Learning Human Objectives by Evaluating Hypothetical Behavior

A. Appendix
A.1. Designing Objectives for Informative Queries

Maximizing uncertainty. Following Lakshminarayanan
et al. (2017), we measure ensemble disagreement using
the average KL-divergence between the output of a single
ensemble member and the ensemble mean,

m

1 1
']u(T) =1 Z E ZDKL(pﬂi (C|S,CL,SI)
(s,a,s")ET i=1

H pg(C‘S, a, SI))ﬂ ®)
where pg is the reward classifier defined in Section 3.2.

Maximizing novelty. In this work, we use a distance func-
tion that computes the Euclidean distance between state
embeddings,

d(r,7)

LS e Melo—falDlz ()

- |T| |T/| seT,s’et’
)

where fg is the state encoder trained in step (1).

A.2. Visualizing Synthesized Queries

Figures 2, 12, and 13 illustrate examples of queries gener-
ated by each of the four AFs.

In MNIST (Figure 12), the uncertainty-maximizing queries
are digits that appear ambiguous but coherent, while the
novelty-maximizing queries tend to cluster around a small
subset of the digits and appear grainy.

In 2D navigation (Figure 2), the demonstrations contain
mostly neutral states en route to the goal, and a few good
states at the goal. If we were to train on only the demon-
strations, the reward model would be unaware of the trap.
Initially, the queries, which we restrict to just one state tran-
sition from the initial state sg to a synthesized next state
s1, are relatively uniform. The first reward-maximizing
queries are in the upper right corner, which makes sense:
the demonstrations contain neutral states in the lower left,
and good states farther up and to the right inside the goal
region, so the reward model extrapolates that continuing up
and to the right, past the goal region, is good behavior. The
reward model, at this stage, is susceptible to reward hack-
ing — a problem that gets addressed when the user labels
the reward-maximizing queries in the upper right corner as
neutral.

After a few more queries, the reward-maximizing queries
start to cluster inside the goal region, and the reward-
minimizing queries cluster inside the trap. This is helpful
early during training, for identifying the locations of the
goal and trap. The uncertainty-maximizing queries cluster
around the boundaries of the goal and the trap, since that is

where model uncertainty is highest. This is helpful for refin-
ing the reward model’s knowledge of the shapes of the goal
and trap. The novelty-maximizing queries get pushed to the
corners of the environment. This is helpful for determining
that the goal and trap are relatively small and circular, and
do not bleed into the corners of map.

In Car Racing (Figure 13), the reward-maximizing queries
show the car driving down the road and making a turn. The
reward-minimizing queries show the car going off-road as
quickly as possible. The uncertainty-maximizing queries
show the car driving to the edge of the road and slowing
down. The novelty-maximizing queries show the car staying
still, which makes sense since the training data tends to
contain mostly trajectories of the car in motion.

A.3. Effect of Regularization Constant \

One of the core features of our method is that, in Equa-
tion 3, it can trade off between producing realistic queries
that maximize the regularization term log py(7), and pro-
ducing informative queries that maximize the AF J(7). In
this experiment, we examine how the regularization con-
stant \ controls this trade-off, and how the trade-off affects
performance.

To answer QS5, we sweep different values of the regulariza-
tion constant A. At one extreme, we constrain the query
trajectories Tquery to be feasible under the generative model,
by setting the next states ;41 to be the next states predicted
by the dynamics model instead of free variables — we label
this setting as A = oo for convenience (see Section A.4
in the appendix for details). At the other extreme, we set
A = 0, which allows Tquery to be infeasible under the model.
Note that, even when A = 0, the optimized trajectory Tquery
is still regularized by the fact that it is optimized in the la-
tent space of the state encoder f, instead of, e.g., raw pixel
space.

The results in Figure 8 show that the usefulness of gen-
erating unrealistic trajectories depends on the domain. In
MNIST, producing unrealistic images by decreasing A can
improve performance, although an intermediate value works
best. In 2D navigation, setting A to a low value is critical
for learning the task. Note that we only tested A = 0 and
A = oo in this domain, since we intentionally setup the train-
ing and test environments as a sanity check, where A = 0
should perform best, and A = oo should not succeed. In
Car Racing, constraining the queries to be feasible (A = o0)
performs best.

There is a trade-off between being informative (by maxi-
mizing the AF) and staying on the distribution of states in
the training environment (by maximizing likelihood). In do-
mains like Car Racing — where the training and test environ-
ments have similar state distributions, and off-distribution

Learning Human Objectives by Evaluating Hypothetical Behavior

Regularization Constant A

= Offline Reward Model
- Random Policy (Baseline)
ReQueST (Ours)

= Offline Classifier
ReQueST (Ours)

s MNIST 2D Navigation Car Racing

] CLOf o] [
+= >

E 0.6 +ernrnsnnsnsnnnafsnnsarnnnnraisnrannnrnnnns 2 08 2000

< E . 1500

§0.94 06 °

: :

o ©

£ 0.92 o 0.4 1000

c n

S 802

8 0.90 S 500

E () 0 0 ..
= .

