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Abstract

Efficient exploration remains a challenging prob-
lem in reinforcement learning, especially for
those tasks where rewards from environments are
sparse. In this work, we introduce an explo-
ration approach based on a novel implicit gener-
ative modeling algorithm to estimate a Bayesian
uncertainty of the agent’s belief of the environ-
ment dynamics. Each random draw from our
generative model is a neural network that in-
stantiates the dynamic function, hence multiple
draws would approximate the posterior, and the
variance in the predictions based on this poste-
rior is used as an intrinsic reward for exploration.
We design a training algorithm for our generative
model based on the amortized Stein Variational
Gradient Descent. In experiments, we demon-
strate the effectiveness of this exploration algo-
rithm in both pure exploration tasks and a down-
stream task, comparing with state-of-the-art in-
trinsic reward-based exploration approaches, in-
cluding two recent approaches based on an en-
semble of dynamic models. In challenging ex-
ploration tasks, our implicit generative model
consistently outperforms competing approaches
regarding data efficiency in exploration.

1. Introduction

Deep Reinforcement Learning (RL) has enjoyed recent
success in a variety of applications, including super-
human performance in Atari games (Mnih et al., 2013),
robotic control (Lillicrap et al., 2015), image-based con-
trol tasks (Hafner et al., 2019), and playing the game of
Go (Silver et al., 2016). Despite these achievements, many
recent deep RL techniques still suffer from poor sample ef-
ficiency. Agents are often trained for millions, or even bil-
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lions of simulation steps before achieving reasonable per-
formance (Burda et al., 2018a). This lack of statistical ef-
ficiency makes it difficult to apply deep RL to real-world
tasks, as the cost of acting in the real world is far greater
than in a simulator. It is then a problem of utmost impor-
tance to design agents that make efficient use of collected
data. In this work, we focus on efficient exploration which
is widely considered to be one of the three key aspects in
building a data-efficient agent (Sutton & Barto, 2018).

In particular, we focus on those challenging environments
with sparse external rewards. In those environments, it is
important for an effective agent to methodically explore a
significant portion of the state space, since there may not
be enough signals to indicate where the reward might be.
Previous work usually utilize some sort of intrinsic reward
driven by the uncertainty in an agent’s belief of the en-
vironment state (Osband et al., 2018). Intuitively, agents
should explore more around states where they are not cer-
tain whether there could exist a previously unknown con-
sequence — which could be an unexpected extrinsic reward.
However, uncertainty modeling from a deep network has
proven to be difficult with no approach (Snoek et al., 2019)
that is proven to be universally applicable.

In this work, we introduce a new framework of Bayesian
uncertainty modeling for intrinsic reward-based explo-
ration in deep RL. The main component of our framework
is a network generator, each draw of which is a neural net-
work that serves as the dynamic function for the environ-
ment. Multiple draws approximate a posterior of the dy-
namic model, and the variance in the future state predic-
tions based on this posterior is used as an intrinsic reward
for exploration. In doing so, our framework characterizes
the uncertainty of the agent’s belief of the environment dy-
namics in a non-parametric manner, avoiding restrictive
distributional assumptions on the posterior, and explore a
significantly larger model space than previous approaches.
Recently, it has been shown (Ratzlaff & Fuxin, 2019) that
training these kinds of generators can be done in classifica-
tion problems and the resulting network samples can rep-
resent a rich distribution of diverse networks that perform
approximately equally well on the classification task.

For our goal of training this generator for the dynamic func-
tion, we propose a new algorithm to optimize the KL di-
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vergence between the implicit distribution (represented by
draws from the generator) and the true posterior of the dy-
namic model (given the agent’s experience) via amortized
Stein Variational Gradient Descent (SVGD) (Liu & Wang,
2016; Feng et al., 2017). Amortized SVGD allows direct
minimization of the KL divergence between the implicit
posterior and true posterior without parametric assump-
tions or Evidence Lower Bound (ELBO) approximations,
and projects to a finite-dimensional parameter update.

Comparing with recent work (Pathak et al., 2019; Shyam
et al., 2019) that maintain an ensemble of dynamic models
and use the divergence or disagreement among them as an
intrinsic reward for exploration, our implicit modeling of
the posterior has two major advantages: First, it is a more
flexible framework for approximating the model posterior
compared to an ensemble-based approximation. After one
training episode, it can provide an unlimited amount of
draws whereas for an ensemble each draw would require
independent training. Second, amortized SVGD (Feng
et al., 2017) allows direct nonparametric minimization of
the KL divergence, in contrast with existing ensemble-
based methods that rely on the random initialization and/or
bootstrapped experience sampling, which does not neces-
sarily approximate the posterior.

