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Abstract

Deep-learning-based methods for various appli-
cations have been shown vulnerable to adversar-
ial examples. Here we address the use of deep-
learning networks as inverse problem solvers,
which has generated much excitement and even
adoption efforts by the main equipment vendors
for medical imaging including computed tomog-
raphy (CT) and MRI. However, the recent demon-
stration that such networks suffer from a simi-
lar vulnerability to adversarial attacks potentially
undermines their future. We propose to modify
the training strategy of end-to-end deep-learning-
based inverse problem solvers to improve robust-
ness. To this end, we introduce an auxiliary net-
work to generate adversarial examples, which is
used in a min-max formulation to build robust
image reconstruction networks. Theoretically, we
argue that for such inverse problem solvers, one
should analyze and study the effect of adversaries
in the measurement-space, instead of in the signal-
space used in previous work. We show for a linear
reconstruction scheme that our min-max formu-
lation results in a singular-value filter regularized
solution, which suppresses the effect of adversar-
ial examples. Numerical experiments using the
proposed min-max scheme confirm convergence
to this solution. We complement the theory by
experiments on non-linear Compressive Sensing
(CS) reconstruction by a deep neural network on
two standard datasets, and, using anonymized clin-
ical data, on a state-of-the-art published algorithm
for low-dose x-ray CT reconstruction. We show a
significant improvement in robustness over other
methods for deep network-based reconstruction,
by using the proposed approach.
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1. Introduction

Adversarial examples for deep learning based methods have
been demonstrated for various problems (Szegedy et al.,
2013; Kurakin et al., 2016; Cisse et al., 2017a; Eykholt
etal., 2017; Xiao et al., 2018), showing that easily obtained
minute perturbations can make deep networks produce un-
expected results. There has been plethora of work to defend
against these attacks as well (Madry et al., 2017; Tramer
et al., 2017; Athalye et al., 2018; Wong et al., 2018; Jang
et al., 2019a; Jiang et al., 2018; Xu et al., 2017; Schmidt
etal., 2018). Recently, (Antun et al., 2020; Choi et al., 2019)
introduced adversarial attacks on image reconstruction net-
works, but no defences have been proposed. In this work,
we address this gap by proposing an adversarial training
scheme for image reconstruction deep networks.

Image reconstruction involving the recovery of an image
from indirect measurements is used in many applications,
including critical applications such as medical imaging, e.g.,
Magnetic Resonance Imaging (MRI), Computerised Tomog-
raphy (CT), etc. Such applications demand the reconstruc-
tion to be stable and reliable. On the other hand, in order
to speed up the acquisition, reduce sensor cost, or reduce
radiation dose, it is highly desirable to subsample the mea-
surement data, while still recovering the original image.
This is enabled by the compressive sensing (CS) paradigm
(Candes et al., 2006; Donoho, 2006). CS involves projecting
a high dimensional, signal € R”™ to a lower dimensional
measurement y € R™, m < n, using a small set of linear,
non-adaptive frames. The noisy measurement model is:

y=Ax +v, A c R™", (D

where A is the measurement matrix and v is the measure-
ment noise. The goal is to recover the unobserved natural
image x, from the compressive measurement y. Although
the problem with m < n is severely ill-posed and does
not have a unique solution, CS achieves nice, stable solu-
tions for a special class of signals z - those that are sparse
or sparsifiable, by using sparse regularization techniques
(Candes et al., 2006; Donoho, 2006; Elad & Aharon, 2006;
Dong et al., 2011; Wen et al., 2015; Liu et al., 2017; Dabov
et al., 2009; Yang et al., 2010; Elad, 2010; Li et al., 2009;
Ravishankar & Bresler, 2012).

Recently, deep learning-based methods have also been pro-
posed as an alternative method for performing image recon-
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struction (Zhu et al., 2018; Jin et al., 2017; Schlemper et al.,
2017; Yang et al., 2017; Hammernik et al., 2018). While
these methods have achieved state-of-the-art (SOTA) perfor-
mance, the networks have been found to be very unstable
(Antun et al., 2020), as compared to the traditional methods.
Adversarial perturbations have been shown to exist for such
networks, which can degrade the quality of image recon-
struction significantly. (Antun et al., 2020) studies three
types of instabilities: (i) Tiny (small norm) perturbations
applied to images that are almost invisible in the original im-
ages, but cause a significant distortion in the reconstructed
images. (ii) Small structural changes in the original images,
that get removed from the reconstructed images. (iii) Stabil-
ity with increasing the number of measurement samples. In
this work, we try to address instability (i) above.

