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Abstract
Group invariant and equivariant Multilayer Per-
ceptrons (MLP), also known as Equivariant Net-
works and Group Group Convolutional Neural
Networks (G-CNN) have achieved remarkable
success in learning on a variety of data structures,
such as sequences, images, sets, and graphs. This
paper proves the universality of a broad class of
equivariant MLPs with a single hidden layer. In
particular, it is shown that having a hidden layer
on which the group acts regularly is sufficient for
universal equivariance (invariance). For example,
some types of steerable-CNNs become universal.
Another corollary is the unconditional universal-
ity of equivariant MLPs for all Abelian groups.
A third corollary is the universality of equivari-
ant MLPs with a high-order hidden layer, where
we give both group-agnostic bounds and group-
specific bounds on the order of the hidden layer
that guarantees universal equivariance.

1. Introduction
Invariance and equivariance properties constrain the out-
put of a function under various transformations of its input.
This constraint serves as a strong learning bias that has
proven useful in sample efficient learning for a wide range
of structured data. In this work, we are interested in uni-
versality results for Multilayer Perceptrons (MLPs) that are
constrained to be equivariant or invariant. This type of result
guarantees that the model can approximate any continuous
equivariant (invariant) function with an arbitrary precision,
in the same way an unconstrained MLP can approximate an
arbitrary continuous function (Hornik et al., 1989; Cybenko,
1989; Funahashi, 1989).

Study of invariance in neural networks goes back to the
book of Perceptrons (Minsky & Papert, 2017), where the
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necessity of parameter-sharing for invariance was used to
prove the limitation of a single layer Perceptron. The follow-
up work showed how parameter symmetries can be used
to achieve invariance to finite and infinite groups (Shawe-
Taylor, 1989; Wood & Shawe-Taylor, 1996; Shawe-Taylor,
1993; Wood, 1996). These fundamental early works went
unnoticed during the resurgence of neural network research
and renewed attention to symmetry (Hinton et al., 2011;
Mallat, 2012; Bruna & Mallat, 2013; Gens & Domingos,
2014; Jaderberg et al., 2015; Dieleman et al., 2016; Cohen
& Welling, 2016a).

When equivariance constraints are imposed on feed-forward
layers in an MLP, the linear maps in each layer is constrained
to use tied parameters (Wood & Shawe-Taylor, 1996; Ravan-
bakhsh et al., 2017b). This model that we call an equivariant
MLP appears in deep learning with sets (Zaheer et al., 2017;
Qi et al., 2017), exchangeable tensors (Hartford et al., 2018),
graphs (Maron et al., 2018), relational data (Graham & Ra-
vanbakhsh, 2019), and sets of symmetric elements (Maron
et al., 2020). Universality results for some of these models
exists (Zaheer et al., 2017; Segol & Lipman, 2019; Keriven
& Peyré, 2019; Maron et al., 2020). Broader results for high
order invariant MLPs appears in (Maron et al., 2019). Uni-
versality results for “non-standard” architectures appears
in (Yarotsky, 2018; Sannai et al., 2019). In addition to
proving universality of networks using polynomial layer,
Yarotsky (2018) also prove universality for standard MLPs
equivariant to Abelian groups. A similar results follows as
a corollary to our main theorem.

A parallel line of work in equivariant deep learning studies
linear action of a group beyond permutations. The resulting
equivariant linear layers can be written using convolution
operations (Cohen & Welling, 2016b; Kondor & Trivedi,
2018). When limited to permutation groups, group convolu-
tion is simply another expression of parameter-sharing (Ra-
vanbakhsh et al., 2017b); see also Section 2.3. However,
in working with linear representations, one may move be-
yond finite groups (Cohen et al., 2019a; Kondor & Trivedi,
2018); see also (Wood & Shawe-Taylor, 1996). Some appli-
cations include equivariance to isometries of the Euclidean
space (Weiler & Cesa, 2019; Worrall et al., 2017), and
sphere (Cohen et al., 2018). Extension of this view to mani-
folds is proposed in (Cohen et al., 2019b). Finally, a third
line of work in equivariant deep learning that involves a
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specialized architecture and learning procedure is that of
Capsule networks (Sabour et al., 2017; Hinton et al., 2018);
see (Lenssen et al., 2018) for a group theoretic generaliza-
tion.

2. Preliminaries
Let G = {g} be a finite group. We define the action of
this group on two finite sets N and M of input and output
units in a feedforward layer. Using these actions which
define permutation groups we then define equivariance and
invariance. In detail, G-action on the set N is a structure
preserving map (homomorphism) a : G → SN, into the
symmetric group SN, the group of all permutations of N.
The image of this map is a permutation group GN ≤ SN.
Instead of writing [a(g)](n) for g ∈ G and n ∈ N, we use
the short notation g · n = g−1n to denote this action. Let
M be another G-set, where the corresponding permutation
action GM ≤ SM is defined by b : G → SM. G-action on
N naturally extends to x ∈ RN by g · xn

.
= xg·n ∀g ∈ GN.

More conveniently, we also write this action as Agx, where
Ag is the permutation matrix form of a(g, ·) : N→ N.