In our experiments, we compare our approach with sev-
eral state-of-the-art intrinsic reward-based exploration ap-
proaches, including two recent approaches that also lever-
age the uncertainty in dynamic models. Experiments show
that our implementation consistently outperforms compet-
ing methods regarding data efficiency in exploration.

In summary, our contributions are:

e We propose a generative framework leveraging amor-
tized SVGD to implicitly approximate the posterior
of network parameters. Applying this framework to
generate dynamic models of the environment, the un-
certainty from the approximate posterior is used as an
intrinsic reward for efficient exploration in deep RL.

e We evaluate on three challenging exploration tasks
and compare with three state-of-the-art intrinsic
reward-based methods, two of which are also based
on uncertainty in dynamic models. The superior per-
formance of our method shows the effectiveness of
the proposed framework in estimating the Bayesian
uncertainty in the dynamic model for efficient explo-
ration. We also evaluate in a dense reward setting to
show its potential for improving downstream tasks.

2. Problem Setup and Background

Consider a Markov Decision Process (MDP) represented as
(S, A, P,r, po), where S is the state space, A is the action
space. P : S x Ax S — [0,1] is the unknown dynam-

ics model, specifying the probability of transitioning to the
next state s’ from the current state s by taking the action
a, as P(s'|s,a). v : § x A — R is the reward function,
po : S — [0, 1] is the distribution of initial states. A policy
is a function 7 : S x A — [0, 1], which outputs a distribu-
tion over the action space for a given state s.

2.1. Exploration in Reinforcement Learning

In online decision-making problems, such as multi-
arm bandits and reinforcement learning, a fundamental
dilemma in an agent’s choice is exploitation versus ex-
ploration. Exploitation refers to making the best decision
given current information, while exploration refers to gath-
ering more information about the environment. In the stan-
dard reinforcement learning setting where the agent re-
ceives an external reward for each transition step, com-
mon recipes for exploration/exploitation trade-off include
naive methods such as e-greedy (Sutton & Barto, 2018) and
optimistic initialization (Lai & Robbins, 1985), posterior
guided methods such as upper confidence bounds (Auer,
2002; Dani et al., 2008) and Thompson sampling (Thomp-
son, 1933). We focus on the situation where external
rewards are sparse or disregarded, here the above trade-
off narrows down to the pure exploration problem of ef-
ficiently accumulating information about the environment.
The common approach is to explore in a task-agnostic man-
ner under some “intrinsic” reward. An exploration policy
can then be trained with standard RL. Existing methods
construct intrinsic rewards from visitation frequency of the
state (Bellemare et al., 2016), prediction error of the dy-
namic model as “curiosity” (Pathak et al., 2017), diversity
of visited states (Eysenbach et al., 2018), etc.

2.2. Dynamic Model Uncertainty as Intrinsic Reward

In order to model Bayesian uncertainty in online decision-
making, two recent methods (Pathak et al., 2019; Shyam
et al., 2019) train an ensemble of dynamic models and use
the variation/information gain as an intrinsic reward for
exploration. In this work, we follow the similar idea of
exploiting the uncertainty in the dynamic model, but em-
phasize the implicit posterior modeling in contrast with di-
rectly training an ensemble of dynamic models.

Let f : S x A — S denote a model of the environment
dynamics (represented by a neural network) we want to
learn based on the agent experience D. We design a gen-
erator module G which takes a random draw from the stan-
dard normal distribution and outputs a sample vector of pa-
rameters 6 that determines f (denoted as fg). If samples
from G represent the posterior distribution p(fg|D), then
given (s¢, at), the uncertainty in the output of the dynamics
model can be computed by the following variance among
a set of samples {0;}™, from G, and used as an intrinsic
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Figure 1. Architecture of the layer-wise generator of the dynamic
model. A single shared noise sample z € R? is drawn from a
standard Gaussian with diagonal covariance, and input to layer-
wise generators {G'1, -, Gn }. Each generator G; outputs pa-
rameters 6 for the corresponding j-th layer of the neural network
representing the dynamic model.

reward 7" for learning an exploration policy,

e = Zizl
(1)

When training the exploration policy, this intrinsic reward
can be computed with rollouts in the environment, or sim-
ulated rollouts generated by the estimated dynamic model.
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3. Posterior Approximation via Amortized
SVGD

In this section, we introduce the core component of our
exploration agent, the dynamic model generator G. In the
following subsections, we first introduce the design of this
generator and then describe its training algorithm in detail.
A summary of our algorithm is given in the last subsection.

