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Abstract
Large-scale convolutional neural networks
(CNNs) suffer from very long training times,
spanning from hours to weeks, limiting the pro-
ductivity and experimentation of deep learning
practitioners. As networks grow in size and
complexity, training time can be reduced through
low-precision data representations and compu-
tations, however, in doing so the final accuracy
suffers due to the problem of vanishing gradients.
Existing state-of-the-art methods combat this
issue by means of a mixed-precision approach
utilising two different precision levels, FP32
(32-bit floating-point) and FP16/FP8 (16-/8-bit
floating-point), leveraging the hardware support
of recent GPU architectures for FP16 operations
to obtain performance gains. This work pushes
the boundary of quantised training by employing
a multilevel optimisation approach that utilises
multiple precisions including low-precision
fixed-point representations resulting in a novel
training strategy MuPPET; it combines the use of
multiple number representation regimes together
with a precision-switching mechanism that
decides at run time the transition point between
precision regimes. Overall, the proposed strategy
tailors the training process to the hardware-level
capabilities of the target hardware architecture
and yields improvements in training time and
energy efficiency compared to state-of-the-art
approaches. Applying MuPPET on the training of
AlexNet, ResNet18 and GoogLeNet on ImageNet
(ILSVRC12) and targeting an NVIDIA Turing
GPU, MuPPET achieves the same accuracy as
standard full-precision training with training-time
speedup of up to 1.84× and an average speedup
of 1.58× across the networks.
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1. Introduction
Convolutional neural networks (CNNs) have demonstrated
unprecedented accuracy in various machine learning tasks,
from video understanding (Gan et al., 2015; He et al., 2018)
to drone navigation (Loquercio et al., 2018; Kouris & Bouga-
nis, 2018). To achieve such high levels of accuracy in inher-
ently complex applications, current methodologies employ
the design of large and complex CNN models (Szegedy
et al., 2017; Huang et al., 2017) trained over large datasets
(Deng et al., 2009; Lin et al., 2014). Despite the associated
accuracy gains, the combination of large models with mas-
sive datasets also results in excessively long training times.
This in turn leads to long turn-around times which set a limit
to the productivity of deep learning practitioners and pro-
hibit wider experimentation. For instance, automatic tuning
and search of neural architectures (Cai et al., 2018; Zhong
et al., 2018) is a rapidly advancing area where accelerated
training enables the improvement of the produced networks.

To counteract these long turn-around times, substantial re-
search effort has been invested in hyperparameter tuning
for the acceleration of training, with a particular focus on
batch size and content. One line of work aims to maximise
memory and hardware utilisation by changing the batch
size, in order to perform CNN training-specific prefetching,
scheduling and dependency improvement (Chen et al., 2019;
Rhu et al., 2016). Other works focus on altering batch size or
reconstructing minibatches to improve the convergence rate
while sustaining high hardware utilisation (Devarakonda
et al., 2017; Johnson & Guestrin, 2018; Peng et al., 2019),
demonstrating up to 6.25× training speedup.

In a different direction, a number of studies have focused
on the use of reduced-precision training schemes. Reduced-
precision arithmetic involves the utilisation of data formats
that have smaller wordlengths than the conventional 32-bit
floating-point (FP32) representation and is an approach for
co-optimising processing speed, memory footprint and com-
munication overhead. Existing literature can be categorised
into i) works that use reduced precision to only accelerate
the training stage while eventually yielding an FP32 model,
and ii) those that produce networks with quantised weights.
Regarding the former, Courbariaux et al. (2015) and Gupta
et al. (2015) utilise dynamic quantisation and stochastic
rounding respectively as a means to combat the accuracy
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loss due to quantisation. Nevertheless, the effectiveness
of the proposed schemes has only been demonstrated on
small-scale datasets such as CIFAR-10 and MNIST, and on
a limited set of networks. Furthermore, the range of quan-
tisation levels that has been explored varies greatly, with a
number of works focusing solely on mild quantisation levels
such as half-precision floating-point (FP16) (Micikevicius
et al., 2018), while others focus on lower precisions such
as 8-bit floating-point (FP8) (Wang et al., 2018). Finally,
quantisation has also been used as a means of reducing
the memory and communication overhead in distributed
training (De Sa et al., 2015; 2017; Alistarh et al., 2017).

