AutoML-Zero: Evolving Machine Learning Algorithms From Scratch

Supplementary Material

S1. Additional Related Work

Because our approach simultaneously searches all the as-
pects of an ML algorithm, it relates to previous work that
targets each aspect individually. As there are many such
aspects (e.g. architecture, hyperparameters, learning rule),
previous work is extensive and impossible to exhaustively
list here. Many examples belong within the field of AutoML.
A frequently targeted aspect of the ML algorithm is the struc-
ture of the model; this is known as architecture search. It has
a long history [Fahlman & Lebiere, 1990; Angeline et al.,
1994; Yao, 1999; Stanley & Miikkulainen, 2002; Bergstra
& Bengio, 2012; Mendoza et al., 2016; Baker et al., 2017;
Zoph & Le, 2016; Real et al., 2017; Xie & Yuille, 2017;
Suganuma et al., 2017; Liu et al., 2018, and many others]
and continues today [Liu et al., 2019b; Elsken et al., 2019a;
Cai et al., 2019; Liu et al., 2019a; Ghiasi et al., 2019; Sun
et al., 2019; Xie et al., 2019, and many others]. Reviews
provide more thorough background (Elsken et al., 2019bj;
Stanley et al., 2019; Yao et al., 2018). Recent works have
obtained accurate models by constraining the space to only
look for the structure of a block that is then stacked to form
a neural network. The stacking is fixed and the block is
free to combine standard neural network layers into patterns
that optimize the accuracy of the model (Zoph et al., 2018;
Zhong et al., 2018). Mei et al. (2020) highlight the impor-
tance of finer-grained search spaces and take a step in that
direction by splitting convolutions into channels that can
be handled separately. Other specific architecture aspects
have also been targeted, such as the hyperparameters (Snoek
et al., 2012; Loshchilov & Hutter, 2016; Jaderberg et al.,
2017; Li et al., 2018), activation functions (Ramachandran
et al., 2017), a specific layer (Kim & Rigazio, 2015), the
full forward pass (Gaier & Ha, 2019), the data augmenta-
tion (Cubuk et al., 2019a; Park et al., 2019; Cubuk et al.,
2019b), etc. Beyond these narrowly targeted search spaces,
more inclusive spaces are already demonstrating promise.
For example, a few studies have combined two seemingly
disparate algorithmic aspects into a single search space: the
inner modules and the outer structure (Miikkulainen et al.,
2019), the architecture and the hyperparameters (Zela et al.,
2018), the layers and the weight pruning (Noy et al., 2019),
and so on. We extend this to all aspects of the algorithm,
including the optimization.

An important aspect of an ML algorithm is optimization,
which has been tackled by AutoML in the form of numeri-
cally discovered optimizers. Chalmers (1991) formalizes the
update rule for the weights as w; ; < w; ;j + F(x1, 2, ...),
where z; are local signals and F' combines them linearly.
The coefficients of the linear combination constitute the
search space and are encoded as a bit string that is searched
with a genetic algorithm. This is an example of a numeri-
cally learned update rule: the final result is a set of coef-
ficients that work very well but may not be interpretable.
Numerically learned optimizers have improved since then.
Studies found that Chalmers’ F' formula above can be re-
placed with more advanced structures, such as a second
neural network (Runarsson & Jonsson, 2000; Orchard &
Wang, 2016), an LSTM (Ravi & Larochelle, 2017), a hierar-
chical RNN (Wichrowska et al., 2017), or even a different
LSTM for each weight (Metz et al., 2019). Numerically
or otherwise, some studies center on the method by which
the optimizer is learned; it can vary widely from the use of
gradient descent (Andrychowicz et al., 2016), to reinforce-
ment learning (Li & Malik, 2017), to evolutionary search
with sophisticated developmental encodings (Risi & Stanley,
2010). All these methods are sometimes collectively labeled
as meta-learning (Vanschoren, 2019) or described as “learn-
ing the learning algorithm”, as the optimizer is indeed an
algorithm. However, in this work, we understand algorithm
more broadly and it will include also the structure and the
initialization of the model. Additionally, our algorithm is
not learned numerically, but discovered symbolically. A
symbolically discovered optimizer, like an equation or a
computer program, can be easier to interpret or transfer.

An early example of a symbolically discovered optimizer
is that of Bengio et al. (1994), who represent F' as a tree:
the leaves are the possible inputs to the optimizer (i.e. the
x; above) and the nodes are one of {+,—, x,+}. Fis
then evolved, making this an example of genetic program-
ming (Holland, 1975; Forsyth et al., 1981; Koza & Koza,
1992). Our search method is similar to genetic programming
but we choose to represent the program as a sequence of
instructions—Ilike a programmer would type it—rather than
a tree. Another similarity with Bengio et al. (1994) is that
they also use simple mathematical operations as building
blocks. We use many more, however, including vector and

AutoML-Zero

matrix instructions that take advantage of dense hardware
computations. More recently, Bello et al. (2017) revisited
symbolically learned optimizers to apply them to a modern
neural network. Their goal was to maximize the final accu-
racy of their models and so they restrict the search space by
allowing hand-tuned operations (e.g. “apply dropout with
30% probability”, “clip at 0.00001”, efc.). Our search space,
on the other hand, aims to minimize restrictions and manual
design. Both Bengio et al. (1994) and Bello et al. (2017)
assume the existence of a neural network with a forward
pass that computes the activations and a backward pass that
provides the weight gradients. Thus, the search process can
just focus on discovering how to use these activations and
gradients to adjust the network’s weights. In contrast, we
do not assume the existence of a neural network model or
of the gradient. They must therefore be discovered in the
same way as the rest of the algorithm.