2.1. Invariant and Equivariant Linear Maps

Let the real matrix W ∈ R|N|×|M| denote a linear map
W : R|N| → R|M|. We say this map is G-equivariant iff

BgWx = W Agx ∀x ∈ RN, g ∈ G. (1)

where similar to Ag, the permutation matrix Bg is defined
based on the action b(·, g) : M→ M. In this definition, we
assume that the group action on the input is faithful – that
is a is injective, or GN

∼= G. If the action on the output
index set M is not faithful, then the kernel of this action
is a non-trivial normal subgroup of G, ker(b) / G. In this
case GM

∼= G/ ker(b) is a quotient group, and it is more
accurate to say that W is invariant to ker(b) and equivariant
to G/ ker(b). Using this convention G-equivariance and
G-invariance correspond to extreme cases of ker(b) = G

and ker(b) = {e}. Moreover, composition of such invariant-
equivariant functions preserves this property, motivating
design of deep networks by stacking equivariant layers.

2.2. Orbits and Homogeneous Spaces

GN partitions N into orbits N1, . . . ,NO, where GN is transi-
tive on each orbit, meaning that for each pair n1, n2 ∈ No,
there is at least one g ∈ GN such that g · n1 = n2. If GN

has a single orbit, it is transitive, and N is called a homoge-
neous space for G. If moreover the choice of g ∈ GN with
g · n1 = n2 is unique, then GN is called regular.

Given a subgroup H ≤ G and g ∈ G, the right coset
of H in G, defined as Hg

.
= {hg, h ∈ H} is a subset

of G. For a fixed H ≤ G, the set of these right-cosets,

Figure 1. The equivariant MLP of (16). The symbol y indicates
G-action on the units, Wc and W′

c for all channels of the hidden
layer c = 1, . . . , C are constrained by the parameter-sharing of (3).
If G-action on the hidden layer is regular, the number of channels
can grow to approximate any continuous G-equivariant function
with an arbitrary accuracy. Bias terms are not shown.

H\G = {Hg, g ∈ G}, form a partition of G. G naturally
acts on the right coset space, where g′ · (Hg)

.
= H(gg′)

sends one coset to another. The significance of this action is
that “any” transitive G-action is isomorphic to G-action on
some right coset space. To see why, note that in this action
any h ∈ H stabilizes the coset He, because h ·He = He.1

Therefore in any action the stabilizer identifies the coset
space.

2.3. Parameter-Sharing and Group-CNNs View

Consider the equivariance condition of (1). Since the equal-
ity holds for all x ∈ RN, and using the fact that the inverse
of a permutation matrix is its transpose, the equivariance
constraint reduces to

BgWA>g = W ∀g ∈ G. (2)

The equation above ties the parameters within the orbits of
G-action on rows and columns of W:

W(m,n) = W(g ·m, g · n)∀g ∈ G, n,m ∈ N×M (3)

where W(g ·m, g · n) is an element of the matrix W. This
type of group action on Cartesian product space is some-
times called the diagonal action. In this case, the action is
on the Cartesian product of rows and columns of W.

We saw that any homogenous G-space is isomorphic to
a coset space. Using N ∼= H\G and M ∼= K\G, the

1More generally, when G acts on the coset Ha ∈ H\G, all
g ∈ a−1Ha stabilize Ha. Since g = a−1ha for some h ∈ H,
we have (a−1ha) · Ha = H(aa−1ha) = Ha. This means
that any transitive G-action on a set N may be identified with the
stabilizer subgroup Gn

.
= {g ∈ G s.t. g · n = n}, for a choice of

n ∈ N. This gives a bijection between N and the right coset space
Gn\G.
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parameter-sharing constraint of (2) becomes

W(Kg,Hg′) = W(g−1 ·Kg, g−1 ·Hg′) (4)

= W(K,Hg′g−1)∀g, g′ ∈ G, (5)

Since we can always multiply both indices to have the
coset K as the first argument, we can replace the ma-
trix W with the vector w, such that W(Kg,Hg′) =
w(Hg′g−1) ∀g, g′ ∈ G. This rewriting also enables us to
express the matrix vector multiplication of the linear map
W in the form of cross-correlation of input and a kernel w

[Wx](n) = [Wx](Kg) (6)

=
∑

Hg′∈H\G

W(Kg,Hg′)x(Hg′) (7)

=
∑

Hg′∈H\G

w(Hg′g−1)x(Hg′) (8)

This relates the parameter-sharing view of equivariant maps
(4) to the convolution view (8). Therefore, the universal-
ity results in the following extends to group convolution
layers (Cohen & Welling, 2016a; Cohen et al., 2019a), for
finite groups.

Equivariant Affine Maps We may extend our definition,
and consider affine G-maps Wx + b, by allowing an “in-
variant” bias parameter b ∈ R|M| satisfying

Bgb = b. (9)

This implies a parameter sharing constraint b(m) = b(g ·
m). For homogeneous M, this constraint enforces a scalar
bias. Beyond homogeneous spaces, the number of free
parameters in b grows with the number of orbits.

