Improving Robustness of Deep-Learning-Based Image
Reconstruction - Supplementary Material

Proof of Theorem 1:
For the inverse problem of recovering the true x from the measurement y = Ax, goal is to design
a robust linear recovery model given by & = BAx

The min-max formulation to get robust model for a linear set-up:

min max [E, BAz — z||?> + \|B(Az + 6) — z|?
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Since the data is normalized, i.e., E(z) = 0 and cov(xz) = I. This makes the above optimization
problem as:
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Since, E(tr(-)) = tr(E(-)), the above problem becomes:
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Using SVD decomposition of A = USVT and B = MQPT
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Since, only the second term is dependent on ¢, maximizing the second term with respect to 9:
We have |MQPT§| = ||QPT6|| since M is unitary. Given Q is diagonal, ||QPT§|| w.r.t. & can
be maximized by having PT§ vector having all zeros except the location corresponding to the
max; Q;. Since, |PT§|| = ||0]|, again because P is unitary, so to maximize within the e-ball, we
will have PT§ = €[0, ..,0,1,0,..,0] where 1 is at the arg maz;Q; position. This makes the term to
be:

max ||[MQPT§||? = ¢(max Q;)?
e [MQPTS? = E(maxQ)

Substituting the above term in Equation 4:
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For the above equation, only the second term depends on M, minimizing the second term w.r.t.
M keeping others fixed:

min  tr(—2MQPTUSVT)
M:MTM=I



Since, this is a linear program with the quadratic constraint, relaxing the constraint from M7 M =
Ito MT M < I won’t change the optimal point as the optimal point will always be at the boundary
ie. MTM =1

M:IngirJ\Zgl tr(—2MQPTUSVT) which is a convex program

Introducing the Lagrange multiplier matrix K for the constraint

L(M,K) =tr(—2MQPTUSVT + K(MTM — 1))

Substituting G = QPTUSVT and using stationarity of Lagrangian

ALy =M(K+ K" -G =0 = ML=G" where L=K + K"
Primal feasibility: M7 M < I. Optimal point at boundary = M?M =TI

Because of the problem is convex, the local minima is the global minima which satisfies the two
conditions: Stationarity of Lagrangian (ML = GT) and Primal feasibility (M7 M = I). By the
choice of M =V, and L = SUTPQ, both these conditions are satisifed implying M = V is the
optimal point.

Substituting M =V in Equation 5, we get:
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Denote the i-th column of C' = UT P by ¢; and the entries in @ are in decreasing order (as entries
in S are in increasing order) and the largest entry ¢, in @, has multiplicity m, the Equation 6
becomes:
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If we consider the last term i.e. ¢ > m, it can be minimized by setting ¢; = e; which is equivalent
to choose P; = U; and ¢; = 1/s;. This makes the last term (= 0), using h = Ae?/(1 + \), making
the Equation 7 as:
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The above term is upward quadratic in g, minima w.r.t. g, will occur at ¢, = %,
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which will make the quadratic term as ) \", e;e; — TSty which has to be minimized
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Since C =UTP = C;; = ul'p; = |Cyj|| < 1. To maximize the term given by the Equation
8, we can minimize the denominator by setting the term C;; = 0, which makes the matrix C as
diagonal.

Divide the matrix U and P into two parts: one corresponding to ¢ < m and another ¢ > m, where
i represents the column-index of C' = UTP.



Let U = [U1|Us] and P = [P1|P2]. From above, we have P, = Us for i > m, making P = [P1|Us).

o7 = U] and P = (0]
- U2 - 1 2

T vrp, UTU, urp, o
U'P=|,r T = |y/T
Us P1 U; U, Us P I
Since, UT P is diagonal, we have U] P, = 0, U{' P, = T where T is diagonal. Also, we have
PL'P; = I. Only way to satisfy this would be making P, = U; which makes P =U and C = I. It
also results in
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Hence, the resulting B would be of the form MQPT where:
M=V,P=U and , (10)
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