3.1. Implicit Posterior Generator

As shown in Fig. 1, the dynamic model is defined as
an N-layer neural network function fg(s,a), with in-
put (state, action) pair (s,a) and model parameters 6 =
(6%, ---,0N), where 67 represents network parameters of
the j-th layer. The generator module G consists of exactly
N layer-wise generators, {G1,--- ,Gy}, where each G;
takes the random noise vector z € R? as input, and out-
puts the corresponding parameter vector 67 = G;(z;77),
where 7/ are the parameters of G;. Note that z is sam-
pled from a d-dimensional standard normal distribution,
and is shared across all generators to capture correlations
between the generated parameters. As mentioned in Sec. 1,
this framework has advantages in flexibility and efficiency,
comparing with ensemble-based methods (Shyam et al.,
2019; Pathak et al., 2019), since it maintains only parame-
ters of the N generators, i.e., n = (n',---,n"), and en-
ables drawing an arbitrary number of sample networks to

approximate the posterior of the dynamic model.

3.2. Training with Amortized SVGD

We now introduce the training algorithm of the generator
module G. Assuming that the true posterior of the dynamic
model given the agent’s experience D is p(f|D), and the
implicit distribution captured by G is ¢(fg), where fg de-
notes the function values obtained by evaluating fg on D.
We want ¢(fg|D) to be as close as possible to p(f|D),
such closeness is commonly measured by the KL diver-
gence Dk [¢(fo|D)|lp(f|D)]. The traditional approach
for finding ¢ that minimizes Dgy. [¢(fo|D)||p(f|D)] is vari-
ational inference (VI), by maximizing the ELBO (Blei
et al., 2017). But standard VI necessitates restricting the
parametric form of the target posterior. Recently, a non-
parametric VI framework, Stein Variational Gradient De-
scent (SVGD) (Liu & Wang, 2016), was proposed, that rep-
resents g with a set of particles rather than making any para-
metric assumptions, and approximates the functional gradi-
ent descent w.r.t. Dxy. [¢(fo|D)||p(f|D)] by iterative parti-
cle evolvement. We apply SVGD to our sampled network
functions, and follow the idea of amortized SVGD (Feng
et al., 2017) to project the functional gradients to the pa-
rameter space of 77 by back-propagation through the gener-
ators.

Given a set of dynamic functions { fp, }/"; sampled from
G, SVGD updates each function by

fo, < fo, +€d"(fo,),

i=1,---,m,

where € is step size, and ¢* is the function in the unit ball
of a reproducing kernel Hilbert space (RKHS) # that maxi-
mally decreases the KL divergence between the distribution
g represented by { fg, }, and the target posterior p.

Let g[cq) refer to the distribution of updated particles. The
optimal choice of ¢ can be found by solving the following
optimization problem:

. d
o = { - D eall). stlldl <1} @

It was shown in (Liu & Wang, 2016) that the KL-
divergence can be expressed as a linear functional of ¢,

d
~ 2D e IP)leo = Erory [S,0(f0)] )

where S, is the Stein operator (Stein et al., 2004):

Spd(fo) = V1o logp(fo)" d(fo) + Vi, 6(fo)
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Hence, eq. (2) has a closed form solution,

¢*(fo) = feﬂiq [V 1o logp(fo)k(fe, fo,) + V iok(fo, fo.)l,
“4)

where k(-,-) is the positive definite kernel associated
with the RKHS. The log-likelihood term for fg corre-
sponds to the negation of the regression loss of future
state prediction for all transitions in D, i.e., logp(fg) =
=2 (s.asep L(fo(s,a),s"). Given that each 6; is gener-
ated by G(z;m), the update rule for 17 can be obtained by
the chain rule,

nen+ed Vad (fo,)

i=1

0,=G(z:;m) o)

where ¢*(G(z;;m)) can be computed by (4) using empiri-
cal expectation from sampled batch {6,}7 ,,

¢"(fo,) = % zm: {— [Z@,a,s/)ep V jo, L(fo, (5, ), s’)]

=1
: k(feg(s,aﬁ f@i(s,a)) + vf(.;[ k(f@g(s,a)v fOi(s,a))} )
(6)

where k(-,-) is the Gaussian kernel evaluated at function
outputs, which is in the state space.