2.4. Invariant and Equivariant MLPs

One may stack multiple layers of equivariant affine maps
with multiple channels, followed by a non-linearity, so as
to build an equivariant MLP. One layer of this equivariant
MLP a.k.a. equivariant network is given by:

x(`)
c = σ

C(`−1)∑
c′=1

W
(`)
c,c′x

(`−1)
c′ + b(`)

c

 ,

where 1 ≤ c′ ≤ C(`−1) and 1 ≤ c ≤ C(`) index the input
and output channels respectively, x(`) is the output of layer
1 ≤ ` ≤ L, with x(0) = x denoting the original input. Here,
we assume that G faithfully acts on all x(`)

c ∈ RH(`) ∀c, `,
with H(0) = N and H(L) = M. The parameter matrices
W`

c(`),c(`)
∈ RH(`−1)×H(`)

, and the bias vector b(`)
c ∈ RH(`)

are constrained by the parameter-sharing conditions (2) and
(9) respectively. In an invariant MLP the faithfulness condi-
tion for G-action on the hidden and output layers are lifted.

In practice, it is common to construct invariant networks
by first constructing an equivariant network followed by
pooling over H(L).

3. Universality Results
This section presents two new results on universality of
both invariant and equivariant networks with a single hidden
layer (L = 2). Formally, we can claim that a G-equivariant
MLP ψ̂ : R|N| → R|M| is a universal G-equivariant ap-
proximator, if for any G-equivariant continuous function
ψ : R|N| → R|M|, any compact set K ⊂ R|N|, and ε > 0,
there exists a choice of parameters, and number of channels
such that ||ψ(x)− ψ̂(x)|| < ε ∀x ∈ K.

Theorem 3.1. A G-invariant network

ψ̂(x) =

C∑
c=1

w′c1
>σ
(
Wcx + bc

)
. (10)

with a single hidden layer, on which G acts regularly
is a universal G-invariant approximator. Here, 1 =
[1, . . . , 1]>︸ ︷︷ ︸

|G|

and , bc, w′c ∈ R.

Proof. The first step follows the symmetrisization argu-
ment (Yarotsky, 2018). Since MLP is a universal approxima-
tor, for any compact setK ⊂ R|N|, we can find ψMLP such
that for any ε > 0, |ψ(x)− ψMLP (x)| ≤ ε for x ∈ K. Let
Ksym = {

⋃
g∈G Agx|x ∈ K} denote the symmetrisized

K, which is again a compact subset of RN for finite G. Let
ψMLP+ approximate ψ on the symmetrisized compact set
Ksym. It is then easy to show that for G-invariant ψ, the
symmetrisized MLP ψsym(x) = 1

|G|
∑

g∈G ψMLP+(Agx)

also approximates ψ

|ψ(x)− ψsym(x)| = |ψ(x)− 1

|G|
∑
g∈G

ψMLP+(x)| (11)

≤ 1

|G|
∑
g∈G

|ψ(Agx)− ψMLP (Agx)| ≤ ε. (12)

Next step, is to show that ψsym is equal to ψ̂ of (10),
for some parameters Wc ∈ R|H|×|N| constrained so that
HgWc = WcAg∀g ∈ G, where Ag and Hg are the per-
mutation representation of G action on the input and the
hidden layer respectively.

ψsym(x) =
1

|G|
∑
g∈G

C∑
c=1

w′cσ
(
w>c (Agx)

)
(13)
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=

C∑
c=1

w′c
|G|

∑
g∈G

σ
(
(w>c Ag)x

)
(14)

=

C∑
c=1

w̃c1
>σ


 −w

>
c Ag1−

...
−w>c Ag|H|−


︸ ︷︷ ︸

Wc

x

 . (15)

where in the last step we put the summation terms into
rows of the matrix Wc, and performed the summation using
multiplication by 1>. w̃c is the rescaled w′c. Since the sum-
mation in (13) is over g ∈ G, each row of Wc and therefore
each hidden unit is “attached” to exactly one group member,
which translates to having a principal homogeneous space,
a.k.a. a regular G-set. Note that we have the freedom to
choose the rows to have any order, corresponding to a dif-
ferent order in summation, which means that the choice of
a particular principal homogeneous space is irrelevant.

Now we show that the parameter matrix Wc ∈ R|H|×|N|
above satisfy the parameter-sharing constraint WcAg =
HgWc ∀g ∈ G:

HgWcA
−1
g =

w>c Ag1g

...
w>c Ag|H|g

Ag−1 =

w>c Ag1

...
w>c Ag|H|

 = Wc

where the first equality follows from the fact that row
indexed by gr is moved to the row g · gr = grg

−1:
HgAgr = Ag·gr = Agrg−1 . Therefore, the current row
gr′ was previously g−1 · gr′ = gr′g. The second equality
follows from A−1g is acting from the right, and no further
inversion is needed AgrgA

−1
g = Agrgg−1 = Agr . This

shows that a G-invariant network with a single hidden layer
on which G acts regularly is equivalent to a symmetricized
MLP, and therefore for some number of channels, it is a
universal approximator of G-invariant functions.

This result should not be surprising since the size of a regular
hidden layer grows with the group, and as it is evident from
the proof, an equivariant MLP with a regular hidden layer
implicitly averages the output over all transformations of the
input. Next, we apply a similar idea to prove the universality
of the equivariant MLPs with a regular hidden layer.

Theorem 3.2. A G-equivariant MLP

ψ̂(x) =

C∑
c=1

W′
c σ
(
Wcx + bc

)
. (16)

with a single regular hidden layer is a universal G-
equivariant approximator.