We note that our work also relates to program synthesis
efforts. Early approaches have proposed to search for pro-
grams that improve themselves (Lenat, 1983; Schmidhuber,
1987; Pitrat, 1996). We share similar goals in searching for
learning algorithms, but focus on common machine learn-
ing tasks and have dropped the self-reflexivity requirement.
More recently, program synthesis has focused on solving
problems like sorting, addition, counting (Schmidhuber,
2004; Graves et al., 2014; Reed & de Freitas, 2015; Valkov
et al., 2018), string manipulations (Polozov & Gulwani,
2015; Parisotto et al., 2016; Devlin et al., 2017), character
recognition (Lake et al., 2015), competition-style program-
ming (Balog et al., 2017), structured data QA (Neelakantan
et al., 2015; Liang et al., 2016; 2018), program parsing
(Chen et al., 2017), and game playing (Wilson et al., 2018),
to name a few. These studies are increasingly making more
use of ML to solved the said problems (Gulwani et al., 2017).
Unlike these studies, we focus on synthesizing programs
that solve the problem of doing ML.

S2. Search Space Additional Details

Supplementary Table S1 describes all the ops in our search
space. They are ordered to reflect how we chose them:
we imagined a typical school curriculum up to—but not
including—calculus (see braces to the right of the table). In
particular, there are no derivatives so any gradient computa-
tion used for training must be evolved.

S3. Search Method Additional Details

The mutations that produce the child from the parent must
be tailored to the search space. We use a uniformly ran-
dom choice among the following three transformations: (i)
add or remove an instruction; instructions are added at a
random position and have a random op and random argu-

ments; to prevent programs from growing unnecessarily,
instruction removal is twice as likely as addition; (ii) com-
pletely randomize all instructions in a component function
by randomizing all their ops and arguments; or (iii) modify
a randomly chosen argument of a randomly selected exist-
ing instruction. All categorical random choices are uniform.
When modifying a real-valued constant, we multiply it by a
uniform random number in [0.5, 2.0] and flip its sign with
10% probability.

We upgrade the regularized evolution search method (Real
et al., 2019) to improve its performance in the following
ways. These upgrades are justified empirically through
ablation studies in Supplementary Section S9.

Functional Equivalence Checking (FEC). The lack of
heavy design of the search space allows for mutations that
do not have an effect on the accuracy (e.g. adding an in-
struction that writes to an address that is never read). When
these mutations occur, the child algorithm behaves identi-
cally to its parent. To prevent these identically functioning
algorithms from being repeatedly evaluated (i.e. trained and
validated in full many times), we keep an LRU cache map-
ping evaluated algorithm fingerprints to their accuracies.
Before evaluating an algorithm, we first quickly fingerprint
it and consult the cache to see if it has already been eval-
uated. If it has, we reuse the stored accuracy instead of
computing it again. This way, we can keep the different
implementations of the same algorithm for the sake of di-
versity: even though they produce the same accuracy now,
they may behave differently upon further mutation.

To fingerprint an algorithm, we train it for 10 steps and
validate it on 10 examples. The 20 resulting predictions are
then truncated and hashed to produce an integer fingerprint.
The cache holds 100k fingerprint—accuracy pairs.

Parallelism. In multi-process experiments, each process
runs regularized evolution on its own population and the
worker processes exchange algorithms through migration
(Alba & Tomassini, 2002). Every 100-10000 evaluations,
each worker uploads 50 algorithms (half the population)
to a central server. The server replies with 50 algorithms
sampled randomly across all workers that are substituted
into the worker’s population.

Dataset Diversity. While the final evaluations are on binary
CIFAR-10, in the experiments in Sections 4.2 and 4.3, 50%
of the workers train and evaluate on binary MNIST instead
of CIFAR-10. MNIST is a dataset of labeled hand-written
digits (LeCun et al., 1998). We project MNIST to 256
dimensions in the same way we do for CIFAR-10. Supple-
mentary Section S9 demonstrates how searching on multiple
MNIST-based and CIFAR-based tasks improves final perfor-
mance on CIFAR-10, relative to searching only on multiple
MNIST-based tasks or only on multiple CIFAR-based tasks.

AutoML-Zero

Hurdles. We adopt the hurdles upgrade to the evolutionary
algorithm. This upgrade uses statistics of the population
to early-stop the training of low performing models (So
et al., 2019). The early-stopping criterion is the failure
to reach a minimum accuracy—the hurdle. We alter the
original implementation by setting the hurdle to the 75"
percentile of unique accuracies of the evolving population
on a rolling basis (as opposed to the stationary value used in
the original implementation). This alteration gives us more
predictability over the resource savings: we consistently
save 75% of our compute, regardless of how the accuracy
distribution shifts over the course of the search experiment.

Terminating Degenerate Algorithms. We terminate algo-
rithms early if their calculations produce NaN or Inf values,
and assign them a fixed minimum accuracy a,,;, (we use
Gmin=0). Similarly, if an algorithm’s error on any training

example exceeds a threshold e,,,4,>>1 (We use €;,,4,=100),
we also stop that algorithm and assign it the accuracy ayy, .
Lastly, we time each algorithm as it is being executed and
terminate it if its run-time exceeds a fixed threshold; we set
this threshold to 4x the run-time of a plain neural network
trained with gradient descent.