3.3. Summary of the Exploration Algorithm

To condense what we have proposed so far, we summarize
in Algorithm 1 the procedure used to train the generator of
dynamic models and the exploration policies.

Algorithm 1 Exploration with an Implicit Distribution
Initialize Generator G,,, parameters 1, m
Initialize Policy 7, Experience buffer D

while True do

while episode not done: do

fo + G(zim), z ~ N(0,I%)

n < evaluate (5), (6) on D

D ~ MDP(fo)

D, < DUD,

Ry <+ 1(fe, s,a|(s,a) ~ D) by (1)
7 « update policy on (D, R,)

Dr < rollout 7 for T steps

D <~ DUDr

end

end

Our algorithm starts with a buffer D of random transitions
and explores for some fixed number of episodes. For each
episode, our algorithm samples a set of dynamic models

fe = {fe,} from the generator G, and updates the gener-
ator parameters 77 using amortized SVGD (5) and (6). For
the policy update, the intrinsic reward (1) is evaluated on
the actual experience D and the simulated experience D
generated by fg,. The exploration policy is then updated
using a model-free RL algorithm on the collected experi-
ence D, and intrinsic rewards R,. The updated exploration
policy is then used to rollout in the environment for 7" steps
so that new transitions are collected and added to the buffer
D. The process is repeated until the end of the episode.

4. Related Work

Efficient exploration remains a major challenge in deep re-
inforcement learning (Fortunato et al., 2017; Burda et al.,
2018b; Eysenbach et al., 2018; Burda et al., 2018a), and
there is no consensus on the correct way to explore an en-
vironment. One practical guiding principle for efficient ex-
ploration is the reduction of the agent’s epistemic uncer-
tainty of the environment (Chaloner & Verdinelli, 1995;
Osband et al., 2017). Osband et al. (2016) uses a boot-
strap ensemble of DQNSs, where the predictions of the en-
semble are used as an estimate of the agent’s uncertainty
over the value function. Osband et al. (2018) proposed to
augment the predictions of a DQN agent by adding the con-
tribution from a prior to the value estimate. In contrast to
our method, these approaches seek to estimate the uncer-
tainty in the value function, while we focus on exploration
with intrinsic reward by estimating the uncertainty of the
dynamic model. Fortunato et al. (2017) add parameterized
noise to the agent’s weights, to induce state-dependant ex-
ploration beyond e-greedy or entropy bonus.

Methods for constructing intrinsic rewards for exploration
have become the subject of increased study. One well-
known approach is to use the prediction error of an inverse
dynamics model as an intrinsic reward (Pathak et al., 2017;
Schmidhuber, 1991). Schmidhuber (1991) and Sun et al.
(2011) proposed using the learning progress of the agent as
an intrinsic reward. Count based methods (Bellemare et al.,
2016; Ostrovski et al., 2017) give a reward proportional to
the visitation count of a state. Houthooft et al. (2016)
formulate exploration as a variational inference problem,
and use Bayesian neural networks (BNN) to maintain the
agent’s belief over the transition dynamics. The BNN pre-
dictions are used to estimate a form of Bayesian informa-
tion gain called compression improvement. The variational
approach is also explored in Mohamed & Rezende (2015);
Gregor et al. (2016); Salge et al. (2014), who proposed us-
ing intrinsic rewards based on a variational lower bound on
empowerment: the mutual information between an action
and the induced next state. This reward is used to learn a set
of discriminative low-level skills. The most closely-related
work to ours are two recent methods (Pathak et al., 2019;
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Shyam et al., 2019) that compute intrinsic rewards from
an ensemble of dynamic models. Disagreement among the
ensemble members in next-state predictions is computed
as an intrinsic reward. Shyam et al. (2019) also uses ac-
tive exploration (Schmidhuber, 2003; Chua et al., 2018),
in which the agent is trained in a surrogate MDP, to maxi-
mize intrinsic reward before acting in the real environment.
Our method follows the similar idea of exploiting the un-
certainty in the dynamic model, but instead suggests an im-
plicit generative modeling of the posterior of the dynamic
function, which enables a more flexible approximation of
the posterior uncertainty with better sample efficiency.