Proof. In this setting, symmetricization, using the so-called
Reynolds operator (Sturmfels, 2008), for the universal MLP
is given by

ψsym(x) =
1

|G|
∑
g∈G

Bg−1

C∑
c=1

w′cσ
(
w>c Agx + bc

)
(17)

where wc ∈ R|N| and w′c ∈ RM are the weight vectors
in the first and second layer associated with hidden unit
c. Our objective is to show that this symmetrisized MLP
is equivalent to the equivariant network of (16), in which
W′

c ∈ R|M|×|H|, and Wc ∈ R|H|×|N| use parameter-sharing
to satisfy

HgWc = WcAg and BgW
′
c = W′

cHg ∀g ∈ G. (18)

Here, Ag, Bg and Hg are the permutation representations
of G action on the input, the output, and the hidden layer
respectively.

First, rewrite the symmetrisized MLP as

ψsym(x) =

C∑
c=1

∑
g∈G

Bg−1w′cσ
(
w>c Agx + bc

)
=

C∑
c=1

W′
cσ
(
Wcx

)

where W′
c =

 | |
Bg
−1
1

w′c . . . Bg
−1
|G|

w′c

| |



Wc =

 −wcAg1−
...

−wcAg|G|−

 ,
and the 1

|G| factor is absorbed in one of the weights. It re-
mains to show that the two matrices above satisfy the equiv-
ariance condition HgWc = WcAg and BgW

′
c = W′

cHg.
The proof for Wc is identical to the invariant network case.

For W′
c, we use a similar approach.

BgW
′
cH
−1
g =

 | |
BgBg

−1
1 gw

′
c . . . BgBg

−1
|G| g

w′c

| |


=

 | |
Bg
−1
1

w′c . . . Bg
−1
|G|

w′c

| |

 = W′
c.

In the first step, since H−1g = Hg−1 is acting on the right, it
moves the column indexed by g−1l to g−1l g−1. This means
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that the column currently at g−1l′ is g−1l′ g. The second step
uses the following: BgBg

−1
l g = Bg·(g−1

l g) = Bg
−1
l gg−1 =

Bg
−1
l

. This, proves the equality of the symmetrisize MLP
(17) to the equivariant MLP of (16). However, a similar
argument to the proof of invariant case, shows the universal-
ity of ψsym. Putting these together, completes the proof of
Theorem 3.2.

3.1. Universality for Abelian Groups

In the case where G is an Abelian group, any faithful transi-
tive action is regular, meaning that the hidden layer in a G-
equivariant neural network is necessarily regular. Combined
with Theorem 3.2, this leads to an unconditional universal-
ity result for Abelian groups. A similar result for Abelian
groups appears in (Yarotsky, 2018).

Corollary 1. For Abelian group G, a G-equivariant
(invariant) neural network with a single hidden
layer is a universal approximator of continuous G-
equivariant (invariant) functions on compact subsets
of R|N|.

A corollary to this is the universality of a Convolutional Neu-
ral Network (CNN) with a single hidden layer.

Corollary 2 (Universality of CNNs). For an arbitrary
input-output dimensions, a CNN with a single hidden
layer, full kernels, and cyclic padding is a universal
approximator of continuous circular translation equiv-
ariant (invariant) functions.

Use of the term circular, both in padding and translation is
because of the need to work with finite translations, which
are produce as the result of the action of a product of cyclic
groups.2

3.2. Universality for Regular Steerable CNNs

In building models equivariant to subgroups of Euclidean
isometries (translation, rotation and reflection), a simple
solution is to consider the action of (circular) translation
group on rotated and/or reflected copies of each feature-
map (Dieleman et al., 2016). This approach is formalized
in (Cohen & Welling, 2016b) for general semi-direct product
G = NoH and linear representations. In the setting where
the action of N and H on the fibers and the base-space are

2Input can be zero-padded, before circular padding, so that
Corollary 2 guarantees universal approximation of translation
equivariant functions, where translations are bounded by the size
the original input.

both regular, G-action is also regular, and as a corollary
to Theorem 3.2 steerable CNN becomes universal. For
example, this is the case in the practical setup where the
feature-maps are rotated and reflected.

3.3. Universality for High-Order Hidden Layers

G-action on the hidden units H naturally extends to its simul-
taneous action on the Cartesian product HD = H× . . .×H:

g · (h1, . . . , hD)
.
= (g · h1, . . . , g · hD).

We call this an order D product space. Product spaces
are used in building high-order layers in G-equivariant net-
works in several recent works (Kondor et al., 2018; Maron
et al., 2018; Keriven & Peyré, 2019; Albooyeh et al., 2019).
Maron et al. (2019) show that for

D ≥ 1

2
|H| (|H| − 1), (19)

such MLPs with multiple hidden layers of order D become
universal G-invariant approximators. In this section, we
show that better bounds for D that guarantees universal
invariance and equivariance follows from the universality
results of Theorems 3.1 and 3.2. The next section provides
an in-depth analysis of product spaces that not only gives
an alternative proof of the theorems below, but also could
lead to yet better bounds.3

Theorem 3.3. Let G act faithfully on H ∼= [H\G].
Then HD has a regular orbit for any

D ≥ log2(|H|)

and therefore, by Theorem 3.2, an order D hidden
layer guarantees universal equivariance.