The experiment’s meta-parameters (e.g. P and T') were ei-
ther decided in smaller experiments (e.g. P), taken from
previous work (e.g. T'), or not tuned. Even when tuning
parameters in smaller experiments, this was not done exten-
sively (e.g. no multi-parameter grid searches); typically, we
tried a handful of values independently when each feature
was introduced. For each experiment, we scaled—without
tuning—some meta-parameters based on compute or hard-
ware limitations. For example, compute-heavy tasks use
smaller populations in order to save frequent checkpoints in

Table S1: Ops vocabulary. s, ¥ and M denote a scalar, vector, and matrix, resp. Early-alphabet letters (a, b, efc.) denote memory addresses.
Mid-alphabet letters (e.g. %, j, efc.) denote vector/matrix indexes (“Index” column). Greek letters denote constants (“Consts.” column).
U(a, B) denotes a sample from a uniform distribution in [, 8]. N (p, o) is analogous for a normal distribution with mean y and standard

deviation . 1 x is the indicator function for set X. Example: “MD =y (a, B)” describes the operation “assign to the 4,j-th entry of
the matrix at address a a value sampled from a uniform random distribution in [«, 5]

Op Code Input Args Output Args Description
ID Example Addresses Consts. | Address Index (see caption)

/ types / type
OPO no_op - - - - -
OP1 s2=s3+s0 a,b / scalars - ¢/ scalar - Se = Sa + S
OP2 s4=s0-s1 a,b / scalars - ¢/ scalar - Se = Sa — Sb >
OP3 s8=sb5%sb a,b / scalars - ¢/ scalar - Se = Sa Sb %
OP4 s7=s5/s2 a,b / scalars - ¢/ scalar - Sc = Sa/Sb 5
OP5 s8=abs (s0) a / scalar - b/ scalar - Sp = |Sa &
OP6 s4=1/s8 a / scalar - b / scalar - sp=1/sq
OoP7 sb=sin(s4) a / scalar - b/ scalar - sp = sin(sq)
OP8 sl=cos(s4) a / scalar — b/ scalar - sp = cos(sq) =
OP9 s3=tan(s3) a / scalar - b/ scalar - sp = tan(s,) ng
OP10 sO=arcsin(s4) a / scalar - b/ scalar - sp = arcsin(s,) g
OP11 s2=arccos(s0) a / scalar - b/ scalar - sp = arccos(sq) g’
OP12 s4=arctan(s0) a / scalar - b/ scalar - sp = arctan(sq)
OP13 sl=exp(s2) a / scalar - b / scalar - sp = e’
OP14 s0=log(s3) a / scalar - b/ scalar - sy = log sq ’('I?
OP15 s3=heaviside(s0) a / scalar - b/ scalar - sb = Lp+(Sa) g
OP16 v2=heaviside(v2) a / vector - b/ vector - 17b(i) = lp+ (ﬁa(i)) Vi (é
OP17 | m7=heaviside(m3) a / matrix — | b/mawix - MED = 1 (MED) Vi, j ”
OP18 vi=s7*v1l a,b/ sc,vec - c / vector - Ue = Sq Up
OP19 vi=bcast(s3) a / scalar - b / vector - 'D’b(i) =8, Vi g
OP20 v56=1/v7 a / vector - b/ vector - 'Ub(i) = 1/17a(i> Vi g
OP21 sO=norm(v3) a / scalar - b/ vector - Sp = |Ua| %
0op22 v3=abs (v3) a / vector - b/ vector - AR AR IR g
.. [Table continues on the next page.]o.ueiiiieinieinii e

AutoML-Zero

Table S1: Ops vocabulary (continued)

Op Code Input Args Output Args Description
ID Example Addresses Consts Address Index (see caption)

/ types / type
OP23 v5=v0+v9 a,b / vectors - ¢/ vector - Ue = Ug + Up
OP24 v1=v0-v9 a,b / vectors - ¢/ vector - Ve = Uqg — Up
OP25 v8=v1%*v9 a,b / vectors - ¢/ vector - 7 = ¥ 17b<i) Vi
OP26 v9=v8/v2 a,b / vectors - ¢/ vector - =5 /5D vi
OP27 s6=dot (v1,v5) a,b / vectors - ¢/ scalar - Se = 0L G
OP28 ml=outer (v6,v5) a,b / vectors - ¢ / matrix - M. =7, ng
OP29 mil=s4*m2 a,b / sc/mat - ¢/ matrix — M. = sq M,
OP30 m3=1/m0 a / matrix - b/matrix — M =1/MED Vi,
OP31 v6=dot (m1,v0) a,b / mat/vec - ¢/ vector - Ve = My Uy
OP32 m2=bcast (v0,axis=0) a / vector — b / matrix = M;i’j) = ﬁéi) Vi, j
OP33 m2=bcast (v0,axis=1) a / vector - b / matrix - lej’“ = 17(1(1‘) Vi, j
OP34 s2=norm(m1) a / matrix - b/ scalar - sp = || Ma||
OP35 v4=norm(m7,axis=0) a / matrix - b / vector - ﬁb(i) = |M(§1) Vi
OP36 v4=norm(m7,axis=1) a / matrix - b / vector - Ub(j) = \M,E"j)| Vj
OP37 m9=transpose (m3) a / matrix - b / matrix - M, = |MT|
OP38 ni=abs (n8) a / matrix - b/matrix — M = M| Vi,
OP39 m2=m2+m0 a,b / matrixes - ¢/ matrix - M. = M, + M,
OP40 m2=m3+m1 a,b / matrixes - ¢/ matrix - M. =M, — M,
OP41 m3=m2*m3 a,b / matrixes — ¢/ matrix - Mc(i’j) = Méi’ﬂ Méi’j) Vi, j
OP42 mé4=m2/mé4 a,b / matrixes - ¢ / matrix - Mgi’j) = Méi’j)/Mb(i’j) Vi, j
OP43 m5=matmul (m5,m7) a,b / matrixes - ¢ / matrix - M. = M, M,
OP44 sl=minimum(s2,s3) a,b/ scalars - ¢/ scalar - Se = min(sq, Sp)
OP45 v4=minimum(v3,v9) a,b / vectors - ¢ / vector - ﬁc@ = min(ﬁa(i)7 17,)(“) Vi
OP46 | m2=minimum(m2,m1) a,b / matrixes - c/matrix - M) = min(MS7 | MDY i, §
OP47 s8=maximum(s3,s0) a,b / scalars - ¢/ scalar - Sc = max(sq, Sb)
OP48 v7=maximum(v3,v6) a,b / vectors - ¢/ vector - ﬁc(“ = max(z'fa(i), 1_)})(1')) Vi
OP49 m7=maximum(m1,m0) a,b / matrixes - ¢ / matrix - M = max(Méi’j)7 Méi’j)) Vi, j
OP50 s2=mean(v2) a / vector - b/ scalar - sy = mean(¥a)
OP51 s2=mean (m8) a / matrix - b/ scalar - sp = mean(M,)
OP52 vi=mean(m2,axis=0) a / matrix - b / vector - 1_],1)(1') = mean(Méi")) Vi
OP53 v3=std(m2,axis=0) a / matrix - b/ vector - ﬁ;i) = stdev(Ma(i">) Vi
OP54 s3=std(v3) a / vector - b/ scalar - sp = stdev ()
OP55 s4=std (m0) a / matrix - b/ scalar - sp = stdev(M,)
OP56 s2=0.1 - ¥ a / scalar - Sa =Y
OP57 v3[5]=-2.4 - 0% a / vector) i = 0%
OP58 m2[5,1]=-0.03 - v a/matrix 4, M =~
OP59 s4=uniform(-1,1) - a, B a / scalar - Sa =U(a, B)
OP60 | vi=uniform(0.4,0.8) - a, B a / vector - o) = U, B) Vi