We argue that studying the instability for image reconstruc-
tion networks in the x-space (Antun et al., 2020) is sub-
optimal, and instead, we consider perturbations in the mea-
surement, y-space. For robustness, we modify the training
strategy: we introduce an auxiliary network to generate ad-
versarial examples on the fly, which are used in a min-max
formulation. This results in an adversarial game between
two networks while training, similar to the Generative Ad-
versarial Networks (GANSs) (Goodfellow et al., 2014; Ar-
jovsky et al., 2017). However, since the goal here is a robust
reconstruction network, the training strategy is modified.
Our theoretical analysis for a special case of a linear re-
construction scheme shows that the min-max formulation
results in a singular-value filter regularized solution, sup-
pressing the effect of adversarial examples. For a linear
reconstruction network, our experiment using the min-max
formulation with a learned adversarial example generator
confirms convergence to the theoretically-obtained solution.
For a complex non-linear deep network, our experiments
show that compared to other methods, the proposed training
scheme results in a more robust network, both qualitatively
and quantitatively. Further, experiments and analysis show
qualitatively different behavior as a function of the condi-
tioning of the measurement matrix. Finally, the practical
significance of the proposed formulation is demonstrated in
experiments using clinical CT data with the FBPConvNet
(Jin et al., 2017) for low dose CT reconstruction, where we
again achieve significant improvement in robustness.

2. Proposed Method

2.1. Adversarial Training

One of the most powerful methods for training an adver-
sarially robust network is adversarial training (Madry et al.,
2017; Tramer et al., 2017; Sinha et al., 2017; Arnab et al.,
2018). It involves training the network using adversarial ex-
amples, enhancing its robustness to attacks during inference.
This strategy has been effective in classification settings.

Standard adversarial training involves solving the following
min-max optimization problem:

minEq, yep[ max L(f(z+6;0),y)] 2)

o d:[[6]lp <e

where L(-) represents the applicable loss function, e.g.,
cross-entropy for classification, and ¢ is the perturbation
added to each sample, within an £,,-norm ball of radius e.
This min-max formulation encompasses possible variants of
adversarial training. It consists of solving two optimization
problems: an inner maximization and an outer minimization
problem. This corresponds to an adversarial game between
the attacker and robust network f. The inner problem tries
to find the optimal § : ||d]|, < e for a given data point (z, y)
maximizing the loss, which essentially is the adversarial at-
tack, whereas the outer problem aims to find a  minimizing
the same loss. For an optimal 6* solving (2), f(; 6*) will be
robust (in expected value) to all 44, lying in the £, ball of
radius e-around the true x.

2.2. Problem Formulation

(Antun et al., 2020) identify instabilities of a deep learning
based image reconstruction network by maximizing the
following cost function:

1 A
Qu(r) = 5llf(y + Ar) — 5 = S[Ir? 3)

As evident from this framework, the perturbation r is added
in the z-space for each y, resulting in perturbation Ar in
the y-space. We argue that this formulation can miss impor-
tant aspects in image reconstruction, especially in ill-posed
problems, for the following three main reasons:

1. It may not be able to model all possible perturbations to
y. The perturbations A to y modeled in this formula-
tion are all constrained to the range-space of A. When
A does not have full row rank, there exist perturbations
to y that cannot be represented as AJ.