Proof. If G acts faithfully on H, the intersection of the
stabilisers of all the points in H is trivial – i.e., CoreG(H) =
{e}. If instead of taking the intersection of the stabilisers of
all h ∈ H, we can just take the intersection of the stabilisers
of D (carefully chosen) points, we will know there is a
regular orbit in HD. That is because the stabiliser of a point
in Hd is the intersection of the stabilisers of its elements
in H, that is StabG(h1, ..., hD) =

⋂D
d=1 StabG(hd). So the

question is for what value of D can we find D points such
that the intersection of their stabilisers is trivial. We work
recursively to find a bound on D.

Start with just one point h1inH1, and assume its stabiliser is
of size s1. Now assume we have a point (h1, ..., hd) in Hd

3The beautiful proof for the following theorem was proposed
by an anonymous reviewer. The original proof uses the ideas
discussed in the next section and appears later in the paper.



Universal Equivariant Multilayer Perceptrons

such that its stabiliser is of size sd. If sd = 1, we are done.
Otherwise, since the action is faithful, there has to exist a
point hd+1 such that the intersection of all the stabilisers of
h1, ..., hd+1 is a strictly smaller subgroup of the stabiliser
of (h1, ..., hd). The size of a proper subgroup is at most half
the size of the original group and therefore sd+1 < sd/2.
Therefore, for each additional point the size of stabilizer at
least half of the previous stabilizer. It follows that for any
D ≥ log2(|H|), [H\G]D = HD has an orbit with a trivial
stabilizer.

Since the largest stabilizer for any action on H is S|H|−1,
we can use a lower-bound for D, in Theorem 3.3 that is
independent of the stabilizer sub-group H. The following
bound follows from the Sterling’s approximation N ! <
NN+ 1

2 e−N+1 to the size of the largest possible stabilizer
|S|H|−1| = (|H− 1|)!.

Corollary 3. The high-order G-set of hidden units
HD, with N = |H| has a regular orbit for

D ≥ d(N − 1

2
) log2(N − 1)− (N − 2) log2(e)e

and following Theorem 3.2 the corresponding equiv-
ariant MLP is universal approximator of continuous
G-equivariant functions.

4. Decomposition of Product G-Sets
A prerequisite to analysis of product G-sets is their clas-
sification, which also leads to classification of all G-maps
based on their input/output G-sets.

4.1. Classification of G-Sets and G-Maps

Recall that any transitive G-set N is isomorphic to a right-
coset space H\G. However, the right cosets H\G and
(g−1Hg)\G ∀g ∈ G are themselves isomorphic. 4 This
also means what we care about is conjgacy classes of sub-
groups [H] = {g−1Hg | g ∈ G}, which classifies right-
coset spaces up to conjugacy [H\G] = {g−1Hg\G | g ∈
G}. We used the bracket to identify the conjugacy class.
In this notation, for H,H′ ≤ G, we say [H] < [H′], iff
g−1Hg < H′, for some g ∈ G.

A G-set is transitive on each of its orbits, and we can identify
each orbit with its stabilizer subgroup. Therefore a list of

4The stabilizer subgroups of two points in a homogeneous
space are conjugate, and therefore G-sets resulting from conjugate
choice of right-cosets are isomorphic. To see why stabilizers are
conjugate, assume n = a−1 · n, and h ∈ Gn, then aha−1 · n =
nha = na = n. Therefore, a−1ha ∈ Gn. Since conjugation is a
bijection, this means Gn = a−1Gna.

these subgroups along with their multiplicities completely
defines a G-set up to an isomorphism (Rotman, 2012):

N ∼=
⋃

[Hi]≤G

pi[Hi\G], (20)

where p1, . . . , pI ∈ Z≥0 denotes the multiplicity of a right-
coset space, and N has

∑I
i=1 pi orbits.

To ensure a faithful G-action on N, a necessary and sufficient
condition is for the point-stabilizers Gn∀n ∈ N to have a
trivial intersection. The point-stabilizers within each orbit
are conjugate to each other and their intersection which is
the largest normal subgroup of G contained in Hi, is called
the core of G-action on [Hi\G]:

CoreG(Hi)
.
=
⋂
g∈G

g−1Hig. (21)

Next, we extend the classification of G-sets to G-equivariant
maps, a.k.a. G-maps W : RN → RM, by jointly classifying
the input and the output index sets N and M. We may
consider a similar expression to (20) for the output index set
M =

⋃
[Kj ]≤G qj [Kj\G]. The linear G-map W : RN →

RM is then equivariant to G/K and invariant to K /G iff⋂
pi>0

CoreG(Hi) = {e} and
⋂
qi>0

CoreG(Ki) = K (22)

where the second condition translates to K invariance of G-
action on M. Note that the first condition is simply ensuring
the faithfulness of G-action on N. This result means that
the multiplicities (p1, . . . , pI) and (q1, . . . , qJ) completely
identify a (linear) G-map W : RN → RM that equivariant
to G/K and invariant to K /G, up to an isomorphism.

4.2. Diagonal Action on Cartesian Product of G-sets

Previously we classified all G-sets as the disjoint union of
homogeneous spaces

⋃I
i=1 pi[Gi\G], where G acts transi-

tively on each orbit. However, as we saw earlier G also
naturally acts on the Cartesian product of homogeneous
G-sets:

N1 × . . .× ND = (G1\G)× . . .× (GD\G)

where the action is defined by

g · (G1h1, . . . ,GDhD)
.
= (G1(h1g), . . . ,GD(hDg)).

A special case is when we consider the repeated self-product
of the same homogeneous space H ∼= [H\G], which as we
saw gives an order D product space.