[Table continues on the next page.]

BIQI3[Vy Jeaur|

sonsuels pue AIqeqoid

AutoML-Zero

Table S1: Ops vocabulary (continued)

Op Code Input Args Output Args Description
ID Example Addresses Consts Address Index (see caption)

/ types / type
OP61 | mO=uniform(-0.5,0.6) - a, B a / matrix - M = U, B) Yi,5 6"9
OP62 | s4=gaussian(0.1,0.7) - W, O a / scalar - Sa = N(p,0) g
OP63 v8=gaussian(0.4,1) - u,o | alvector - 5 = N(p,0) Vi é
OP64 | m2=gaussian(-2,1.3) - W, 0 | a/matrix - M = N(p, o) Vi, j g

case of machine reboots. Additional discrepancies between
experiment configurations in the different sections are due
to different researchers working independently.

S4. Task Generation Details

Sections 4.2 and 4.3 employ many binary classification tasks
grouped into two sets, Tsearch aNd Tgeject. We now describe
how these tasks are generated. We construct a binary clas-
sification task by randomly selecting a pair of classes from
CIFAR-10 to yield positive and negative examples. We
then create a random projection matrix by drawing from a
Gaussian distribution with zero mean and unit variance. We
use the matrix to project the features of all the examples
corresponding to the class pair to a lower dimension (i.e.
from the original 3072 to, for example, 16). The projected
features are then standardized. This generates a proxy task
that requires much less compute than the non-projected ver-
sion. Each class pair and random projection matrix produce
a different task. Since CIFAR-10 has 10 classes, there are
45 different pairs. For each pair we perform 100 different
projections. This way we end up with 4500 tasks, each
containing 8000/2000 training/validation examples. We use
all the tasks from 36 of the pairs to form the Teqrcn task
set. The remaining tasks form Tgeject.

SS. Detailed Search Experiment Setups

Here we present details and method meta-parameters for
experiments referenced in Section 4. These complement the
“Experiment Details” paragraphs in the main text.

Experiments in Section 4.1, Figure 4: Scalar/vector/ma-
trix number of addresses: 4/3/1 (linear), 5/3/1 (affine). Fixed
num. instructions for Setup/Predict/Learn: 5/1/4 (lin-
ear), 6/2/6 (affine). Expts. in this figure allow only minimal
ops to discover a known algorithm, as follows. For “linear
backprop” expts.: allowed Learn ops are {OP3, OP4, OP19,
OP24}. For “linear regressor” expts.: allowed Setup ops
are {OP56, OP57}, allowed predict ops are {OP27}, and al-
lowed Learn ops are {OP2, OP3, OP18, OP23}. For “affine
backprop” expts.: allowed Learn ops are {OP1, OP2, OP3,

OP18, OP23}. For “affine regressor” expts.: allowed Setup
ops are {OP56, OP57}, allowed Predict ops are {OPI,
OP27}, and allowed Learn ops are {OP1, OP2, OP3, OP18,
OP23}. 1 process, no server. Tasks: see Experiment Details
paragraph in main text. Evolution expts.: P=1000; T=10;
U=0.9; we initialize the population with random programs;
evals. per expt. for points in plot (left to right): 10k, 10k,
10k, 100k (optimized for each problem difficulty to nearest
factor of 10). Random search expts.: same num. memory
addresses, same component function sizes, same total num-
ber of evaluations. These experiments are intended to be as
simple as possible, so we do not use hurdles or additional
data.

Experiment in Section 4.1, Figure 5: Scalar/vector/ma-
trix number of addresses: 4/8/2. Fixed num. instructions
for Setup/Predict/Learn: 21/3/9. In this figure, we only
allow as ops those that appear in a two-layer neural net-
work with gradient descent: allowed Setup ops are { OP56,
OP63, OP64}, allowed Predict ops are {OP27, OP31,
OP48}, and allowed Learn ops are {OP2, OP3, OP16,
OP18, OP23, OP25, OP28, OP40}. Tasks: see Experiment
Details paragraph in main text. P=1000. T=10. U=0.9.
W =1k. Worker processes are uniformly divided into 4
groups, using parameters 7/D/P covering ranges in a log
scale, as follows: 100k/100/100, 100k/22/215, 10k/5/464,
and 100/1/1000. Uses FEC. We initialize the population
with random programs.