©0.88 0.0 M 00 001 01 10 100 =
o 0 1072 1071 10° Regularization Constant A Regularization Constant A

= Offline Reward Model
- Random Policy (Baseline)
ReQueST (Ours)

Figure 8. Experiments that address Q5 — how does the regularization constant A control the trade-off between realistic and informative
queries? — by evaluating our method with different values of A, which controls the trade-off between producing realistic trajectories
(higher A) and informative trajectories (lower \). The results on MNIST, 2D navigation, and Car Racing show that, while intermediate
and low values of A work best for MNIST and 2D navigation respectively, a high value of A = co works best for Car Racing. The x-axis
is log-scaled. The error bars show standard error over three random seeds, which is negligible in the results for 2D navigation.

queries can be difficult for the user to interpret and label
— it makes sense to trade off being informative for staying
on-distribution. In domains like MNIST and 2D navigation,
where we intentionally create a significant shift in the state
distribution between the training and test environments, it
makes more sense to trade off staying on-distribution for
being informative.

Figure 13 shows examples of Car Racing query trajectories
Tquery Optimized with either A = 0 or A = co. Unsurpris-
ingly, the A = 0 queries appear less realistic, but clearly
maximize the AF better than their A = oo counterparts.

A.4. Implementation Details

Initializing with demonstrations. In many real-world set-
tings, the user can help initialize the reward model by pro-
viding a small number of (suboptimal) demonstrations and
labeling them with rewards. Hence, we initialize the training
data D in line 2 of Algorithm 1 with a small set of labeled,
suboptimal, user demonstrations collected in the training
environment.

Model predictive control. Although more sophisticated
MPC algorithms exist (Williams et al., 2016; 2017), we find
that the simple gradient descent-based planner described in
Section 3.5 works well in the 2D navigation and Car Racing
domains.

Query synthesis. Our approach to query synthesis in Sec-
tion 3.4 draws inspiration from direct collocation methods in
the trajectory optimization literature (Betts, 2010), feature
visualization methods in the neural network interpretability
literature (Olah et al., 2017), and prior work on active learn-
ing with deep generative models (Huijser & van Gemert,
2017). It can be extended to settings where pg (7) is not
differentiable, by using a gradient-free optimization method

to synthesize Tquery. This can be helpful, e.g., when using a
non-differentiable simulator to model the environment.

Ensemble of reward models. In line 12 of Algorithm 1,
we train each ensemble member on all of the data D, instead
of a random subset of the data (i.e., bootstrapping). As in
Lakshminarayanan et al. (2017), we find that simply training
each reward network 6; using a different random seed works
well in practice for modeling uncertainty.

Shooting vs. collocation. We use the notation A = oo to
denote solving the optimization problem in Equation 3 with
a shooting method instead of a collocation method. The
shooting method optimizes (2o, ag, a1, ..., ar—1), and rep-
resents 2,1 = Eg[2¢+1|20, a0, @1, ..., a;] using the forward
dynamics model pg, learned in step (1).

MNIST classification. We train a state encoder fg and
decoder f(; !in step (1) by training a VAE with an 8-
dimensional latent space Z = R® on all the images in the
MNIST training set. We simulate the user in line 7 of Algo-
rithm 1 as an expert, k-nearest neighbors classifier pyser(a|s)
trained on all labeled data. We only generate queries using
the AFs J,, and J,, in line 4 of Algorithm 1, since J and
J_ are not useful for single-step classification. We replace
pe, (c|s,a, s’) with pg,(a|s) in Equation 5 and line 12 of
Algorithm 1. We represent pg(a|s) in Equation 2 using a
feedforward neural network with two fully-connected hid-
den layers containing 256 hidden units each, and m = 4
separate networks in the ensemble. The MPC agent in
Equation 4 reduces to mmpc(als) = pg(als). The Gaussian
prior distribution of the VAE yields the likelihood model,
P (s0) o< exp (|| fo(s0)|13). The state inputs to the reward
model are the latent embeddings produced by fy, instead
of the raw pixel inputs. We set A = 0.1 when synthesizing
queries with the AF J,,, and A = 0.01 when synthesizing

Learning Human Objectives by Evaluating Hypothetical Behavior

queries with the AF .J,,. We establish a lower bound on
performance using a uniform random policy, and an upper
bound by deploying an MPC agent equipped with a reward
model trained on a large, offline dataset of 100 expert tra-
jectories and 100 random trajectories containing balanced
classes of good, unsafe, and neutral state transitions.