2. It misses instabilities created by the ill-conditioning
of the reconstruction problem. Consider a simple ill-
conditioned reconstruction problem:

A= [(1) 2} and f = {(1) 19@} 4)

where A and f define the forward and reconstruction
operator respectively, and |a| < 1. For § = [0,¢]”
perturbation in x, the reconstruction is f(A(z + ¢)) =
x + 0, and the reconstruction error is || f(A(z + §)) —
z|l2 = e, that is, for small ¢, the perturbation has
negligible effect. In contrast, for the same perturbation
§ in y, the reconstruction is f(Azr+6) = z+[0, ¢/a]”,
with reconstruction error || f(A(z + 9)) — z||2 = €/a,
which can be arbitrarily large if @ — 0. This aspect is
completely missed by the formulation based on (3).
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3. For inverse problems, one also wants robustness to
perturbations in the measurement matrix A. Suppose
A used in training is slightly different from the actual
A’ = A + A that generates the measurements. This
results in perturbation Az in y-space, which may be
outside the range space of A, and therefore, as in 1
above, may not be possible to capture by the formula-
tion based on (3).

The above points indicate that studying the problem of ro-
bustness to perturbations for image reconstruction problems
in z-space misses possible perturbations in y-space that can
have a huge adversarial effect on reconstruction. Since many
of the image reconstruction problems are ill-posed or ill-
conditioned, we formulate and study the issue of adversaries
in the y-space, which is more generic and able to handle
perturbations in the measurement operator A as well.

2.3. Image Reconstruction

Image Reconstruction deals with recovering the clean im-
age = from noisy and possibly incomplete measurements
y = Axz 4+ v. Recently, deep-learning-based approaches
have outperformed the traditional techniques. Many deep
learning architectures are inspired by iterative reconstruc-
tion schemes (Rick Chang et al., 2017; Raj et al., 2019;
Bora et al., 2017; Wen et al., 2019). Another popular way
is to use an end-to-end deep network to solve the image
reconstruction problem directly (Jin et al., 2017; Zhu et al.,
2018; Schlemper et al., 2017; Yang et al., 2017; Hammernik
et al., 2018; Sajjadi et al., 2017; Yao et al., 2019). In this
work, we propose modification in the training scheme for
the end-to-end networks.

Consider the standard MSE loss in z-space with the popular
{s-regularization on the weights (aka weight decay), which
mitigates overfitting and helps in generalization (Krogh &
Hertz, 1992)

min B, || f(Az; 0) — || + 0] (5)

In this paper, we experiment both with ;¢ > 0 (regularization
present) and i = 0 (no regularization). No regularization is
used in the sequel, unless stated otherwise.

2.3.1. ADVERSARIAL TRAINING FOR IMAGE
RECONSTRUCTION

Motivated by the adversarial training strategy (2), several
frameworks have been proposed recently to make classifi-
cation by deep networks more robust (Jang et al., 2019b;
Kurakin et al., 2016; Wang & Yu, 2019). For image re-
construction, we propose to modify the training loss to the
general form:

~ . 9) — 2112 .0) — 2|2
rno}nleMIIgiXSEIIf(Axﬁ) ||+ Allf(Az +6;0) — =]

The role of the first term is to ensure that the network f
maps the non-adversarial measurement to the true x, while
the role of the second term is to train f on worst-case adver-
sarial examples within the £,-norm ball around the nominal
measurement Axz. We want § to be the worst case pertur-
bation for a given f. However, during the initial training
epochs, f is mostly random (assuming random initializa-
tion of the weights) resulting in random perturbation, which
makes f diverge. Instead, we use only the first term during
initial epochs to get an f that provides reasonable recon-
struction. Then, reasonable perturbations are obtained by
activating the second term, which results in robust f.

Now, solving the min-max problem above is intractable for
a large dataset as it involves finding the adversarial example
by solving the inner maximization for each training sam-
ple y = Ax. This may be done using projected gradient
descent (PGD), but is very costly. A possible sub-optimal
approximation (with p = 2) for this formulation is:

min  max Eo||f(Az;0) — 2|3 + | f(Az +6;6) — 2|3

This formulation finds a common ¢ that is adversarial to
all measurements y on the average, and tries to minimize
the reconstruction loss for the adversarial examples together
with that for clean examples. Clearly this is sub-optimal as
using a perturbation § common to all y’s need not be the
worst-case perturbation for any of the y’s, and optimizing
for the common ¢ won’t result in a highly robust network.
Ideally, we would want the best of both worlds: i.e., to
generate ¢ for each y independently, together with tractable
training. To this end, we propose to parameterize the worst-
case perturbation § = arg maxg, 5, <. | f(y + ;0) — z|13
by a deep neural network G(y;¢). This also eliminates
the need to solve the inner-maximization to find § using
hand-crafted methods. Since G(-) is parameterized by ¢
and takes y as input, a well-trained G will result in optimal
perturbation for the given y = Az. The modified loss
function becomes:
. X 2
min R, Bellf (Az;6) <]