Experiments in Section 4.2: Scalar/vector/matrix num-
ber of addresses: 8/14/3. Maximum num. instructions
for Setup/Predict/Learn: 21/21/45. All the initializa-
tion ops are now allowed for Setup: {OP56, OP57, OP58,
OP59, OP60, OP61, OP62, OP63, OP64}. Predict and
Learn use a longer list of 58 allowed ops: {OPO, OP1,
OP2, OP3, OP4, OPS5, OP6, OP7, OPS, OP9, OP10, OP11,
OP12, OP13, OP14, OP15, OP16, OP17, OP18, OP19,
OP20, OP21, OP22, OP23, OP24, OP25, OP26, OP27,
OP28, OP29, OP30, OP31, OP32, OP33, OP34, OP35,
OP36, OP37, OP38, OP39, OP40, OP41, OP42, OP43,
OP44, OP45, OP46, OP47, OP48, OP49, OP50, OP51,
OP52, OP53, OP54, OP55, OP60, OP61 }—all these ops

AutoML-Zero

are available to both Predict and Learn. We use all the
optimizations described in Section 5, incl. additional pro-
jected binary MNIST data. Worker processes are uniformly
divided to perform each possible combination of tasks:
{projected binary CIFAR-10, projected binary MNIST} &
{N=800 & F=1,N=8000 & E=1, N=800 & E=10}
® {D=1,D=10} @ {F=8, F=16, F=256}; where N is
the number of training examples, E is the number of train-
ing epochs, and other quantities are defined in Section 3.
P=100. T=10. U=0.9. W =10k processes (commod-
ity CPU cores). We initialize the population with empty
programs.

Experiments in Section 4.3: Scalar/vector/matrix number
of addresses: 10/16/4. Maximum num. instructions for
Setup/Predict/Learn: 21/21/45. Allowed ops for Setup
are {OP56, OP57, OP58, OP59, OP60, OP61, OP62, OP63,
OP64}, allowed ops for Predict and Learn are {OPO,
OP1, OP2, OP3, OP4, OP5, OP6, OP7, OP§, OP9, OP10,
OP11, OP12, OP13, OP14, OP15, OP16, OP17, OP18,
OP19, OP20, OP21, OP22, OP23, OP24, OP25, OP26,
OP27, OP28, OP29, OP30, OP31, OP32, OP33, OP34,
OP35, OP36, OP37, OP38, OP39, OP40, OP41, OP42,
OP43, OP44, OP45, OP46, OP47, OP48, OP49, OP50,
OP51, OP52, OP53, OP54, OP55, OP63, OP64}. These are
the same ops as in the paragraph above, except for the minor
accidental replacement of uniform for Gaussian initializa-
tion ops. We use FEC and hurdles. Workers use binary
CIFAR-10 dataset projected to dimension 16. Half of the
workers use D =10 (for faster evolution), and the other
half use D=100 (for more accurate evaluation). P=100.
T=10. U=0.9. Section 4.3 considers three different task
types: (1) In the “few training examples” task type (Fig-
ure 7a), experiments train each algorithm on 80 examples
for 100 epochs for the experiments, while controls train on
800 examples for 100 epochs. (2) In the “fast training” task
type (Figure 7b), experiments train on 800 examples for
10 epochs, while controls train on 800 examples for 100
epochs. (3) In the “multiple classes” task type (Figure 7c),
experiments evaluate on projected 10-class CIFAR-10 clas-
sification tasks, while controls evaluate on the projected
binary CIFAR-10 classification tasks described before. The
10-class tasks are generated similarly to the binary tasks,
as follows. Each task contains 45K/5K training/validation
examples. Each example is a CIFAR-10 image projected to
16 dimensions using a random matrix drawn from a Gaus-
sian distribution with zero mean and unit variance. This
projection matrix remains fixed for all examples within a
task. The data are standardized after the projection. We use
1000 different random projection matrices to create 1000
different tasks. 80% of these tasks constitute T,eqrcn and
the rest form 7,eiect. Since Section 4.2 showed that we can
discover reasonable models from scratch, in Section 4.3, we
initialize the population with the simple two-layer neural

network with gradient descent of Figure 5 in order to save
compute.

S6. Evolved Algorithms

In this section, we show the raw code for algorithms discov-
ered by evolutionary search in Sections 4.2 and 4.3. The
code in those sections was simplified and therefore has su-
perficial differences with the corresponding code here.

Supplementary Figure S1a shows the raw code for the best
evolved algorithm in Section 4.2. For comparison, Fig-
ure S1b shows the effect of removing redundant instruc-
tions through automated static analysis (details in Supple-
mentary Section S8). For example, the instruction v3 =
gaussian(0.7,0.4) has been deleted this way.

def Setup():
s4 = uniform(0.6,0.2)
v3 = gaussian(0.7,0.4)
v12= gaussian(0.2,0.6)
sl =
uniform(-0.1,-0.2)

def Predict():

vl = v0 - v9
vb = v0 + v9
v6 = dot(m1, v5) def Setup():
ml = s2 * m2 def Predict():
sl = dot(v6, v1) vl =v0 - v9
s6 = cos(s4) v = vO + v9
def Learn(): v6 = dot(ml,v5)
s4 = 50 - si ml = s2 * m2
s3 = abs(s1) s1 = dot(v6,vl)
ml = outer(vi,v0) def Learn():
s5 = sin(s4) s4 = s0 - s1
s2 = norm(ml) ml = outer(vi,v0)
s7 = sb / s2 s5 = sin(s4)
s4 = s4 + s6 s2 = norm(mi)
vil= s7 * vi s7 = sb / s2
ml = heaviside(m2) vil= s7 * vi
ml = outer(vil,v5) ml = outer(vil,vb)
m0 = ml1 + m0 m0 = m1 + m0
v9 = uniform(2e-3,0.7) v9 =
s7 = log(s0) uniform(2e-3,0.7)
s4 = std(m0) s4 = std(m0)
m2 = m2 + m0 m2 = m2 + m0
ml = s4 * m0 ml = s4 * m0
(@) ()

Figure S1: (a) Raw code for the best evolved algorithm in Fig-
ure 6 (bottom-right corner) in Section 4.2. (b) Same code after
redundant instructions have been removed through static analysis.