At the same time, the characteristics of modern CNN work-
loads and the trend towards quantised models have led to an
emergence of specialised hardware processors, with support
for low-precision arithmetic at the hardware level. From
custom designs such as Google’s TPUs (Jouppi et al., 2017)
and Microsoft’s FPGA-based Brainwave system (Fowers
et al., 2018) to commodity devices such as NVIDIA’s Turing
GPUs (Burgess, 2019), existing platforms offer increased
parallelism through native support for reduced-precision
data types including 16-bit floating-point (FP16), as well
as 8- (INT8) and 4-bit (INT4) fixed-point. Although these
platforms have been mainly designed for the inference stage,
the low-precision hardware offers significant opportunities
for accelerating the time-consuming training stage. Con-
sequently, there is an emerging need to provide training
algorithms that can leverage these existing hardware optimi-
sations and yield higher training speed.

This work tackles the field of reduced-precision training
at an algorithmic level. Independently of the number of
quantisation levels chosen, or how extreme the quantisation
is, this work proposes a metric that estimates the amount
of information each new training step obtains for a given
quantisation level, by capturing the diversity of the com-
puted gradients across epochs. This enables the design of
a policy that, given a set of quantisation levels, decides at
run time appropriate points to increase the precision of the
training process at that current instant without impacting the
achieved test accuracy compared to training in FP32. Due
to its agnostic nature, it remains orthogonal and comple-
mentary to existing low-precision training schemes. Further-
more, by pushing the precision below the 16-bit bitwidth
of existing state-of-the-art techniques, the proposed method
is able to leverage the low-precision capabilities of modern
processing systems to yield training speedups without pe-
nalising the resulting accuracy, significantly improving the
time-to-accuracy trade-off.

2. Background and Related Work
The state-of-the-art method in training with reduced preci-
sion is mixed-precision training (Micikevicius et al., 2018).

The authors propose to employ low-precision FP16 com-
putations in the training stage of high-precision CNNs that
perform inference in FP32. Along the training phase, the
algorithm maintains a high-precision FP32 copy of the net-
work’s weights, known as a master copy. At each minibatch,
the inputs and weights are quantised to FP16 with all compu-
tations of the forward and backward pass performed in FP16,
yielding memory footprint and runtime savings. Under this
scheme, each stochastic gradient descent (SGD) update step
entails accumulating FP16 gradients into the FP32 master
copy of the weights, with this process performed iteratively
throughout the training of the network. Micikevicius et
al. (2018) evaluate their scheme over a set of state-of-the-art
models on ImageNet, and show that mixed-precision train-
ing with FP16 computations achieves comparable accuracy
to standard FP32 training.

Wang et al. (2018) also presented a method to train an FP32
model using 8-bit floating-point (FP8). The authors pro-
pose a hand-crafted FP8 data type, together with a chunk-
based computation technique, and employ strategies such
as stochastic rounding to alleviate the accuracy loss due to
training at reduced precision. For AlexNet, ResNet18 and
ResNet50 on ImageNet, Wang et al. (2018) demonstrate
comparable accuracy to FP32 training while performing
computations in FP8.

Additionally, the works presented in (Zhou et al.,
2016; Chen et al., 2017) approach the problem of
reduced-precision training through fixed-point computa-
tions. FxpNet (Chen et al., 2017) was only evaluated on
CIFAR-10, failing to demonstrate performance on more
complex datasets such as ImageNet. DoReFa-Net (Zhou
et al., 2016) was tested on ImageNet, but only ran on
AlexNet missing out on state-of-the-art networks such as
GoogLeNet and ResNet.

All related works focus on either accelerating the training
of an FP32 model through reduced-precision floating-point
computations or using reduced-precision fixed-point compu-
tations to train a fixed-point model. At the hardware level,
8-bit fixed-point multiplication uses 18.5× less energy and
27.5× less area with up to 4× lower runtimes than FP32
(Sze et al., 2017; Kouris et al., 2018). Consequently, this
work attempts to push the boundaries of reduced-precision
training by combining the processing performance gains
of low-bitwidth fixed-point computations with the floating-
point-level accuracy of training an FP32 model.