+ Al f(Az + G(Az; 6);0) — |

This results in an adversarial game between the two net-
works: G and f, where G’s goal is to generate strong ad-
versarial examples that maximize the reconstruction loss
for the given f, while f tries to make itself robust to the
adversarial examples generated by the G. This framework
is illustrated in the Fig. 1. This min-max setting is quite
similar to the Generative adversarial network (GAN), with
the difference in the objective function. Also, here, the main
goal is to build an adversarially robust f, which requires
some empirical changes compared to standard GANs to
make it work. Another change is to reformulate the con-
straint ||G(-, ¢)||2 < € into a penalty form using the hinge
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loss, which makes the training more tractable:
meinmgx E.| f(Az;0) — x|
+ | (Ax + G(Az;0):6) — o]
+ Ao max{0, |G(Az; §) |5 — €} (6)

Note that Ao must be negative to satisfy the required con-
straint ||G(+, 9)||2 < e.
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Figure 1. Adversarial training framework of image reconstruction
network f with another network G generating the perturbations

2.3.2. TRAINING STRATEGY

We apply some modifications and heuristic changes to train
arobust f jointly with training G in a mini-batch set-up. In
each iteration, we update G to generate adversarial examples
and train f using those adversarial examples along with the
non-adversarial or clean samples to make it robust. Along
with the training of robust f, GG is being trained to generate
worst-case adversarial examples. To generate strong adver-
sarial examples by G in the mini-batch update, we divide
each mini-batch into K sets. Now, G is trained over each
set independently and we use adversarial examples after the
update of G for each set. This fine-tunes G for the small set
to generate stronger perturbations for every image belonging
to the set. Then, f is trained using the entire mini-batch at
once but with the adversarial examples generated set-wise.
G obtained after the update corresponding to the K" set is
passed for the next iteration or mini-batch update. This is
described in Algorithm 1.

2.4. Robustness Metric

To define a metric for the robustness of a network, we mea-
sure the following quantity for network f:

Anmax (20, €) = H](f;rll‘ax |lf(Azg + &) — 20]|? @)
This determines the reconstruction error due to the worst-
case additive perturbation over an e-ball around the nominal
measurement y = Axg for each image xq. The final ro-
bustness metric for f is p(€) = Eg, [Amax (o, €)], which we
estimate by the sample average of Anx (o, €) over a test

dataset,
1 N
A N Z max 'I:’La (8)

Algorithm 1 Algorithm for training at iteration 7’

Input: Mini-batch samples (z7, yr), Gr—1, f7—1
Output: G and fr
1: Gro = Gr-1, f = fr—1 Divide mini-batch into K
parts.
2: while k < K do
3: T =TTk, G = GT’kfl
Gr = argmaxg || fr—1(Az + G(Ax; ¢);0) —
22 %+ Ao max{0, | G(Az; §)[3 - )
drx = Gri(z)
end while
or = [6r1,07,2, ..., 07 K]
fr = argming || f(Azr) —z7||*+ i || f(AzT +07) —
||
9: Gp = GT,K
10: return G, fr

@R

The smaller p, the more robust the network.

We solve the optimization problem in (7) using projected
gradient ascent (PGA) with momentum (with parameters
selected empirically). Importantly, unlike training, where
computation of A, (o) is required at every epoch, we
need to solve (7) only once for every sample z; in the test
set, making this computation feasible during testing.

3. Theoretical Analysis

We theoretically obtained the optimal solution for the min-
max formulation in (2.3.1) for a simple linear reconstruction.
Although this analysis doesn’t extend easily to the non-linear
deep learning based reconstruction, it gives some insights
for the behavior of the proposed formulation, and how it
depends on the conditioning of the measurement matrices.