Finally, the fully simplified version is in the bottom right
corner of Figure 6 in the main text. To achieve this simpli-
fication, we used ablation studies to find instructions that
can be removed or reordered. More details can be found
in Supplementary Section S8. For example, in going from
Supplementary Figure S1b to Figure 6, we removed s6 =
sin(s4) because its deletion does not significantly alter the
accuracy. We also consistently renamed some variables (of
course, this has no effect on the execution of the code).

AutoML-Zero

def Setup():
s3 = 0.37
s1 = uniform(0.42, 0.66)
s2 = 0.31
v13 = gaussian(0.69, 0.61)

def Setup():

m3 = uniform(0.05, 0.11)

s1 uniform(0.31, 0.90)
v18 = uniform(-0.49, 4.41)
sl = -0.65

m5 = uniform(0.21, 0.22)

v9 gaussian(0.64, 7.8e-3)
sl = -0.84

def Predict():

sl = abs(sl)

v15 = norm(ml, axis=1)
v15 = dot(m0, vO0)

v8 = v19 - vO

vl = v8 + vib

v7 = max(vl, vi15)

v13 = min(v5, v4)

m2 = transpose(m2)

10 = v1 0
vl = gaussian(-0.86, 0.97) v sy

m7 = heaviside(m3)
def Predict(): m4 = transpose(m7)
m3 = ml + m2 v2 = dot(ml, v7)
s6 = arccos(s0) v6 = max(v2, v9)
v3 = dot(m0, vO0) v2 = v2 + vl13
v3 = v3 - vO vil = heaviside(v17)
vil = v2 + v9 sl = sin(sl)
def Setup(): m2 = m0 - m2 m3 = m6 - m5
s3 = 4.0e-3 s4 = maximum(s8, s0) v19 = heaviside(v14)
def Predict(): s7 =1/ s6 v10 = min(v12, v7)
v7 = v5 - v0 s6 = arctan(s0)
v3 = dot(m0, vO) s8 = minimum(s3, s1) de;EL:azgé%ﬁ7>
s8 = s9 / s3 v4 = maximum(v3, v10) v8 = vi - v2
v3 =v3 + vl sl = dot(v4, v2) m2 = transpose (m2)
ml = heaviside(m3) sl = sl + s2 v8 = s1 * v8
v4 = maximum(v3, v7) def Learn(): vi5 = v15 - v4
sl = dot(v4, v2) vl = dot(m0, v5) v4 = v4 + v8
s4 = log(s9) s4 = s0 - s1 sl = arcsin(sl)
v3 = bcast(s8) s4 = 83 * s4 v15 = mean(m3, axis=1)
s7 = std(v1) s2 = s2 + s4 vi2 = vil * vil
v3 = vi4 + v0 m3 = matmul (mO, m3) m4 = heaviside (m5)
m2 = matmul(m0, m2) m2 = bcast(v2, axis=0) m6 = outer(v8, v7)
def Learn(): vi3 = s4 x v4 sl = sin(s1)
vl = gaussian(-0.50, 0.41) vi5 = v10 + v12 s1 = exp(s0)
s4 = std(m0) v2 = vil + v13 ml = ml + m3
s4 = s0 - si v7 = s4 + viil m5 = outer(vis, v6)
v6 = gaussian(-0.48, 0.48) vil = v7 + v8 m2 = transpose(ml)
ml = transpose(m3) s8 = s9 + si sl = exp(s0)
s4 = s3 * s4 m2 = m3 * m0 v12 = uniform(0.30, 0.33)
vi5 = v15 * v6 s3 = arctan(s3) s1 = minimum(s0, s1)
v6 = s4 * vd v8 = heaviside(v3) m5 = m5 * m7
v2 = v2 + v6 m2 = transpose(ml) v9 = dot(m2, v8)
v7 = s4 * v2 s8 = heaviside(s6) v9 = v10 * v9
v8 = heaviside(v3) s8 = norm(m3) v3 = norm(m7, axis=1)
v7 = v8 x v7 v7 = v8 * v7 sl = mean(ml)
ml = outer(v7, v0) m3 = outer(v7, v0) m2 = outer(v9, vO0)
m0 = m0 + ml m0 = m0 + m3 m0 = m0 + m2
(a) Raw code for the adaptation to few (b) Raw code for the adaptation to fast (c) Raw code for the adaptation to multi-

examples in Figure 7a. training in Figure 7b. ple classes in Figure 7c.

Figure S2: Raw evolved code for algorithm snippets in Figure 7 in Section 4.3.

Supplementary Figure S2 shows the raw code for the algo- ~ S7. Algorithm Selection and Evaluation

rithms in Figure 7 in Section 4.3. Note that in Figure 7, we We fi h . luatine aleorith h
display a code snippet containing only a few selected instruc- ¢ first run search experiments evaluating algorithms on the

tions, while Supplementary Figure S2 shows the programs projected binary ClaSSiﬁC&tif)H taskslsampled from Tsemc,?
in full. and collect the best performing candidate from each experi-

ment. The measure of performance is the median accuracy

AutoML-Zero

across tasks. Then, we rank these candidates by evaluat-
ing them on tasks sampled from Tgj.c; and we select the
highest-ranking candidate (this is analogous to typical model
selection practice using a validation set). The highest rank-
ing algorithm is finally evaluated on the binary classification
tasks using CIFAR-10 data with the original dimensionality
(3072).