Note that our approach of training a VAE generative model
on all of the MNIST training data differs from the random
sampling method for collecting off-policy data described in
Section 3.1. Though the initial state distribution of the train-
ing environment is a uniform distribution over {5, 6,7, 8, 9},
we train the generative model on all the digits {0, 1, 2, ..., 9}.
This simplifies our experiments, and enables ReQueST to
synthesize hypothetical digits from {0, 1,2, 3,4}.

State-based 2D navigation. The simulated user la-
bels a state transition (s,a,s’) with category ¢ €
{good, unsafe, neutral }, by looking at the state s’, and iden-
tifying whether it is inside the goal region (good), inside the
trap region (unsafe), or outside both regions (neutral). To en-
courage the agent to avoid the trap, the reward constants are
asymmetric: Rgooda = 1, Rupsate = —10, and Rpeygar = 0.
Since the states are already low-dimensional, we simply
use the identity function for the state encoder and decoder.
We represent pg(c|s, a, s’) in Equation 2 using a feedfor-
ward neural network with two fully-connected hidden layers
containing 32 hidden units each, and m = 4 separate net-
works in the ensemble. We hard-code a Gaussian forward
dynamics model, p(s;i1|s¢, ar) = N(s¢11;8: + ag,0?).
Each episode lasts at most 1000 steps, and the maximum
speed is restricted to ||a||2< 0.01. In Equation 4, we use
a planning horizon of 4 = 500. In Equation 3, we use a
query trajectory length of 7' = 1; i.e., the query consists of
one state transition from the hard-coded initial state sg to a
synthesized next state s;. We set A = 0 when synthesizing
queries for any of the four AFs.

Car Racing. The simulated user labels a state transition
(s, a, s") with category ¢ € {good, unsafe, neutral }, by look-
ing at the state s’, and identifying whether it shows the
car driving onto a new patch of road (good), off-road (un-
safe), or in a previously-visited road patch (neutral). To
encourage the agent to drive without being overly conser-
vative, the reward constants are asymmetric: Rgo0qa = 10,
Runsate = —1, and Ryeurar = 0. We represent pg(c|s, a, s')
in Equation 2 using a feedforward neural network with two
fully-connected hidden layers containing 256 hidden units
each, and m = 4 separate networks in the ensemble. We
train a generative model using the unsupervised approach
in Ha & Schmidhuber (2018), which learns a VAE state
encoder and decoder with a 32-dimensional latent space,
a recurrent dynamics model with a 256-dimensional latent
space, and a mixture density network with 5 components
that predicts stochastic transitions. Since the environment

2D Navigation

o o o
IS o o

False Positive Rate

o
N

0 100 200 300 400
Number of Queries

= Offline Reward Model
I Random Traj's from Training Env. (Baseline)
Reward-Maximizing Traj's from Training Env. (Baseline)
ReQueST (Ours)

Figure 9. Experiments that address Q2 — can our method detect and
correct reward hacking? — by comparing our method, which uses
synthetic trajectories, to baselines that only use real trajectories
generated in the training environment. The results on 2D naviga-
tion show that our method (orange) significantly outperforms the
baselines (blue and gray). The x-axis represents the number of
queries to the user, where each query elicits a label for a single
state transition (s, a, s’). The shaded areas show standard error
over three random seeds.

is partially observable, we represent the state input to the
reward model by concatenating the VAE latent embedding
with the RNN latent embedding. Each episode lasts at most
1000 timesteps. In Equation 4, we use a planning horizon of
H = 50. In Equation 3, we use a query trajectory length of
T = 50. We set A = oo when synthesizing queries for any
of the four AFs.

In the high-dimensional Car Racing environment, we
find that optimizing Equation 3 leads to incomprehen-
sible query trajectories Tguery, e€ven for high values of
the regularization constant A\. To address this issue,
we modify the method in two ways that provide addi-
tional regularization. First, instead of optimizing the
initial state sg in Tguery, We set it to some real state
sampled from the training environment during step
(1). Second, instead of optimizing (2o, ag, 21, .-, 27),

where T = (fil(ZO)aa()afil(Zl)aala"'afil(ZT))’
we optimize (20, G0, M0, A1, M,y ooy AT—1, M 1),
where 7 = (f7(20), a0, f~1(MDN(z0, ag, mo)), a1,

s fTHMDN(27_1,a7_1,m7_1))). The function
MDN(2, at, m) denotes using the mixture coefficients
my to compute the expected next state, instead of using
the mixture coefficients 1(z;, a;) predicted by the mixture
density network. Thus, the likelihood regularization term
becomes log py (1) = Zf:_ol H(my,¥(zt,az)), where H
is the cross-entropy. This representation of the trajectory 7
is easier to optimize, and results in more comprehensible
queries.