HD ∼= [H\G]D = [H\G]× . . .× [H\G]︸ ︷︷ ︸
D times

We call this an orderD product space. The following discus-
sion shows how the product space decomposes into orbits,
where the existence of a regular orbit leads to universality.
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4.3. Burnside Ring and Decomposition of G-sets

Since any G-set can be written as a disjoint union of ho-
mogeneous spaces (20), we expect a decomposition of the
product G-space in the form

[Gi\G]× [Gj\G] =
⋃

[G`]≤G

δ`i,j [G`\G] (23)

Indeed, this decomposition exists, and the multiplicities
δ`i,j ∈ Z>0, are called the structure coefficient of the
Burnside Ring. The (commutative semi)ring structure
is due to the fact that the set of non-isomorphic G-sets
Ω(G) = {

⋃
[Gi]≤G pi[Gi\G] | pi ∈ Z≥0}, is equipped

with: 1) a commutative product operation that is the Carte-
sian product of G-spaces, and; 2) a summation operation
that is the disjoint union of G-spaces (Dieck, 2006). A
key to analysis of product G-spaces is finding the structure
coefficients in (23).

Example 1 (PRODUCT OF SETS). The symmetric
group SN acts faithfully on N, where the stabilizer
is Sn = SN−{n} – that is the stabilizer of n ∈ N is the
set of all permutations of the remaining items N−{n}.
This means N ∼= [SN−{n}\SN].

The diagonal SN action on the product space ND, de-
composes into

∑
i pi = Bell(D) orbits, where the Bell

number is the number of different partitions of a set
of D labelled objects (Maron et al., 2018). One may
further refine these orbits by their type in the form of
(23):

[SN−n\SN]D =

D⋃
d=1

S(D, d)[SN−{n1,...,nd}\SN]

(24)

where the “structure coefficient” S(D, d) is the Stir-
ling number of the second kind, and it counts the num-
ber of ways D could be partitioned into d non-empty
sets. For example, when D = 2, one may think of the
index set N×N as indexing some |N|×|N|matrix. This
matrix decomposes into one (S(2, 1) = 1) diagonal
[SN−{n}\SN] and one S(2, 2) = 1 set of off-diagonals
[SN−{n1,n2}\SN]. This decomposition is presented in
(Albooyeh et al., 2019), where it is shown that these or-
bits correspond to “hyper-diagonals” for higher order
tensors. For general groups, inferring the structural
coefficients is more challenging, as we see shortly.

From (24) in the example above it follows that an orderD =
|N| product of sets contains a regular orbit. The following is
a corollary that combines this with the universality results
of Theorems 3.1 and 3.2.

Corollary 4. [Universality of Equivariant Hyper-
Graph Networks] A SN equivariant network with a
hidden layer of order D ≥ |N|, is a universal approxi-
mator of SN-equivariant (invariant) functions, where
the input and output layer may be of any order.

Note how using group specific analysis gives a better
bound of D ≥ N compared to group agnostic bound
D ≥ N log(N) of Corollary 3. A universality result for
the invariant case only, using a quadratic order appears in
(Maron et al., 2019), where the MLP is called a hyper-graph
network. Keriven & Peyré (2019) prove universality for the
equivariant case, without giving a bound on the order of the
hidden layer, and assuming an output M = H1 of degree
D = 1. In comparison, Corollary 4 uses a linear bound and
applies to a much more general setting of arbitrary orders
for the input and output product sets. In fact, the universality
result is true for arbitrary input-output SN-sets.

Linear G-Map as a Product Space For finite groups, the
linear G-map W : RN → RM is indexed by M × N, and
therefore it is a product space. In fact the parameter-sharing
of (3) ties all the parameters W(m,n) that are in the same
orbit. Therefore, the decomposition (23) also identifies
parameter-sharing pattern of W.5

Example 2 (EQUIVARIANT MAPS BETWEEN SET
PRODUCTS). Equation (24) gives a closed form for
the decomposition of ND into orbits. Assuming a
similar decomposition for MD′ , the equivariant map
W : RND → RMD′

is decomposed in to Bell(D+D′)
linear maps corresponding to the orbits of MD′ ×ND.

4.3.1. BURNSIDE’S TABLE OF MARKS

Burnside’s table of marks simplifies working with the mul-
tiplication operation of the Burnside ring, and enables the
analysis of G-action on product spaces (Burnside, 1911;
Pfeiffer, 1997). The mark of H ≤ G on a finite G-set N, is
defined as the number of points in N fixed by all h ∈ H:

mN(H)
.
= |{n ∈ N | h · n = n ∀h ∈ H}|. (25)

The interesting quality of the number of fixed points is that
the total number of fixed points adds up when we add two
spaces N1 ∪ N2. Also, when considering product spaces
N1 × N2, any combination of points fixed in both spaces

5When N and M are homogeneous spaces, another charac-
terization the orbits of the product space [Gn\G] × [Gm\G] is
by showing their one-to-one correspondence with double-cosets
Gn\G/Gm = {GngGm | g ∈ G}.
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Table 1. Table of marks MG.
{e} . . . Gi . . . Gj . . . G

{e}\G |G|
...

...
. . .

Gi\G |G : Gi| . . . |G : NG(Gi)|
...

...
...

. . .
Gj\G |G : Gj | . . . mGj\G(Gi) . . . |G : NG(Gj)|

...
...