Preliminary tests (Sec. 4.4 for details) demonstrated that
training solely in 8-bit fixed-point results in a significant
degradation of validation accuracy compared to full FP32
training. This work aims to counteract this degradation
by progressively increasing the precision of computations
throughout training in an online manner determined by the
proposed metric inspired by gradient diversity (Yin et al.,
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2018). Additionally by operating in an online fashion, MuP-
PET tailors the training process to best suit the particular
network-dataset pair at each stage of the training process.

Gradient diversity was introduced by Yin et al. (2018) as a
metric of measuring the dissimilarity between sets of gradi-
ents that correspond to different minibatches. The gradient
diversity of a set of gradients is defined as

∆S(w) =

∑n
i=1 ||∇fi(w)||22

||
∑n
i=1∇fi(w)||22

=

∑n
i=1 ||∇fi(w)||22∑n

i=1 ||∇fi(w)||22 +
∑
i6=j〈∇fi(w),∇fj(w)〉

(1)

where∇fi(w) is the gradient of weights w for minibatch i.

The key point to note in Eq. (1) is that the denominator con-
tains the inner product between two gradients from different
minibatches. Thus, orthogonal gradients would result in
high gradient diversity, while similar gradients would yield
low gradient diversity. The proposed framework, MuPPET,
enhances this concept by considering gradients between
minibatches across epochs and proposes the developed met-
ric as a proxy for the amount of new information gained in
each training step. Section 3 further expands on how gra-
dient diversity is incorporated into the MuPPET algorithm.

3. Methodology - MuPPET Algorithm
3.1. Multilevel Optimisation for Training CNNs

Conventionally, the training process of a CNN can be ex-
pressed as in Eq. (2). Given a CNN model f parametrised
by a set of weights w ∈ RD, where D is the number of
weights of f , training involves a search for weight values
that minimise the task-specific empirical loss, Loss, on the
target dataset. Typically, a fixed arithmetic precision is em-
ployed across the training algorithm with FP32 currently
being the de facto representation used by the deep learning
community.

min
w(FP32)∈RD

Loss(f(w(FP32))) (2)

The proposed method follows a different approach by intro-
ducing a multilevel optimisation scheme (Migdalas et al.,
2013) that leverages the performance gains of reduced-
precision arithmetic. The single optimisation problem of
Eq. (2) is transformed into a series of optimisation problems
with each one employing different precision for computa-
tions, but maintaining weights storage at FP32 precision.
Under this scheme, an N -level formulation comprises N
sequential optimisation problems to be solved, with each
level corresponding to a “finer” model.

Figure 1. Quantised training scheme of MuPPET.

Overall, this formulation adds a hierarchical structure to the
training stage, with increasing arithmetic precision across
the hierarchy of optimisation problems. Starting from the
N -th problem, the inputs, weights and activations of the
CNN model f are quantised with precision qN , which is the
lowest precision in the system and represents the coarsest
version of the model. Each of theN levels progressively em-
ploys higher precision until the first level is reached, which
corresponds to the original problem of Eq. (2). Formally, at
the i-th level, the optimisation problem is formulated as

min
w(qi)∈V

Loss(f(w(qi))) s.t.V =
{

w(qi) ∈ [LB,UB]D
}

(3)
where LB and UB are the lower and upper bound in the
representational range of precision qi. The target CNN
model f uses a set of weights quantised with precision qi

and hence the solution of this optimisation problem can be
interpreted as an approximation to the original problem of
Eq. (2). To transition from one level to the next, the result
of each level of optimisation is employed as a starting point
for the next level, up to the final outermost optimisation that
reduces to Eq. (2).

