uncertainty-
maximizing queries can be useful, in domains like MNIST
and 2D navigation, where uncertainty can be modeled and
estimated accurately. In Car Racing, dropping J_ hurts the
most. Reward-minimizing queries elicit labels for unsafe

states, which are rare in the training environment unless you
explicitly seek them out. Hence, this type of query performs
the desired function of augmenting the training data with
more examples of unsafe states, thereby making the reward
model better at detecting unsafe states.

5. Discussion

The experiments show that ReQueST produces accurate
reward models that transfer well to new environments and
require fewer queries to the user, compared to baseline meth-
ods adapted from prior work. Our method detects reward
hacking before the agent is deployed, and safely learns about
unsafe states. Through a hyperparameter sweep, we find
that our method can trade off between producing realistic
vs. informative queries, and that the optimal trade-off varies
across domains. Through an ablation study, we find that
the usefulness of each of the four acquisition functions we
propose for optimizing queries depends on the domain and
the amount of training data collected.

One of the benefits of ReQueST is that, since it learns from
synthetic trajectories instead of real trajectories, it only has
to imagine visiting unsafe states, instead of actually visit-
ing them. Although unsafe states may be visited during
unsupervised exploration of the environment for training
the generative model in step (1), the same generative model
can be reused to learn reward models for any number of
future tasks. Hence, the cost of visiting a fixed number of
unsafe states in step (1) can be amortized across a large
number of tasks in step (2). We could also train the gener-
ative model on other off-policy data, including safe expert
demonstrations and examples of past failures by humans.

The main practical limitation of ReQueST is that it requires
a generative model of initial states and a forward dynamics
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model, which can be difficult to learn from purely off-policy
data in complex, visual environments. One direction for
future work is relaxing this assumption; e.g., by incremen-
tally training a generative model on on-policy data collected
from an RL agent in the training environment (Kaiser et al.,
2019; Hafner et al., 2019).
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