...
...

. . .
G\G 1 . . . 1 . . . 1 . . . 1

will be fixed by H. This means

mN1∪N2
(Gi) = mN1

(Gi) +mN2
(Gi) (26)

mN1×N2
(Gi) = mN1

(Gi)mN2
(Gi). (27)

Now define the vector of marks mN : Ω(G)→ Zn as

mN
.
= [mN(G1), . . . ,mN(GI)]

where I is the the number of conjugacy classes of subgroups
of G, and we have assume a fixed order on [Gi] ≤ G. Due
to Eqs. (26) and (27), given G-sets N1, . . . ,ND, we can per-
form elementwise addition and multiplication on the vector
of integers mN1 , ...,mND

, to obtain the mark of union and
product G-sets respectively. Moreover, the special quality
of marks, makes this vector an injective homeomorphism:
we can work backward from the resulting vector of marks
and decompose the union/product space into homogeneous
spaces. To facilitate calculation of this vector, for any G-set
N, one may use the table of marks.

The table of marks for a group G, is the square matrix of
marks of all subgroups on all right-coset spaces6 – that is
the element i, j of this matrix is:

MG(i, j)
.
= mGi\G(Gj) or MG

.
=

m{e}\G...
mG\G

 . (28)

The matrix MG, has valuable information about the sub-
group structure of G. For example, Gj’s action on Gi\G
will have a fixed point, iff [Gj ] ≤ [Gi]. Therefore, the
sparsity pattern in the table of marks, reflects the subgroup
lattice structure of G, up to conjugacy.7

A useful property of MG is that we can use it to find the
marks mN on any G-set N =

∑
i pi[Gi\G] in Ω(G) us-

ing the expression mN = [p1, . . . , pI ]>MG. Moreover, the

6mGi\G(Gj) = mGi\G(gGjg
−1), and mGi\G(Gj) =

mgGig
−1\G(Gj) ∀g ∈ G. Therefore, the table of marks’ charac-

terization is up to conjugacy.
7The sub-group lattice of G is a partially ordered set in which

the order Gi < Gj is a subgroup relation, and the greatest and least
elements are G and {e} respectively. Any G-set is isomorphic to a
right-coset space produced by a member of this lattice. However,
we only care about this lattice up to a conjugacy relation. This is
because as we saw, the right cosets H\G and (g−1Hg)\G ∀g ∈
G are isomorphic.

Figure 2. A high-order hidden layer decomposes into orbits, which
are characterized by the table of marks. By increasing the order
one could guarantee the existence of a regular orbit in the decom-
position. By Theorem 3.2 this leads to universal equivariance.

structural constants of (23) can be recovered from the table
of Marks

δ`ij =
∑
l

MG(i, l)MG(j, l)(M−1G )(l, `). (29)

5. Universality of G-Maps on Product Spaces
Using the tools discussed in the previous section, in this
section we prove some properties of product spaces that are
consequential in design of equivariant maps. Previously we
saw that product spaces decompose into orbits, identified
by δ`ij > 0 in (23). The following theorem states that such
product spaces always have orbits that are at least as large
as the largest of the input orbits, and at least one of these
product orbits is strictly larger than both inputs. For simplic-
ity, this theorem is stated in terms of the stabilizers, rather
than the orbits, where by the orbit-stabilizer theorem, larger
stabilizers correspond to smaller orbits. Also, while the
following theorem is stated for the product of homogeneous
G-sets, it trivially extends to product of G-sets with multiple
orbits.

Theorem 5.1. Let [Gi\G] and [Gj\G] be transitive
G-sets, with {e} < Gi,Gj < G. Their product
G-set decomposes into orbits [Gi\G] × [Gj\G] =⋃

` δ
`
ij [G`\G], such that:

(i) [G`] ≤ [Gi], [Gj ] for all the resulting orbits.

(ii) if Gj 6⊆ CoreG(Gi) and Gi 6⊆ CoreG(Gj), then
[G`]<[Gi], [Gj ] for at least one of the resulting orbit.

Proof. The proof is by analysis of the table of Marks MG.
The vector of mark for the product space is the element-wise
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Table 2. Table of marks for the alternating group A5.
{e} C2 C3 K4 C5 S3 D10 A4 A5

{e}\A5 60
C2\A5 30 2
C3\A5 20 2
K4\A5 15 3 3
C5\A5 12 2
S3\A5 10 2 1 1

D10\A5 6 2 1 1
A4\A5 5 1 2 1 1
A5\A5 1 1 1 1 1 1 1 1 1

product of vector of marks of the input: m[Gi\G]×[Gi\G] =
m[Gi\G]�m[Gj\G]. The same vector, can be written as a lin-
ear combination of rows of MG, with non-negative integer
coefficients: mGi\G�mGj\G =

∑
` δ

`
ijm[G`\G]. For conve-

nience we assume a topological ordering of the conjugacy
class of subgroups {e} = G1, . . . ,Gi, . . . ,GI = G consis-
tent with their partial order – that is [Gi] 6> [Gj ]∀j > i.
This means that MG is lower-triangular, with nonzero
diagonals; see Table 1. Three important properties of
this table are (Pfeiffer, 1997): (1) the sparsity pattern in
MG reflects the subgroup relation: m[Gi\G](`) > 0 iff
G` ≤ Gi. (2) the first column is the index of Gi in G:
m[Gi\G](1) = |G : Gi| ∀i. (3) the diagonal element is the
index of the normalizer: m[Gi\G](i) = |G : NG(Gi)| ∀i,
where the normalizer of H in G is defined as the largest in-
termediate subgroup of G in which H is normal: NG(H) =
{g ∈ G | gHg−1 = H}.