3.2. Quantised Training

Fig. 1 presents the process of training a CNN using the
proposed algorithm. At epoch j, MuPPET performs mixed-
precision training where the weights are stored in an FP32
master copy and are quantised to the desired fixed-point pre-
cision (qj) on-the-fly. At epoch j, the computations for the
forward and backward passes (F and B blocks respectively)
are performed at the current quantised precision (qj) and
the activations as well as the gradients obtained from each
layer are quantised by the quantiser module before being
passed on to the next layer, or stored. After each minibatch,



MuPPET: A precision-switching strategy for quantised fixed-point training of CNNs

the full-precision master copy of the weights is updated
using a quantised gradient matrix. As discussed in Section
3.1, the quantisation level is gradually increased over the
period of the training. To not compromise the final valida-
tion accuracy, switching between these optimisation levels
at the correct times is crucial and controlled by a proposed
precision-switching policy described in Section 3.3.

3.2.1. QUANTISATION STRATEGY

In order to implement quantised training, a quantisation
strategy needs to be defined. The proposed quantisation
strategy utilises block floating-point arithmetic (also known
as dynamic fixed-point), where each fixed-point number is
represented as a pair of a WLnet-bit signed integer x and a
scale factor s, such that the value is represented as x× 2−s.

During the forward and backward passes of the training pro-
cess, the weights and feature maps are both quantised, and
the multiplication operations are performed at the same low
precision. The quantisation method employs a stochastic
rounding methodology (Gupta et al., 2015). The accumula-
tion stage of the matrix-multiply operation is accumulated
into a 32-bit fixed-point value to prevent overflow on the
targeted networks.1 The result of this matrix multiplication
is subsequently quantised to the target wordlength before
being passed as input to the next layer. Following the block
floating-point scheme, quantisation is performed such that
each weight and feature map matrix in the network has a
single scale factor shared by all values within the matrix.
The quantisation configuration for the i-th level of optimisa-
tion and the l-th layer, qil , and the full set of configurations,
qi, are given in Eq. (4) respectively.

qil =
〈

WLnet, sweights
l , sact

l

〉i
,

∀l ∈ [1, |L|] and qi =
〈
qil | ∀l ∈ [1, |L|]

〉 (4)

where |L| is the number of layers of the target network,
WLnet is the fixed wordlength across the network, sweights

l

and sact
l are the scaling factors for the weights and acti-

vations respectively, of the l-th layer for the i-th level of
optimisation. As a result, for N levels, there are N distinct
quantisation schemes; N − 1 of these schemes are with
varying fixed-point precisions and the finest level of quan-
tisation, q1, is single-precision floating-point (FP32). The
scaling factor for a matrix X is first calculated as shown in
Eq. (5) and individual elements are quantised as in Eq. (6).

s{weights,act} =⌊
log2

(
min

(
UB + 0.5

X
{weights,act}
max

,
LB− 0.5

X
{weights,act}
min

))⌋ (5)

1The accumulator wordlength is large enough to accommodate
the current CNN models without overflow.

x
{weights,act}
quant =⌊
x{weights,act} · 2s

{weights,act}
+ Unif (−0.5, 0.5)

⌉ (6)

where X
{weights,act}
{max,min} is either the maximum or minimum

value in the weights or feature maps matrix of the current
layer, LB and UB are the lower and upper bound of the cur-
rent wordlength WLnet, and Unif(a,b) represents sampling
from the uniform distribution in the range [a,b]. Eq. (5)
adds 0.5 and −0.5 to UB and LB respectively to ensure
maximum utilisation of WLnet.

3.2.2. INFORMATION TRANSFER BETWEEN LEVELS

Employing multilevel training for CNNs requires an ap-
propriate mechanism for transferring information between
levels. To achieve this, the proposed optimiser maintains a
master copy of the weights in full precision (FP32) through-
out the optimisation levels. Similar to mixed-precision train-
ing (Micikevicius et al., 2018), at each level the SGD update
step is performed by accumulating a fixed-point gradient
value into the FP32 master copy of the weights. Starting
from the coarsest quantisation level i = N , to transfer
the solution from level i to level i − 1, the master copy is
quantised using the quantisation scheme qi−1. With this
approach, the weights are maintained in FP32 and are quan-
tised on-the-fly during run time in order to be utilised in
each training step.