Because the algorithms are initially evolved on tasks with
low dimensionality (16) and finally evaluated on the full-size
dimensionality (3072), their hyperparameters must be tuned
on the full-size dimensionality before that final evaluation.
To do this, we treat all the constants in the algorithms as
hyperparameters and jointly tune them using random search.
For each random search trial, each constant is scaled up
or down by a random factor sampled between 0.001 and
1000 on a log-scale. We allowed up to 10k trials to tune the
hyperparameters, but only a few hundred were required to
tune the best algorithm in Figure 6—note that this algorithm
only has 3 constants. To make comparisons with baselines
fair, we tune these baselines using the same amount of re-
sources that went into tunining and evolving our algorithms.
All hyperparameter-tuning trials use 8000 training and 2000
validation examples from the CIFAR-10 fraining set. After
tuning, we finally run the tuned algorithms on 2000 exam-
ples from the held-out CIFAR-10 test set. We repeat this
final evaluation with 5 different random seeds and report the
mean and standard deviation. We stress that the CIFAR-10
test set was used only in this final evaluation, and never in
7—search or 7—select-

In our experiments, we found a hyperparameter coupling
phenomenon that hinders algorithm selection and tuning.
ML algorithms usually make use of hyperparameters (e.g.
learning rate) that need to be tuned for different datasets
(for example, when the datasets have very different input
dimensions or numbers of examples). Similarly, the evolved
algorithms also contain hyperparameters that need to be
adjusted for different datasets. If the hyperparameters are
represented as constants in the evolved algorithm, we can
identify and tune them on the new dataset by using random
search. However, it is harder to tune them if a hyperparame-
ter is instead computed from other variables. For example,
in some evolved algorithms, the learning rate s, was com-
puted as s = morm(v1) because the best value for so
coincides with the L2-norm of v; on 7geqrcn. However,
when we move to a new dataset with higher dimensions,
the L2-norm of v; might no longer be a good learning rate.
This can cause the evolved algorithms’ performance to drop
dramatically on the new dataset. To resolve this, we identify
these parameters by manual inspection of the evolved code.
We then manually decouple them: in the example, we would
set so to a constant that we can tune with random-search.
This recovers the performance. Automating the decoupling
process would be a useful direction for future work.

S8. Interpreting Algorithms

It is nontrivial to interpret the raw evolved code and decide
which sections of it are important. We use the following
procedures to help with the interpretation of discovered
algorithms:

(a) We clean up the raw code (e.g. Figure S1a) by automati-
cally simplifying programs. To do this, we remove redun-
dant instructions through static analysis, resulting in code
like that in Figure S1b. Namely, we analyze the computa-
tions that lead to the final prediction and remove instructions
that have no effect. For example, we remove instructions
that initialize variables that are never used.

(b) We focus our attention on code sections that reappear
in many independent search experiments. This is a sign
that such code sections may be beneficial. For example,
Section 4.3 applied this procedure to identify adaptations to
different tasks.

(c) Once we have hypotheses about interesting code sections,
we perform ablations/knock-outs, where we remove the code
section from the algorithm to see if there is a significant loss
in accuracy. As an example, for Section 4.2, we identified
6 interesting code sections in the best evolved algorithm
to perform ablations. For each ablation, we removed the
relevant code section, then tuned all the hyperparameters /
constants again, and then computed the loss in validation
accuracy. 4 out of the 6 ablations caused a large drop in ac-
curacy. These are the ones that we discussed in Section 4.2.
Namely, (1) the addition of noise to the input (—0.16%); (2)
the bilinear model (—1.46%); (3) the normalized gradients
(—1.20%); and (4) the weight averaging (—4.11%). The
remaining 2 code sections show no significant loss upon
ablation, and so were removed for code readability. Also for
readability, we reorder some instructions when this makes
no difference to the accuracy either (e.g. we move related
code lines closer to each other). After this procedure, the
code looks like that in Figure 6.

(d) If an ablation suggests that a code section is indeed
helpful to the original algorithm, we then perform a knock-in.
That is, we insert the code section into simpler algorithms
to see if it improves their performance too. This way we
confirmed the usefulness of the 4 code sections mentioned
in (c), for example.

S9. More Search Method Ablations

To verify the effectiveness of the upgrades mentioned in
Supplementary Section S3, we conduct ablation studies
using the experiment setup of Section 4.2, except for the
following simplifications to reduce compute: (i) we limit
the ops to only those that are necessary to construct a neu-
ral network trained with gradient descent (as was done

AutoML-Zero

Table S2: Ablation studies. Each row summarizes the results of 30 search runs under one given experimental setting. Rows #0—4 all use
the same setting, except for the search method: each row implements an upgrade to the method and shows the resulting improvement.
“Best Accuracy” is the accuracy of the best algorithm for each experiment (2 SEM), evaluated on unseen projected binary CIFAR-10
tasks. “Success Fraction” is the fraction (£20) of those experiments that produce algorithms that are more accurate than a plain neural
network trained with gradient descent (0.750). This fraction helps us estimate the likelihood of high performing outliers, which we
are keenly interested in. The experimental setting for row #5 is the same as row #3, except that instead of using both projected binary
CIFAR-10 and projected binary MNIST data for the search, we use only projected binary MNIST data (as for other rows, the accuracy is
reported on projected binary CIFAR-10 data). Row #5 indicates that searching completely on MNIST data is not as helpful as searching
partially on it (row #3). Overall, rows #0—4 suggest that all four upgrades are beneficial.

INDEX DESCRIPTION BEST ACCURACY SUCCESS FRACTION
0 BASELINE 0.703 £+ 0.002 0.00 £ 0.00
1 + MIGRATION 0.707 4+ 0.004 0.00 £ 0.00
2 + FUNCTIONAL EQUIVALENCE CHECK 0.724 £+ 0.006 0.13+£0.12
3 + 50% MNIST DATA 0.729 £ 0.008 0.27 £0.16
4 + HURDLES 0.738 £ 0.008 0.53 £0.18
5 EXPERIMENT 3 W/ 100% MNIST DATA 0.720 £ 0.003 0.00 £+ 0.00

Table S3: This is the same as Supplementary Table S2, except at a lower compute scale (100 processes). Each setup was run 100 times.
The results are similar to those with more compute and support the same conclusions. Thus, the observed benefits are not specific to a

single compute scale.