Theorem 1. Suppose that the reconstruction network f is
a one-layer feed-forward network with no non-linearity i.e.,
f = B, and assume that the data is normalized, i.e., E(x) =
0 and COV (z) = I. Denote the SVD of the measurement
matrix Aby A = USV™T, where S is a diagonal matrix with
singular values ordered in (increasing) order, and the SVD
of matrix B by B = MQPT. Then the optimal B obtained
by solving (2.3.1) is a modified pseudo-inverse of A, with
M =V, P=U and Q a filtered inverse of S, given by

Q = diag (gm, - - - 1/5,),
>iny Si
Dy S7+ 1+>\€2

with largest entry q,, of multiplicity m that depends on €, \
and {S;}1_,.

7Qma1/5m+1a--~7

Gm = (€))

Proof. Please refer to the supplementary material. O

The modified inverse B reduces the effect of ill-conditioning



Improving Robustness of Deep-Learning-Based Image Reconstruction

in A for adversarial cases in the reconstruction. This can be
easily understood, using the simple example from (4). As
explained previously, for the A in (4) with |a| < 1, an exact

0

inverse, f = 1 } , amplifies the perturbation. Instead

1
0 a
the min-max formulation (2.3.1) (with A = 1) results in a
0 — S } , suppressing
a?+0.5¢2
the effect of an adversarial perturbation § = [0, €| in y as
| 78]| < ||f6]| for a — 0 and e - 0. It can also be seen
that f won’t be optimal the for the unperturbed y as it’s
not actual an inverse and the reconstruction loss using f
for the unperturbed case would be smaller than that for f .
However, for even very small adversaries, f would be much
more sensitive than f . This shows the trade-off between the
perturbed and unperturbed case for the reconstruction in the
case of an ill-conditioned A.
This trade-off behavior will not manifest for a well-
conditioned A, as an ideal linear inverse f for this case
won’t amplify the small perturbations, and a reconstruction
obtained using (2.3.1) with linear f will be very close to f
(depending on ¢): for well-conditioned A, a - 0. In that
case a2 > 0.5¢2, which reduces f to f.
Our experiments with deep-learning-based non-linear image
reconstruction methods for CS using as sensing matrices ran-
dom rows of a Gaussian matrix (well-conditioned) vs. ran-
dom rows of a DCT sub-matrix (relatively ill-conditioned)
indeed show the qualitatively different behavior with in-
creasing strength of the perturbations.

modified pseudo inverse f = [

4. Experiments

Network Architecture: For the reconstruction network f,
we follow the architecture of deep convolutional networks
for image reconstruction. They use multiple convolution, de-
convolution and ReLLU layers, and use batch normalization
and dropout for better generalization. As a pre-processing
step, which has been found to be effective for reconstruction,
we apply the transpose (adjoint) of A to the measurement v,
feeding A7’y to the network. This transforms the measure-
ment into the image-space, allowing the network to operate
purely in image space.

For the adversarial perturbation generator G we use a stan-
dard feed-forward network, which takes input y as input.
The network consists of multiple fully-connected and ReLU
layers. We trained the architecture shown in fig. 1 using the
objective defined in (6).

We designed networks of similar structure but different num-
ber of layers for the two datasets, MNIST and CelebA used
in the experiments.

We used the Adam Optimizer with 5; = 0.5, 83 = 0.999,
learning rate of 10~* and mini-batch size of 128, but divided
into K = 4 parts during the update of G, described in the al-
gorithm 1. During training, the size € of the perturbation has

to be neither too big (affects performance on clean samples)
nor too small (results in less robustness). We empirically
picked € = 2 for MNIST and € = 3 for the CelebA datasets.
However, during testing, we evaluated p, defined in (8) for
different €’s (including those not used while training), to
obtain a fair assessment of robustness.

We compare the adversarially trained model using the min-
max formulation defined in the objective (6), with three
models trained using different training schemes:

1. Normally trained model with no regularization, i.e.,
w = 01in (6).

2. f2-norm weight regularized model, using (5) with p >
10~ (aka weight decay), chosen empirically to avoid
over-fitting and improve robustness and generalization
of the network.