3.3. Precision-Switching Policy

MuPPET computes ∆S(w) (Eq. (1)) between gradients
obtained across epochs as a proxy to measure the informa-
tion that is obtained during the training process; the lower
the diversity between the gradients, the less information
this level of quantisation provides towards the training of
the model. Therefore, the proposed method comprises a
novel normalised inter-epoch version of the gradient diver-
sity along with a run-time policy to determine the epochs in
which to switch precision.

The following policy is employed to determine when a pre-
cision switch is to be performed. For a network with layers
L and a quantisation scheme qi that was switched into at
epoch e:

1. For each epoch j and each layer l ∈ L, the last mini-
batch’s gradient,∇f jl (w), is stored.

2. After r (resolution) number of epochs, the inter-epoch
gradient diversity at epoch j is

∆S(w)j =

∑
∀l∈L

∑j
k=j−r ||∇f

k
l (w)||22

||
∑j

k=j−r ∇f
k
l (w)||22

|L|
(7)

3. At an epoch j, given a set of gradient diversities
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S(j) =
{

∆S(w)i ∀ e ≤ i < j
}

,

the ratio p = maxS(j)
∆S(w)j is calculated.

4. An empirically determined decaying threshold
T = α+ βe−λj (8) is placed on the ratio p.

5. If p violates T more than γ times, a precision switch is
triggered and S(j) = ∅.

As long as the gradients across epochs remain diverse,
∆S(w)j (Eq.(7)) at the denominator of p sustains a high
value and the value of p remains low. However, when the
gradients across epochs become similar, ∆S(w)j decreases
and the value of p becomes larger. Generalisability
across epochs is obtained as p accounts for the change
in information relative to the maximum information
available since the last precision change. Hence, the
metric acknowledges the presence of temporal variations
in information provided by the gradients. Generalisability
across networks and datasets is maintained as p measures a
ratio. Consequently, the absolute values of gradients which
could vary between networks and datasets, matter less.
Overall, MuPPET employs the metric p as a mechanism to
trigger a precision switch whenever p violates threshold T
more than γ times.

The likelihood of observing r gradients across r epochs that
have low gradient diversity, especially at early stages of
training is low. The intuition applied here is that when this
does happen at a given precision, it may be an indication
that information is being lost due to quantisation and thus
corresponds to a high p value, which argues to move to a
higher bitwidth.

3.3.1. HYPERPARAMETERS

The hyperparameters for the proposed MuPPET algorithm
are the following: 1) values of α, β, and λ that define the
decaying threshold from Eq. (8), 2) the number of thresh-
old violations allowed before the precision change is trig-
gered (γ), 3) the resolution r, 4) the set of precisions at
which training is performed, and 5) the epochs at which the
learning rate is changed. The values of α, β, λ, r, and γ
were set at 1, 1.5, 0.1, 3, and 2 respectively after empirical
cross-validation. These were tuned by running training on
AlexNet and ResNet20 on the CIFAR-10 dataset. All MuP-
PET hyperparameters remain the same regardless of network
or dataset. Regarding training hyperparameters, batch size
was increased from 128 to 256 going from CIFAR-10 to
ImageNet. All other training hyperparameters, including
learning rate, remained constant. Analysis of generalisabil-
ity and the training hyperparameters used are presented in
Section 4.1. The empirically-chosen quantised precisions
at which training was performed were 8-, 12-, 14- and 16-

bit fixed-point. Precisions below this did not result in any
progress towards convergence for any network.

Overall, MuPPET introduces a policy that decides at run
time an appropriate point to switch between quantisation
levels. After training at 16-bit fixed-point, the rest of the
training is performed at FP32 until the desired validation
accuracy is reached. Decaying the learning rate causes a
finer exploration of the optimisation space as does increas-
ing the quantisation level. Therefore, the learning rate was
kept constant during quantised training and was decayed
only after switching to FP32.