Learning Human Objectives by Evaluating Hypothetical Behavior

2D Navigation
103 fecucncnnnnnnnnnnnnnnnnnnsnsnsnsnsnsnsnnns

102 i

200 300 400
Number of Queries

Trajectory Length in Training Env.

Offline Reward Model
Random Policy (Baseline)

= == Demonstrations (Baseline)
ReQueST (Ours)

Car Racing

2000

1500 1

1000

Reward

500 o ok o o

10000 15000 20000 25000
Number of Queries

0 5000

= Offline Reward Model
Random Policy (Baseline)
- = Demonstrations (Baseline)
ReQueST (Ours)

Figure 10. Our method initializes the reward model with subopti-
mal user demonstrations, in line 2 of Algorithm 1. The experiments
in Section 4.1 show that our method learns a reward model that
enables the agent to outperform the suboptimal demonstrator. In
2D navigation (top), the agent gets to the goal faster than the
demonstrator, even in the training environment — the demonstrator
takes a tortuous path to the goal, while the agent goes straight to
the goal. In Car Racing (bottom), the agent drives faster and visits
more new road patches than the cautious, slow demonstrator. We
do not include results for MNIST, since it does not make sense to
initialize the classifier with incorrect labels in this domain.

2D Navigation

i
B

o <
© ©

e
R

Success Rate in Training Env.

o
o

50 100 150 200 250
Number of Queries

o

= Offline Reward Model
- Random Policy (Baseline)
[0 Random Traj's from Training Env. (Baseline)
Reward-Maximizing Traj's from Training Env. (Baseline)
ReQueST (Ours)

MNIST

0 500 1000 1500
Number of Queries

Classification Accuracy in Training Env.

= Offline Classifier
Random Policy (Baseline)
[Random Digits from Training Env. (Baseline)
ReQueST (Ours)

Figure 11. Our method performs worse than or comparably to the
baselines in Section 4.1, when the reward model is evaluated in the
training environment instead of the test environment. Since there is
no state distribution shift in this setting, training on real trajectories
from the training environment (baselines) is more effective than
training on hypothetical trajectories synthesized using our method
(ReQueST). We do not include results for Car Racing, since the
test environment is already identical to the training environment in
this domain.

Learning Human Objectives by Evaluating Hypothetical Behavior

PR QPSRN NPR IR W Y

SN AEUSNR SN bSO Yo®
NXNARASNSPNAYRPY A e UPO

LUVWNPES~RUNQ 0O NODODYV e Q vy
SN MPNANNLUNOYN O YD~ W
SRR AR NCWRN LD evy o £
FXPNFNSNSSNSSNSNAHMOLRAY Ow O PO
DES UNNHNAYNNSPIeceaA ©OLOQ

RUPNLUOSLNEPIURh s Ny ¥y 0>
LCANNOAOLYCSCLELUSYUDOODD v ®

WSS NN SN

Figure 12. Examples of MNIST queries that optimize different
AFs, illustrating the qualitative differences in the hypotheticals
targeted by each AF. Top 10 rows: uncertainty-maximizing queries.
Bottom 10 rows: novelty-maximizing queries. The uncertainty-
maximizing queries are digits that appear ambiguous but coherent,
while the novelty-maximizing queries tend to cluster around a
small subset of the digits and appear grainy.

Learning Human Objectives by Evaluating Hypothetical Behavior

Y B
¥ B
- RRSS
- ERNREY -
CHARELL -
- QS
11711
|

|

Time

Figure 13. Examples of Car Racing queries that optimize different AFs with different settings of the regularization constant J, illustrating
the qualitative differences in the hypotheticals targeted by each AF, and the trade-off between producing realistic (A = co) vs. informative
(A = 0) queries. When A = oo, the reward-maximizing query shows the car driving down the road and making a turn; the reward-
minimizing query shows the car going off-road as quickly as possible; the uncertainty-maximizing query shows the car driving to the edge
of the road and slowing down; and the novelty-maximizing query shows the car staying still, which makes sense since the training data
tends to contain mostly trajectories of the car in motion. When A = 0, most of the behaviors are qualitatively similar to their A = oo
counterparts, but less realistic and more aggressively optimizing the AF — only the novelty-maximizing query is qualitatively different, in
that it seeks the boundaries of the map (the white void) instead of staying still. Full videos available in the supplementary material.