There has been a wealth of research on nonparametric
particle-based variational inference methods (Liu & Wang,
2016; Dai et al., 2016; Ambrogioni et al., 2018), where
particles are maintained to represent the variational distri-
bution, and updated by solving an optimization problem
within an RKHS. Notably, we use amortized SVGD (Feng
et al., 2017) to optimize our generator for approximately
sampling from the posterior of the dynamic model. In addi-
tion to amortized SVGD, other nonparametric methods for
training implicit samplers with particle-based variational
inference have been proposed, such as Li & Turner (2018).

5. Experiments

In this section we conduct experiments to compare our ap-
proach to the existing state-of-the-art in efficient explo-
ration with intrinsic rewards to illustrate the following:

e An agent with an implicit posterior over dynamic
models explores more effectively and efficiently than
agents using a single model or a static ensemble.

e Agents seeking external reward find better policies
when initialized from powerful exploration policies.
Our ablation studies shows that the better the explo-
ration policy as an initialization, the better the down-
stream task policy can learn.

To evaluate the proposed method in terms of exploration
efficiency, we first consider exploration tasks agnostic of
any external reward. In this setting, the agent explores the
environment irrespective of any downstream task. Then, to
further investigate the potential of our exploration policies,
we consider transferring the learned exploration policy to
downstream task policies where a dense external reward is
provided. Note that both cases are important for under-
standing and applying exploration policies. In sparse re-
ward settings, such as a maze, the reward could occur at
any location, without informative hints accessible at other
locations. Therefore an effective agent must be able to effi-
ciently explore the entire state space in order to consistently
find rewards under different task settings. In dense reward
settings, the trade-off between exploration and exploitation

plays a central role in efficient policy learning. Our experi-
ments show that even for a state-of-the-art model-free algo-
rithm like Soft Actor-Critic (SAC) (Haarnoja et al., 2018),
that already incorporates a strong exploration mechanism,
spending some initial rollouts to learn a powerful explo-
ration policy as an initialization of the task policy still con-
siderably improves the learning efficiency.

5.1. Pure Exploration Results

For pure exploration, we consider three challenging contin-
uous control tasks in which efficient exploration is known
to be difficult. In each environment, the dynamics are non-
linear and cannot be solved with tabular approaches. As
explained in the beginning of Section 5, the agent does not
receive any external reward and is motivated purely by the
uncertainty in its belief of the environment.

Experimental setup To validate the effectiveness of our
method, we compare with several state-of-the-art formula-
tions of intrinsic reward. Specifically, we conduct experi-
ments comparing the following methods:

e (Ours) The proposed intrinsic reward, using the es-
timated variance from an implicit distribution of the
dynamic model.

(Random) Random exploration as a naive baseline.
(ICM) Error between predicted next state and ob-
served next state (Pathak et al., 2017).
(Disagreement) Variance of predictions from an en-
semble of dynamic models (Pathak et al., 2019).
(MAX) Jensen-Renyi information gain of the dynamic
function (Shyam et al., 2019).

Implementation details

Since our goal is to compare the performance across differ-
ent intrinsic rewards, we fix the model architecture, training
pipeline, and hyper-parameters across all methods,' shared
hyper-parameters follow the MAX default settings. For
the purpose of computing the information gain, dynamic
models for MAX predict both mean and variance of the
next state, while for other methods, dynamic models pre-
dict only the mean. Since our method trains a generator
of dynamic models instead of a fixed-size ensemble, we
fix the number of models we sample from the generator at
m = 32, which equals the ensemble size for MAX, and
Disagreement. For all experiments except for the Chain
environment, we use SAC vl (Haarnoja et al., 2018) as the
model-free RL algorithm used to train the exploration poli-
cies.

"We use the codebase of MAX as a basis and implement Ours,
ICM, and Disagreement intrinsic rewards under the same frame-
work. The full Disagreement method includes an additional dif-
ferentiable reward function that we compare with separately in the
supplementary material.
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Figure 2. The NChain environment.