4. Evaluation of MuPPET
4.1. Generalisability

The MuPPET framework was evaluated on its applicability
across epochs, networks and datasets. Fig. 2 shows the value
of the metric p over the epochs in blue, and the decaying
threshold described in Eq. (8) in orange. The number of
epochs for which training in each precision was performed
is shown by the various overlay colours. The first violation
is denoted by a red dot and the second violation is not seen
as it occurs exactly at the point of switching. The graphs
show that across various networks and datasets, the values
of p stay relatively similar, backing the choice of a universal
decaying factor. Furthermore, empirical results for CIFAR-
10 indicated that changing from one fixed-point precision
to another too early in the training process had a negative
impact on the final validation accuracy. Using a decaying
threshold ensures that the value of p needs to be much higher
in the initial epochs to trigger a precision change due to the
volatility of p in early epochs of training.

4.2. Performance Evaluation

The accuracy results presented in this section utilised the
proposed stochastic quantisation strategy. The methodology
was developed using PyTorch. As the framework does not
natively support low-precision implementations, all quan-
tisation and computations corresponding to 8-, 12-, 14-,
and 16-bit precisions were performed through emulation on
floating-point hardware 2. All hyperparameters not specified
below were left as PyTorch defaults. For all networks, an
SGD optimiser was used with batch sizes 128 on CIFAR-
10/100 or 256 on ImageNet, momentum of 0.9 and weight
decay of 1e−4.

As a baseline, an FP32 model with identical hyperparame-
ters (except for batch size) was trained. The baseline FP32
training was performed by training for 150 epochs and reduc-
ing the learning rate by a factor of 10 at epochs 50 and 100.
In order to achieve comparable final validation accuracy

2https://github.com/ICIdsl/pytorch training.git

https://github.com/ICIdsl/pytorch_training.git
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(a) AlexNet - CIFAR-10 (b) ResNet20 - CIFAR-10 (c) GoogLeNet - CIFAR-10

(d) AlexNet - ImageNet (e) ResNet18 - ImageNet (f) GoogLeNet - ImageNet

Figure 2. Demonstration of the generalisability of p over networks, datasets and epochs. Figures show the metric p (blue) and the decaying
threshold T (orange) over epochs of training.

to the FP32 baseline, once MuPPET triggered a precision
change out of 16-bit fixed-point, 45 training epochs at FP32
precision were performed. The learning rate was reduced by
a factor of 10 every 15 FP32 training epochs. For AlexNet,
ResNet18, ResNet20, and GoogLeNet, the initial learning
rate was set to 0.01, 0.1, 0.1, and 0.001 respectively. The
ImageNet training and validation loss curves can be seen
in the Fig.3. For each of the graphs, the light grey lines
indicate the epoch at which precision was switched in the
MuPPET run. The green lines follow MuPPET runs and
the blue FP32 training. Solid lines show validation loss and
dashed training loss.

Table 1. Top-1 test accuracy (%) on CIFAR-10/100 and ImageNet
(ILSVRC12 Validation Set) for FP32 baseline and MuPPET.

CIFAR-10 CIFAR-100 ImageNet
FP32 MuPPET Diff (pp) FP32 MuPPET Diff (pp) FP32 MuPPET Diff (pp)

AlexNet 75.45 74.49 -0.96 39.20 38.19 -0.99 56.21 55.33 -0.88
ResNet 90.08 90.86 0.78 64.60 65.80 1.20 69.48 69.09 -0.39
GoogLeNet 89.23 89.47 0.24 62.90 65.70 2.80 59.15 63.70 4.55

Table 1 presents the achieved Top-1 validation accuracy of
MuPPET and the FP32 baseline, together with the accuracy
difference in percentage points (pp). As shown on the table,
MuPPET is able to provide comparable Top-1 validation ac-
curacy to standard FP32 training across both networks and
datasets. Due to a sub-optimal training setup of GoogLeNet
on ImageNet, the baseline and MuPPET training severely

underperformed compared to the reported state-of-the-art
works. Nevertheless, the results demonstrate the quality
of training with MuPPET using identical hyperparameters.
As a result, MuPPET’s performance demonstrates the ef-
fectiveness of the precision-switching strategy in achieving
significant acceleration of training time (Section 4.3) at neg-
ligible cost in accuracy by running many epochs at lower
precision, particularly on very large datasets.

4.3. Wall-clock Time Improvements

This section explores the gains in estimated wall-clock time
of the current implementation of MuPPET (Current Impl.)
with respect to baseline FP32 training, Mixed Precision by
Micikevicius et al. (2018) and MuPPET’s ideal implemen-
tation (Table 2). For all performance results, the target
platform was an NVIDIA RTX 2080 Ti GPU.