3. Lipschitz constant (£)-constrained Parseval network
(Cisse et al., 2017b). The idea is to constrain the overall
Lipschitz constant £ of the network to be < 1, by mak-
ing L of every layer, < 1. Motivated by the idea that
regularizing the spectral norm of weight matrices could
help robustness, this approach proposes to constrain
the weight matrices to also be orthonormal, making
them Parseval tight frames. Let Sy, and S, define the
set of indices for fully-connected and convolutional
layers respectively. The regularization term to penalize
the deviation from the constraint is

I
O I L S IWSTW - )
i€S;. jE€Se. J
(10)
where W; is the weight matrix for ¢th fully connected
layer and Wj is the transformed or unfolded weight
matrix of jth convolution layer having kernel size k;.
Transformation requires input to the convolution to
shift and repeat ka times. Hence, to maintain the Parse-
val tight frames constraint on the convolution operator,
we need to make WjTWJ- ~ ,% I; and I are identity
matrices whose sizes depend on the size of W; and
'Wj respectively. 3 controls the weight given to the
regularization compared to the standard reconstruction
loss. Empirically, we picked 3 to be 1075,

To compare different training schemes, we follow the same
scheme (described below) for each dataset. Also, we ex-
tensively compare the performance for the two datasets
for Compressive Sensing (CS) task using two matrices:
one well-conditioned and another, relatively ill-conditioned.
This comparison complements the theoretical analysis in
the previous section.

The MNIST dataset (LeCun et al., 1998) consists of 28 x 28
gray-scale images of digits with 50, 000 training and 10, 000
test samples. The image reconstruction network consists of
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Figure 2. Qualitative Comparison for the MNIST dataset for different perturbations. First row of each sub-figure corresponds to the true
image, Second row to the reconstruction using normally trained model, Third row to the reconstruction using Parseval Network, Fourth
row to the reconstruction using the adversarially trained model (proposed scheme).

4 convolution layers and 3 transposed convolution layers
using re-scaled images between [—1, 1]. For the generator
G, we used 5 fully-connected layers network. Empirically,

we found A\; = 1 and Ay = —0.1 in (6), gave the best
performance in terms of robustness (lower p) for different
perturbations.

The CelebA dataset (Liu et al., 2015) consists of more
than 200, 000 celebrity images. We use the aligned and
cropped version, which pre-processes each image to a size
of 64 x 64 x 3 and scaled between [—1, 1]. We randomly
pick 160,000 images for the training. Images from the
40, 000 held-out set are used for evaluation. The image re-
construction network consists of 6 convolution layers and
4 transposed convolution layers. For the generator G, we
used a 6 fully-connected layers network. We found A\; = 3
and Ay = —1 in (6) gave the best robustness performance
(lower p) for different perturbations.

4.1. Gaussian Measurement matrix

In this set-up, we use the same measurement matrix A as
(Bora et al., 2017; Raj et al., 2019), i.e. A; ; ~ N(0,1/m)
where m is the number of measurements. For MNIST,
the measurement matrix A € R™*7% with m = 100,
whereas for CelebA, A € R™*12288  with m = 1000.
Figures 2 and 3 show the qualitative comparisons for the
MNIST and CelebA reconstructions respectively, by solv-
ing the optimization described in Section 2.4. It can be
seen clearly in both the cases that for different € the ad-
versarially trained models outperform the normally trained

and Parseval networks. For higher €’s, the normally trained
and Parseval models generate significant artifacts, which
are much smaller for the adversarially trained models. Fig-
ures 4a and 4b show this improvement in performance in
terms of the quantitative metric p, defined in (8) for the
MNIST and CelebA datasets respectively. It can be seen
that p is lower for the adversarially-trained models com-
pared to other training methods: no regularization, {5-norm
regularization on weights, and Parseval networks (Lipschitz-
constant-regularized) for different €’s, showing that adversar-
ial training using the proposed min-max formulation indeed
outperforms other approaches in terms of robustness. It is
noteworthy that even for e = 0 (unperturbed case), adversar-
ial training reduces the reconstruction loss, indicating that it
acts like an excellent regularizer in general.