5.1.1. Toy TaAsk: NCHAIN

As a sanity check, we first follow MAX (Shyam et al., 2019)
by evaluating our method on a stochastic version of the toy
environment NChain. As shown in Fig. 2, the chain is a
finite sequence of [V states. Each episode starts from state
1 and lasts for N + 9 steps. For each step, the agent can
move forward to the next state in the chain or backward
to the previous state. Attempting to move off the edge of
the chain results in the agent staying still. Reward is only
afforded to the agent at the edge states: 0.01 for reaching
state 0, and 1.0 for reaching state /N —1. In addition, there is
uncertainty built into the environment: each state is desig-
nated as a flip-state with probability 0.5. When acting from
a flip-state, the agent’s actions are reversed, i.e., moving
forward will result in movement backward, and vice-versa.
Given the (initially) random dynamics and a sufficiently
long chain, we expect an agent using an e-greedy explo-
ration strategy to exploit only the small reward of state 0.
In contrast, agents with exploration policies which actively
reduce uncertainty can efficiently discover all states in the
chain. Fig. 3 shows that our agent navigates the chain in
less than 15 episodes, while the e-greedy agent (double
DQN) does not make meaningful progress. We also evalu-
ate each of the methods enumerated in section 5.1.

1001 — DDON
— maAx
icM
8071 —— Disagreement
— ours

Explored Transitions (%)

2 0
Episodes

Figure 3. Results on the 40-link chain environment. Each line is
the mean of three runs, with the shaded regions corresponding to
41 standard deviation. Our method and MAX actively reduce un-
certainty in the chain, and are able to quickly explore to the end of
the chain. e-greedy DDQN fails to explore more than 40% of the
chain. Both ICM and Disagreement perform better than DDON
but explore less efficiently compared to MAX and our method

We find that actively reducing uncertainty is critical to ex-
ploring the chain. We believe that because ICM explores
using the prediction error of the dynamic model, a chain
initialized with simple dynamics (few flip states) may lead
to poor exploration. Though Disagreement uses a similar
intrinsic reward as Ours, we suspect the use of a static en-

semble leads to a lack of predictive diversity, as the ensem-
ble can easily overfit to the dynamics of the chain, limiting
exploration. MAX may avoid overfitting to the chain due
to using stochastic neural networks. Our method however,
directly promotes model diversity using amortized SVGD,
and uses the uncertainty in our dynamic model to explore
new states. We provide additional details of the NChain
experiments in the supplementary material.

5.1.2. ACROBOT CONTROL

The first continuous control environment that we evaluate
is a modified version of the Acrobot. As shown in figure 4,
the Acrobot environment begins with a hanging down pen-
dulum which consists of two links connected by an actuated
joint. Normally, a discrete action a € {—1,0, 1} either ap-
plies a unit force on the joint in the left or right direction
(a = £1), or not (a = 0). We modify the environment
such that a continuous action a € [—1, 1] applies a force
F = |a| in the corresponding direction.

To focus on efficient exploration, we test the ability of each
exploration method to sweep the entire lower hemisphere:
positioning the acrobot completely horizontal towards both
(left and right) directions. Given this is a relatively simple
task and can be solved by random exploration, as shown in
Figure 4, all four intrinsic reward methods solve it within
just hundreds of steps and our method is the most efficient
one. The takeaway here is that in relatively simple environ-
ments where there might be little room for improvement
over state-of-the-art, our method still achieves a better per-
formance due to its flexibility and efficiency in approximat-
ing the model posterior. As we will see in subsequent ex-
periments, this observation scales well with the increasing
difficulty of the environments.

5.1.3. ANT MAZE NAVIGATION

Next, we evaluate on the Ant Maze environment. In the
Ant control task, the agent provides torques to each of the
8 joints of the ant. The provided observation contains the
pose of the torso as well as the angles and velocities of each
joint. For the purpose of exploration, we place th e Ant in
a U-shaped maze (shown in figure 6(a)), where the goal is
to reach the end of the maze, discovering all the states. The
agent’s performance is measured by the percentage of the
maze explored during evaluation. Figure 5(a) shows the re-
sult of each method over 5 seeds. Our agent consistently
navigates to the end of the maze faster than the other com-
peting methods. While MAX (Shyam et al., 2019) also nav-
igates the maze, the implicit uncertainty modeling scheme
in our method allows our agent to better estimate the state
novelty, which leads to a considerably faster exploration.
To see that our agent fully explores the maze, and does not
only trace out a single trajectory, we include state visita-
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Figure 4. Performance of each method on the Acrobot environ-
ment (average of five seeds), with error bars representing +1 stan-
dard deviation. The length of each horizontal bar indicates the
number of environment steps each agent/method takes to swing
the acrobot to fully horizontal on both (left and right) directions.

tion diagrams in figures 6(b)-6(e). We see that the agent
explores many paths through the maze, and has not left any
large portion of the maze unexplored.