At the moment, deep learning frameworks, such as PyTorch,
do not provide native support for reduced-precision hard-
ware except for FP16 used by Micikevicius et al. (2018).
Consequently, the wall-clock times on Table 2 were esti-
mated using a performance model developed with NVIDIA’s
CUTLASS library (Kerr et al., 2018) for reduced-precision
general matrix-multiplication (GEMM) employing the lat-
est Turing architecture GPUs. The entire training process
in PyTorch was profiled including the following MuPPET
specific operations: quantisation of weights, activations and
gradients as well as all calculations pertaining to ∆S(w)j .
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(a) AlexNet (b) ResNet18 (c) GoogLeNet

Figure 3. FP32 vs MuPPET training and validation loss graphs for different networks on the ILSVRC12 dataset.

The GEMMs that were accelerated were in the convolutional
and fully-connected layers of each network. INT8 hardware
was used to profile the 8-bit fixed-point computations, while
FP16 hardware was used to profile 12-, 14-, and 16-bit
fixed-point computations as well as Mixed Precision (Mi-
cikevicius et al., 2018) wall-clock time. CUTLASS (Kerr
et al., 2018) natively implements bit-packing to capitalise on
improved memory-bandwidth utilisation. To exploit further
performance benefits by utilising 12- and 14-bit fixed-point
computations, custom hardware such as FPGAs or ASICs
would be required. The model for the current implemen-
tation is limited by the fact that current frameworks force
quantisation of activations inbetween layers to happen to and
from FP32. For the MuPPET (Ideal) scenario and Mixed
Precision (Micikevicius et al., 2018), the model assumes
native hardware utilisation for all deployed data representa-
tions which would eliminate the current overheads.

As shown on Table 2, MuPPET consistently achieves
1.25-1.32× speedup over the FP32 baseline across the net-
works when targeting ImageNet on the given GPU. With
respect to Mixed Precision, the proposed method outper-
forms it on AlexNet by 1.23× and delivers comparable
performance for ResNet18 and GoogLeNet. Currently, the
absence of native quantisation support, and hence the neces-
sity to emulate quantisation and the associated overheads, is
the limiting factor for MuPPET to achieve higher process-
ing speed. In this respect, MuPPET run on native hardware
would yield 1.05× and 1.48× speedup for ResNet18 and
GoogLeNet respectively compared to Mixed Precision. As
a result, MuPPET demonstrates consistently faster time-to-
accuracy (Coleman et al., 2019) compared to Mixed Preci-
sion across the benchmarks. Additionally, while Mixed Pre-
cision has already reached its limit by using FP16 on FP16-
native GPUs, the 8-, 12-, 14- and 16-bit fixed-point com-
putations enabled by MuPPET leave space for further po-
tential speedup when targeting next- and current-generation
(Fowers et al., 2018) precision-optimised fixed-point plat-
forms. Similar to the analysis in Section 4.2, Micikevicius
et al. (2018) and Wang et al. (2018) compare their schemes

Table 2. Wall-clock time (GPU hours:mins) & relative acceleration
for networks targeting ImageNet.

FP32
(Baseline)

Mixed Prec
(Micikevicius et al., 2018)

MuPPET
(Current Impl.)

MuPPET
(Ideal)

AlexNet 30:13 (1×) 29.20 (1.03×) 23:52 (1.27×) 20:25 (1.48×)
ResNet18 132:46 (1×) 97:25 (1.36×) 100:19 (1.32×) 92:43 (1.43×)
GoogLeNet 152:28 (1×) 122:51 (1.24×) 122:13 (1.25×) 82:38 (1.84×)

Figure 4. Test accuracy vs time trade-off for ResNet20 MuPPET
runs on CIFAR-100.

to baseline FP32 training performed by them. The reported
results demonstrate that their methods achieve similar accu-
racy results to our method by lying close to the respective
FP32 training accuracy. As Wang et al. (2018) do not pro-
vide any results for gains in wall-clock times, propose a
custom FP8 data type and computation, provide emulated
results from an in-house (not open source) machine learning
framework, and could build only a subset of their proposed
ideas on an ASIC, their work could not be directly compared
to our method.