4.2. Discrete Cosine Transform (DCT) sub-matrix

To empirically study the effect of conditioning of the ma-
trix, we did experiment by choosing A as random m rows
and n columns of a p x p DCT matrix, where p > n.
This makes A relatively ill-conditioned compared to the ran-
dom Gaussian A, i.e. the condition number for the random
DCT sub-matrix is higher than that of random Gaussian
one. The number of measurements has been kept same as
the previous case, i.e. (m = 100, n = 784) for MNIST
and (m = 1000, n = 12288) for CelebA. We trained net-
works having the same configuration as the Gaussian ones.
Figure 4 shows the comparison for the two measurement
matrices. Based on the figure, we can see that p for the
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Figure 3. Qualitative Comparison for the CelebA dataset for different perturbations. First row of each sub-figure corresponds to the true
image, Second row to the reconstruction using normally trained model, Third row to the reconstruction using Parseval Network, Fourth
row to the reconstruction using the adversarially trained model (proposed scheme).

DCT sub-matrix, MNIST (Fig. 4d) and CelebA (Fig. 4e),
are very close for models trained adversarially and using
other schemes for the unperturbed case (¢ = 0), but the
gap between them increases with increasing €’s, with ad-
versarially trained models outperforming the other methods
consistently. This behavior is qualitatively different from
that for the Gaussian case (Fig. 4a and Fig. 4b), where
the gap between adversarially trained networks and models
trained using other (or no) regularizers is roughly constant
for different e.

4.3. Analysis with respect to Conditioning

To check the conditioning, Fig.4c shows the histogram for
the singular values of the random Gaussian matrices. It can
be seen that the condition number (ratio of max. and min.
singular value) is close to 2 which is very well conditioned
for both data sets. On the other hand, the histogram of
the same for the random DCT sub-matrices (Fig.4f) shows
higher condition numbers — 8.9 for the 100 x 784 and
7.9 for the 1000 x 12288 dimension matrices, which is
ill-conditioned relative to the Gaussian ones.

Referring to the above analysis of conditioning and plots
of the robustness measure p for the two types of matrices:
random Gaussian vs. random DCT indicate that the behav-
ior of the proposed min-max formulation depends on how
well (or relatively ill)-conditioned the matrices are. This

corroborates with the theoretical analysis for a simple re-
construction scheme (linear network) described in Sec. 3.

4.4. CT Reconstruction

In this experiment, we implement the proposed adversarial
training method on the state-of-the-art deep-learning-based
network, FBPConvNet (Jin et al., 2017) for low-dose x-ray
CT reconstruction. Asin (Jin et al., 2017), the measurements
y are obtained by computing projections of the CT images
at 143 views uniformly spaced between [0, 180°]. The input
to the reconstruction network in this case is different from
that in our previous examples, where the input was A”y.
Instead, the reconstruction network FBPConvNet is fed with
an initial reconstruction estimate £ = Ry where R is the
FBP reconstruction operator, and y is the set of projections
at 143 views. Note that R = A*H, where H is a so-called
ramp filter, and the backprojection operator A* is the adjoint
of A. Because in the matrix case, A* = AT, it follows that
in the case of the FBPConvNet, there is an extra step of
applying the filter H on the input. For ground truth, we
used FBP reconstructions from projections at 1000 views,
also called full-view FBP. For fast computation of forward
projection (Radon transform) and filtered back-projection
(FBP - numerical inverse Radon transform) on GPUs, we
used the Astra toolbox (Van Aarle et al., 2016).
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Figure 4. Row 1 corresponds to the random rows of Gaussian measurement matrix: (a) MNIST, (b) CelebA, (c) Distribution of the
singular values for MNIST (left, m = 100) and CelebA (right, m = 1000) cases. Row 2 corresponds to random rows and columns of the
DCT measurement matrix: (a) MNIST, (b) CelebA, (c) Distribution of the singular values for MNIST (left, m = 100) and CelebA (right,

m = 1000) cases.