To provide a more intuitive understanding of the effect of
an intrinsic reward and how it might correlate to the per-
formance, we also plot in Figure 5(b) the intrinsic reward
observed by our agent at each exploration step, compared
with that observed by the MAX agent. For fair comparison
we plot the intrinsic reward from eq.(1) for both methods.
We can see that after step 2K, predictions from the MAX
ensemble start to become increasingly similar, leading to
a decline in intrinsic reward (Fig. 5(b)) as well as a slow-
down in exploration speed (Fig. 5(a)). We hypothesize this
is because in a regular ensemble, all members are updating
their gradients on the same experiences without an explicit
term to match the real posterior, leading to all agents even-
tually converging to the same representation. In contrast,
our intrinsic reward keeps increasing around step 2K and
remains high as we continue to quickly explore new states
in the maze, only starting to decline once we have solved
the maze at approximately step 5,500.

5.1.4. ROBOTIC MANIPULATION

The final task is an exploration task in a robotic manipu-
lation environment, HandManipulateBlock. As shown in
Figure 7(a), a robotic hand is given a palm-sized block for

133 \:‘fi
$33, ‘834
55 £

(a) Ant Maze (b) 2500 Steps

(c) 5000 Steps

100
R 80
°
o
2 60
S
&
[0} [ —— Ours
5 ( — MAX
= P —— Disagreement
ic™
20 —— Random
0 2000 4000 6000 8000 10000
Environment Steps
(a) Ant Navigation Task Results
200 — MAX
175 Ours
T 150
g
3 125
5 100
D
£ 75
£
o J'l"n"}a"w |
’.\W ] Ih” " WWM{“;;“ ‘Ar-vAln.l“l PO A B
o Al ¥

0 2000 4000 6000 8000 10000
Environment steps

(b) Ant Intrinsic Rewards

Figure 5. Figure (a) shows the performance of each method with
mean and £1 standard deviation (shaded region) over five seeds.
z-axis is the number of steps the ant has moved, y-axis is the
percentage of the U-shaped maze that has been explored. Figure
(b) shows the proposed intrinsic reward magnitude for each step
in the environment, calculated for both our method and MAX.

manipulation. The agent has actuation control of the 20
joints that make up the hand, and its exploration perfor-
mance is measured by the percentage of possible rotations
of the cube that the agent performs. This is different from
the original goal of this environment since we want to eval-
uate task-agnostic exploration rather than goal-based poli-
cies. In particular, the state of the cube is represented by
Cartesian coordinates along with a quaternion to represent
the rotation. We transform the quaternion to Euler angles
and discretize the resulting state space by 45 degree inter-
vals. The agent is evaluated based on how many of the 512
total states are visited.

(d) 7500 Steps (e) 10000 Steps

Figure 6. Figure (a) displays U-shaped ant maze. Figures (b-e) show the behavior of the agent at different stages of training, over 5
seeds. Points are color-coded with blue points occurring at the beginning of the episode, and red points at the end.
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(b) Manipulation Task Results

Figure 7. (a) The Robotic Hand task in motion. (b) Performance of each method with mean and +1 standard deviation (shaded region)
over five seeds. x-axis is the number of manipulation steps, y-axis is the number of rotation states of the block that has been explored.

Our method (red) explores clearly faster than all other methods.

This task is far more challenging than previous tasks, hav-
ing a larger state space and action space. Additionally,
states are more difficult to reach than the Ant Maze en-
vironment: requiring manipulation of 20 joints instead of
8. In order to explore in this environment, an agent must
also learn how to rotate the block without dropping it. Fig-
ure 7(b) shows the performance of each method over 5
seeds. This environment proved very challenging for all
methods: none succeeded in exploring more than half of
the state space. Still, our method performs the best by a
clear margin.

5.2. Policy Transfer Experiments

So far, we have demonstrated that the proposed implicit
generative modeling of the posterior over dynamic mod-
els leads to more effective and efficient pure exploration
policies. While the efficiency of pure exploration is im-
portant under sparse reward settings, a natural follow-up
question is whether a strong pure exploration policy would
also be beneficial for downstream tasks where dense re-
wards are available. We give an answe r to this question by
performing the following experiments in the widely-used
HalfCheetah environment.