(i) From (1) it follows that the non-zeros of the product
(m[Gi\G] �m[Gj\G])(`) > 0 correspond to G` ≤ [Gi] and
G` ≤ [Gj ]. Since the only rows of MG with such non-zero
elements are m[G`\G] for G` ≤ [Gi] ∩ Gj , all the resulting
orbits have such stabilizers. This finishes the proof of the
first claim.

(ii) If [Gi] 6≤ [Gj ] and [Gj ] 6≤ [Gi], then [G`] which is a
subgroup of both groups is strictly smaller than both, which
means one of the resulting orbits must be larger than both
input orbits. Next, w.l.o.g., assume [Gi] ≤ [Gj ]. Consider
proof by contradiction: suppose the product does not have
a strictly larger orbit. It follows that m[Gj\G] �m[Gi\G] =

δii,im[Gi\G] for some δiii > 0. Consider the first and ith

element of the elementwise product above:

|G : Gj | × |G : Gi| = δiii|G : Gi|
m[Gj\G](i)× |G : NG(Gi)| = δiii|G : NG(Gi)|

Substituting δiii = |G : Gj | from the first equation into the
second equation and simplifying we get m[Gj\G](i) = |G :
Gj |. This means the action of Gi on [Gj\G] fixes all points,
and therefore Gi ⊆ CoreG(Gj) as defined in (21). This
contradicts the assumption of (ii).

A sufficient condition for (ii) in Theorem 5.1 is for the
G-action on input G-sets to be faithful. Note that in this

case the the core is trivial; see Section 4.1. An implication
of this theorem is that repeated self-product [H\G]D is
bound to produce a regular orbit. This leads to Theorem 3.3,
that we saw earlier. Here, we give a shorter proof using
Theorem 5.1; see Fig. 2.

Alternative Proof of Theorem 3.3. Since G acts faithfully
on N, CoreG(H) = {e}. From Theorem 5.1 it follows that
each time we calculate a product by N, a strictly smaller
stabilizer is produced so that H = H(t=0) > H(1) >
. . . > H(D) = {e}, where H(d) is the smallest stabilizer at
time-step d. From Lagrange theorem, the size of a proper
subgroup is at most half the size of its overgroup in this
sequence of stabilizers. It follows that for anyD ≥ log2 |H|,
[H\G]D has an orbit with Ht=D = {e} as its stabilizer.

Example 3 (UNIVERSAL APPROXIMATION FOR A5).
The alternating group A5 is the group of even permu-
tations of 5 objects. One way to create a universal
approximator for this group to have a regular layer
(see Theorem 3.2). A more convenient alternative is
to consider the canonical action of this group on a
set N of size 5, and use an order D layer to ensure
universality. Using Corollary 3 we get D ≥ 5 =
d(3 1

2 log2(4))− 4 log2(e)e. The natural action of A5

on N = [5] is isomorphic to [A4\A5] – i.e., A4 is a
stabilizer. Using this stabilizer in Theorem 3.3, we get
the same bound D ≥ 5 = dlog2(|A4|)e.

However, using the table of marks we can show that
D = 3 already produces a regular orbit in this case.
The table of marks for the alternating group A5 is
shown in Table 2. Our objective is to find the de-
composition of [A4\A5]3. We do this in steps, first
showing

[A4\A5]2 = [A4\A5] ∪ [C3\A5] (30)

To see this, note that the element-wise product of the
vector of marks m[A4\A5] (which is next to last row in
Table 2) with itself is equal to m[A4\A5] + m[C3\A5].
Since the vector of marks is an injective homomor-
phism, this implies (30). Applying the same idea one
more time, gives

[A4\A5]3 = ([A4\A5] ∪ [C3\A5])× [A4\A5]

= 2[A4\A5] ∪ [C3\A5] ∪ [{e}\A5].

This shows that [A4\A5]3 contains a regular orbit
[{e}\A5]. Therefore, using an order D = 3 hidden
layer N3 on which A5 acts using even permutations,
also produces a universal equivariant (invariant) ap-
proximator.



Universal Equivariant Multilayer Perceptrons

Acknowledgements
We thank anonymous reviewers for their constructive feed-
back. In particular the first proof for Theorem 3.3, as well
as clarifications on the proof of the main theorems was pro-
posed by reviewers. This research is in part funded by the
Canada CIFAR AI Chair Program.

References
Albooyeh, M., Bertolini, D., and Ravanbakhsh, S. Incidence

networks for geometric deep learning. arXiv preprint
arXiv:1905.11460, 2019.

Bruna, J. and Mallat, S. Invariant scattering convolution
networks. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1872–1886, 2013.

Burnside, W. Theory of groups of finite order. University,
1911.

Cohen, T. S. and Welling, M. Group equivariant convolu-
tional networks. arXiv preprint arXiv:1602.07576, 2016a.

Cohen, T. S. and Welling, M. Steerable cnns. arXiv preprint
arXiv:1612.08498, 2016b.
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