4.4. Precision Switching

To evaluate the ability of MuPPET to effectively choose an
epoch to switch precision at, AlexNet and ResNet20 were
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Table 3. Evaluation of MuPPET’s ability to tailor to dataset and
network combination using Top-1 test accuracy on CIFAR-100.

ResNet20 GoogLeNet
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

ResNet20 65.01 65.80 - 65.0
GoogLeNet - 64.00 64.70 65.70

first trained using MuPPET on the CIFAR-100 dataset. The
hyperparameters for MuPPET were kept the same across all
runs. From the results it was noted that training at reduced
precision and not switching at all causes a drop in valida-
tion accuracy of 1.4% and 1.3% for AlexNet and ResNet20
respectively, hence demonstrating the need to switch preci-
sions when training at bitwidths as low as 8-bit fixed-point.

To demonstrate the benefits of a precision-switching method-
ology, two further sets of experiments were conducted on
ResNet20 using CIFAR-100. First, 34 training runs were
performed (34 red dots in Fig. 4), where for each run four
epochs along the standard training duration were randomly
selected and used as the switching points. Fig. 4 shows the
best test accuracy achieved by each of the runs and the train-
ing time as estimated by our performance model described in
Section 4.3. It shows that for a given time-budget, MuPPET
runs (6 green dots) outperform on average all other experi-
ment sets, demonstrating the need for a precision-switching
policy that is real-time in order to achieve a good accuracy-
to-training-time trade-off. The accuracy and time have mean
± standard deviation of (65.54%±0.06, 3429.19s±46.1)
and (65.44%±0.09, 3679.15s±141.1) for the green and red
points respectively.

To demonstrate that MuPPET tailors the training process
to the network-dataset pair while using a policy that is ag-
nostic of the network-dataset combination, the experiments
in Table 3 were performed. The switching strategy gener-
ated by MuPPET for both ResNet20 and GoogLeNet on
CIFAR-10 and CIFAR-100 were recorded. The experiments
shown in Table 3 used the CIFAR-100 dataset. The bold
values show the accuracy achieved by the schedule pro-
posed by MuPPET for the corresponding network-dataset
pair. For the ResNet20 row, column 1 shows the accuracy
achieved if the precision schedule proposed by MuPPET on
the CIFAR-10 dataset for ResNet20 was applied to CIFAR-
100 training (dataset tailoring). In the same row, column
4 shows the accuracy obtained when CIFAR-100 training
was performed on ResNet20 using GoogLeNet’s CIFAR-
100 MuPPET schedule (network tailoring). Similar results
are shown for GoogLeNet. As all experiments underper-
form compared to the MuPPET training process, Table 3
demonstrates the ability of MuPPET to tailor the process to
a network-dataset combination.

5. Conclusion
This paper proposes MuPPET, a novel low-precision CNN
training scheme that combines the use of fixed-point and
floating-point representations to produce a network trained
for FP32 inference. By introducing a precision-switching
mechanism that decides at run time an appropriate transi-
tion point between different precision regimes, the proposed
framework achieves Top-1 validation accuracies comparable
to that achieved by state-of-the-art FP32 training regimes
while delivering significant speedup in terms of training
time. Quantitative evaluation demonstrates that MuPPET’s
training strategy generalises across CNN architectures and
datasets by adapting the training process to the target CNN-
dataset pair during run time. Overall, MuPPET enables
the utilisation of the low-precision hardware units available
on modern specialised processors, such as next-generation
GPUs, FPGAs and TPUs, to yield improvements in training
time and energy efficiency without impacting the resulting
accuracy. Future work will focus on applying the proposed
framework to the training of LSTMs, where the training pro-
cess is more sensitive to gradient quantisation (Rizakis et al.,
2018), as well as on the extension of MuPPET to include
batch size and learning rate as part of its hyperparameters.
Furthermore, we will explore improved quantisation tech-
niques that could enable training convergence for bitwidths
even lower than 8-bit fixed-point.
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