For normal training of the FBPConvNet, the hyper-
parameters are set exactly the same as in (Jin et al., 2017).
Next, we train the FBPConvNet using our proposed ad-
versarial scheme with attack generator G' consisting of 6
fully-connected layers. We used anonymized clinical CT
images (Vannier, 2007) of size 512 x 512 — 884 for training
& validation and 221 for evaluation. To determine the attack
and evaluate the trained reconstruction network for robust-
ness, we employed the set-up described in Sec. 2.4, using
(7) and (8), where the operator A is the Radon Transform,
and f(y) = N(Ry), with R equal to the FBP and N denot-
ing the neural network. To solve the optimization problem
given by (7), we use projected gradient ascent. The gradient
with respect to § involves back-propagating through R, and
therefore uses its adjoint, R* = H*A = H A, where the
second equality follows because H is self-adjoint. This is
different from the work in (Antun et al., 2020), which used
R in the computation of gradient during the attack, because
their attack was in the image domain, whereas ours is in the
measurement domain.

Fig. 5 shows a qualitative comparison of reconstruction
results in the presence of an attack (a slight perturbation
in the data). It can be seen that the streaks and artifacts
appearing due to the attack for a normally trained network,

are not typically present in the proposed adversarial training
scheme.

4.5. Linear Network for Reconstruction

We perform an experiment using a linear reconstruction
network in a simulated set-up to compare the theoretically
obtained optimal robust reconstruction network with the one
learned by our scheme by optimizing the objective (2.3.1).
We take 50,000 samples of a signal x € R?? drawn from
N(0,1), hence, E(x) = 0 and COV(z) = I. For the mea-
surement matrix A € R'0%20_ we follow the same strategy
as in Sec. 4.1, i.e. A;; ~ N(0,1/10). Since such matrices
are well-conditioned, we replace 2 singular values of A by
small values (102 and 10~*) keeping the other singular
values and singular matrices fixed. This makes the modi-
fied matrix A ill-conditioned. We obtain the measurements
y = Az € R'°. For reconstruction, we train a linear net-
work f having 1 fully-connected layer with no non-linearity
ie. f = B € R?°%10 The reconstruction is given by
T = By, where B is obtained by solving

argmin max E,|BAz — z||® + \||B(Az + §) — x|
B &d]l2<e .
(1D
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Figure 5. Qualitative Comparison for the reconstruction after attack for the X-ray dataset using FBPConvNet. First row corresponds to the
true image. Second row to the reconstruction using normally trained model. Yellow arrows indicate the streaks and artifacts appearing
after attack. Third row to the reconstruction using the adversarially trained model (proposed scheme)

We used A = 1, € = 0.1, learning rate = 0.001 and mo-
mentum term of 0.9 in our experiments. We obtain the
theoretically derived reconstruction matrix B using the re-
sult given in (9) (from theorem 1). To compare B and B,
we examined the following three metrics:

e |B=Bl#/IB|r = 0.024, | B—B2/|[Bllz = 0.034

e |I — BA|r/|I — BA|r = 0.99936, where I is the
identity matrix of size 20 x 20

e k(B) =19.231, k(B) = 19.311, x: condition number

The above four metrics indicate that B indeed converges to
the theoretically obtained solution B.

5. Conclusions

In this work, we proposed a min-max formulation to build ro-
bust deep-learning-based image reconstruction models. To
make this more tractable, we reformulate this using an aux-
iliary network to generate adversarial examples for which
the image reconstruction network tries to minimize the re-
construction loss. We theoretically analyzed a simple linear
network and found that using the min-max formulation pro-

duces a singular-value filter regularized solution, which re-
duces the effect of adversarial examples for ill-conditioned
matrices. Empirically, we found an adversarially-trained lin-
ear network to converge to the same solution. Additionally,
extensive experiments with non-linear deep networks for
Compressive Sensing (CS) using random Gaussian and DCT
measurement matrices on the MNIST and CelebA datasets
show that the proposed scheme outperforms other methods
for different perturbations € > 0, however the behavior de-
pends on the conditioning of the measurement matrices, as
indicated by theory for the linear reconstruction scheme.
Further, our experiment on real CT image reconstruction
indicates that the state-of-the-art network trained using the
proposed method outperforms the normal training methods
in terms of robustness.
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