INDEX DESCRIPTION BEST ACCURACY SUCCESS FRACTION
0 BASELINE 0.700 £ 0.002 0.00 £ 0.00
1 + MIGRATION 0.704 + 0.000 0.00 £ 0.00
2 + FUNCTIONAL EQUIVALENCE CHECK 0.706 + 0.001 0.00 £ 0.00
3 +50% MNIST DATA 0.710 £ 0.002 0.02 £0.03
4 + HURDLES 0.714 + 0.003 0.10 £ 0.06
5 EXPERIMENT 3 W/ 100% MNIST DATA 0.700 4+ 0.004 0.00 £ 0.00
for Figure 5), i.e. allowed Setup ops are {OP57, OP64, S10. Baselines

OP65}, allowed Predict ops are {OP28, OP32, OP49},
and allowed Learn ops are {OP3, OP4, OP17, OP19, OP24,
OP26, OP29, OP41}; (ii) we reduce the projected dimen-
sionality from 256 to 16, and (iii) we use 1k processes for
5 days. Additionally, the ablation experiments we present
use 1" = 8000, E = 10 for all tasks. This slight difference
is not intentionally introduced, but rather is a product of our
having studied our method before running our experiments
in the main text; we later on found that using more epochs
did not change the conclusions of the studies or improve the
results.

Supplementary Tables S2, S3, and S4 display the results.
Note that Figure 8 presents a subset of this data in plot
form (the indexes 1—4 along the horizontal axis labels in
that figure coincide with the “Index” column in this table).
We find that all four upgrades are beneficial across the three
different compute scales tested.

The focus of this study was not the search method but we
believe there is much room for future work in this regard.
To facilitate comparisons with other search algorithms on
the same search space, in this section we provide convenient
baselines at three different compute scales.

All baselines use the same setting, a simplified version of
that in Section 4.2, designed to use less compute. In par-
ticular, here we severely restrict the search space to be
able to reach results quickly. Scalar/vector/matrix num-
ber of addresses: 5/9/2. Maximum num. instructions for
Setup/Predict/Learn: 7/11/23. Allowed Setup ops:
{OP57, OP60, OP61, OP62, OP63, OP64, OP65}, allowed
Predict ops: {OP2, OP24, OP28, OP32, OP49}, allowed
Learn ops: {OP2, OP3, OP4, OP17, OP19, OP24, OP26,
OP29, OP41}. Experiments end after each process has
run 100B training steps—i.e. the training loop described
in Section 3.1 runs 100B times. (We chose “training steps”
instead of “number of algorithms” as the experiment-ending
criterion because the latter varies due to early stopping,
FEC, etc. We also did not choose “time” as the experiment-
ending criterion to make comparisons hardware-agnostic.

AutoML-Zero

Table S4: This is the same as Supplementary Tables S2 and S3, except at an even lower compute scale (10 processes). Each setup was run
100 times. The results are consistent with those with more compute, but we no longer observe successes (“successes” defined in Table S2).

INDEX DESCRIPTION BEST ACCURACY SUCCESS FRACTION
0 BASELINE 0.700 £+ 0.001 0.00 £ 0.00
1 + MIGRATION 0.701 £ 0.001 0.00 £ 0.00
2 + FUNCTIONAL EQUIVALENCE CHECK 0.702 £+ 0.001 0.00 £ 0.00
3 + 50% MNIST DATA 0.704 £ 0.001 0.00 £ 0.00
4 + HURDLES 0.705 £ 0.001 0.00 £ 0.00
5 EXPERIMENT 3 W/ 100% MNIST DATA 0.694 + 0.002 0.00 £ 0.00

Table S5: Baselines on the simplified setting with the restricted search space (see Supplementary Section S10 for details). “Best Accuracy”
is the best evaluated accuracy on unseen projected binary classification tasks for each run (2 SEM), “Linear Success Fraction” is the
fraction (£20) of those accuracies that are above the evaluated accuracy of logistic regression trained with gradient descent (0.702), and
“NN Success Fraction” is the fraction (+20) of those accuracies that are above the evaluated accuracy of a plain neural network trained
with gradient descent (0.729). Using success fractions as a metric helps us estimate the likelihood of discovering high performing outliers,
which we are keenly interested in. Each experiment setup was run 100 times. The “Full” method is the one we used in Section 4.2; the
“Basic” method is the same, but with no FEC, no hurdles, and no MNIST data.

METHOD NUMBER OF PROCESSES BEST ACCURACY LINEAR SUCCESS FRACTION NN SUCCESS FRACTION
BAsiIC 1 0.671 4+ 0.004 0.01 £0.02 0.00 £ 0.00
BAsiIcC 10 0.681 % 0.005 0.07 £ 0.05 0.00 £ 0.00
BAsiIC 100 0.691 4+ 0.004 0.26 = 0.09 0.00 £ 0.00
FuLL 1 0.684 4+ 0.003 0.03 £0.03 0.00 £ 0.00
FuLL 10 0.693 + 0.003 0.23 £ 0.08 0.03 £0.03
FuLL 100 0.707 4+ 0.003 0.59 £0.10 0.11 £0.06

For reference, each experiment took roughly 12 hours on
our hardware.) P=100; T'=10, U=0.9. All workers eval-
uate on the same projected binary CIFAR-10 tasks as in
Section 4.2, except that we project to 16 dimensions instead
of 256. Each search evaluation is on 10 tasks and the num-
bers we present here are evaluations on Tgejeer using 100
tasks. We initialize the population with empty programs.

The results of performing 100 repeats of these experiments
at three different compute scales are summarized in Ta-
ble S5; note, each process is run on a single commodity
CPU core. We additionally compare our full search method
from Section 4.2, labeled “Full”, and a more “Basic” search
setup, which does not use FEC, hurdles, or MNIST data.