We first train a task-agnostic exploration policy following
Alg. 1 for 10K environment steps. The trained policy is
then used to warm up the (downstream) task policy for
an additional 10K environment steps. This warm-up stage
is followed by standard training of the task policy using
external rewards. Warm-up periods are often used as an
initial exploration stage, to collect enough data for mean-
ingful off-policy updates. The baseline SAC is SAC vl
(Haarnoja et al., 2018), where the warm-up stage consists
of taking uniformly random actions for the first 10K steps,
before performing any parameter updates. Given that our

trained exploration policies explore much more efficiently
than acting randomly, we can examine if warming up SAC
with our exploration policy offers a benefit over the stan-
dard uniform warm-up strategy.

In particular, we first train a pure exploration policy for 10K
steps, for each method on HalfCheetah. We then freeze the
parameters of the pure exploration policy, and use them to
initialize a new agent in a HalfCheetah environment where
the external reward is known. We then warm up the agent,
taking actions and collecting data according to the newly
initialized policy. After 10K steps of warm-up we begin
training as normal, with respect to the external reward. We
evaluate this procedure that we call “policy transfer”, by
comparing the performance of SAC at 1M steps, after the
task policy has been warmed up using exploration poli-
cies trained by MAX, ICM, Disagreement, and Ours respec-
tively. We also include SAC v1 (with a uniform warm-up
strategy) as a baseline. For the training of the task pol-
icy, we follow the recommended settings for HalfCheetah
given in the original SAC v1 method. In the supplementary
material, we detail our hyper-parameter choices, as well as
show that our choice of hyper-parameters does not unfairly
favor our method.

Figure 8(a) shows the performance of all compared meth-
ods on HalfCheetah. We can see that the comparatively
small number of initial steps spent on pure exploration pays
off when the agent switches to the downstream task. Even
though SAC is widely regarded as a strong baseline with
a maximum entropy-based exploration mechanism, all in-
trinsic reward methods are able to improve the baseline
more or less, by introducing a pure exploration stage before
standard training of SAC. We also observe that the stronger
the pure exploration policy is, the more it can improve the
training efficiency of the downstream task. Task policies
initialized with our exploration policy (Ours) still perform
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(a) Policy Transfer Performance with Warm-up
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(b) Policy Transfer with Varying Exploration Time

Figure 8. Policy transfer results. Figure (a) shows results with policy warm-up on the HalfCheetah environment. We show results for the
SAC baseline with uniform warm-up, and SAC with 10K-step pure exploration initialization and warm-up using different intrinsic reward
methods: ICM, Disagreement, MAX, and our proposed method (Ours) respectively. To make the comparison fair, agents initialized with
pure exploration policies perform 10k less steps during task training than the baseline SAC. Figure (b) shows the performance of
downstream SAC policy training warmed up with our proposed exploration policy under different numbers of pure exploration steps.
Init- Nk refers to the SAC agent initialized from our exploration policy which has been trained for N-thousand exploration steps.

the best with a clear margin.

We also conduct an ablation study to better understand the
relationship between the number of steps used to train the
exploration policy, and the improvement it brings to down-
stream task training. We compare multiple variants of Ours
in Figure 8(a), with different numbers of pure exploration
steps: 2K, 4K, 6K, 8K, and 10K steps. As shown in Fig-
ure 8(b), with only 2K or more steps of initial pure explo-
ration, our approach improves upon the SAC baseline in
the downstream task. The longer our exploration policy is
trained, the more beneficial it is to the training of the down-
stream task. We note that by using an exploration policy
trained for just 4K steps, our agent performs strictly better
on the downstream task than the SAC baseline.

Our next study shows that even in a setting without a warm-
up stage, initializing the task policy with a pure exploration
policy still benefit the downstream task learning. In fig-
ure 9 we show an evaluation of SAC on the HalfCheetah
environment without the warm-up stage. We report perfor-
mance of the SAC baseline, as well as SAC initialized with
exploration policies trained by MAX, ICM, Disagreement,
and Ours. We can see that without initial r andom explo-
ration, the performance of SAC suffers dramatically. Poli-
cies initialized with pure exploration policies outperform
the baseline following the same trend as in the setting with
warm-up. Ours still performs the best with a clear margin.

6. Conclusion and Future Work

In this work, we introduced a new method for representing
the agent’s uncertainty of the environment dynamics. Uti-
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