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Proof of Theorem 1 :
For the inverse problem of recovering the true x from the measurement y = Ax, goal is to design
a robust linear recovery model given by x̂ = BAx

The min-max formulation to get robust model for a linear set-up:

min
B

max
δ:‖δ‖2≤ε

Ex∈D‖BAx− x‖2 + λ‖B(Ax+ δ)− x‖2

min
B

max
δ:‖δ‖2≤ε

Ex∈D(1 + λ)‖BAx− x‖2 + λ‖Bδ‖2 + 2λ(Bδ)T (BAx− x) (1)

Since the data is normalized, i.e., E(x) = 0 and cov(x) = I. This makes the above optimization
problem as:

min
B

max
δ:‖δ‖2≤ε

Ex∈D(1 + λ)‖(BA− I)x‖2 + λ‖Bδ‖2

min
B

max
δ:‖δ‖2≤ε

Ex∈D(1 + λ)tr(BA− I)xxT (BA− I)T + λ‖Bδ‖2 (2)

Since, E(tr(·)) = tr(E(·)), the above problem becomes:

min
B

max
δ:‖δ‖2≤ε

(1 + λ)tr(BA− I)(BA− I)T + λ‖Bδ‖2

min
B

max
δ:‖δ‖2≤ε

(1 + λ)‖BA− I‖2F + λ‖Bδ‖2 (3)

Using SVD decomposition of A = USV T and B = MQPT

min
M,Q,P :MTM=I,PTP=I,Q is diag

max
δ:‖δ‖≤ε

(1 + λ)‖MQPTUSV T − I‖2F + λ‖MQPT δ‖2 (4)

Since, only the second term is dependent on δ, maximizing the second term with respect to δ:
We have ‖MQPT δ‖ = ‖QPT δ‖ since M is unitary. Given Q is diagonal, ‖QPT δ‖ w.r.t. δ can
be maximized by having PT δ vector having all zeros except the location corresponding to the
maxiQi. Since, ‖PT δ‖ = ‖δ‖, again because P is unitary, so to maximize within the ε-ball, we
will have PT δ = ε[0, .., 0, 1, 0, .., 0] where 1 is at the argmaxiQi position. This makes the term to
be:

max
δ:‖δ‖2≤ε

‖MQPT δ‖2 = ε2(max
i
Qi)

2

Substituting the above term in Equation 4:

min
M,Q,P :MTM=I,PTP=I,Q is diag

(1 + λ)‖MQPTUSV T − I‖2F + λε2(max
i
Qi)

2

min
M,Q,P :..

(1 + λ)tr(MQPTUSV T − I)(MQPTUSV T − I)T + λε2(max
i
Qi)

2

min
M,Q,P :..

(1 + λ)tr(MQPTUS2UTPQMT − 2MQPTUSV T + I) + λε2(max
i
Qi)

2

min
M,Q,P :..

(1 + λ)tr(PTUS2UTPQ2 − 2MQPTSV T + I) + λε2(max
i
Qi)

2 (5)

For the above equation, only the second term depends on M , minimizing the second term w.r.t.
M keeping others fixed:

min
M :MTM=I

tr(−2MQPTUSV T )
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Since, this is a linear program with the quadratic constraint, relaxing the constraint from MTM =
I to MTM ≤ I won’t change the optimal point as the optimal point will always be at the boundary
i.e. MTM = I

min
M :MTM≤I

tr(−2MQPTUSV T ) which is a convex program

Introducing the Lagrange multiplier matrix K for the constraint

L(M,K) = tr(−2MQPTUSV T +K(MTM − I))

Substituting G = QPTUSV T and using stationarity of Lagrangian

∆LM = M(K +KT )−GT = 0 =⇒ ML = GT where L = K +KT

Primal feasibility: MTM ≤ I. Optimal point at boundary =⇒ MTM = I

Because of the problem is convex, the local minima is the global minima which satisfies the two
conditions: Stationarity of Lagrangian (ML = GT ) and Primal feasibility (MTM = I). By the
choice of M = V , and L = SUTPQ, both these conditions are satisifed implying M = V is the
optimal point.
Substituting M = V in Equation 5, we get:

min
Q,P :..

(1 + λ)tr(PTUS2UTPQ2 − 2V QPTUSV T + I) + λε2(max
i
Qi)

2

min
Q,P :..

(1 + λ)tr(PTUS2UTPQ2 − 2QPTUS + I) + λε2(max
i
Qi)

2

min
Q,P :..

(1 + λ)‖QPTUS − I‖2F + λε2(max
i
Qi)

2 (6)

Denote the i-th column of C = UTP by ci and the entries in Q are in decreasing order (as entries
in S are in increasing order) and the largest entry qm in Q, has multiplicity m, the Equation 6
becomes:

min
C,Q

(1 + λ)

m∑
i=1

‖qmSci − ei‖2 + λε2q2m + (1 + λ)

n∑
i=m+1

‖qiSci − ei‖2 (7)

If we consider the last term i.e. i > m, it can be minimized by setting ci = ei which is equivalent
to choose Pi = Ui and qi = 1/si. This makes the last term (= 0), using h = λε2/(1 + λ), making
the Equation 7 as:

min
C,Q

m∑
i=1

(cTi Sq
2
mSci − 2eTi qmSci + eTi ei) + hq2m

min
C,Q

q2m(

m∑
i=1

cTi S
2ci + h)− 2qm

m∑
i=1

SiCii +

m∑
i=1

eTi ei

The above term is upward quadratic in qm, minima w.r.t. qm will occur at q∗m =
∑m

i=1 SiCii

(
∑m

i=1 c
T
i S

2ci+h)
,

which will make the quadratic term as
∑m
i=1 e

T
i ei −

(
∑m

i=1 SiCii)
2

(
∑m

i=1 c
T
i S

2ci+h)
, which has to be minimized

w.r.t C

min
C

m∑
i=1

eTi ei −
(
∑m
i=1 SiCii)

2

(
∑m
i=1 c

T
i S

2ci + h)

max
C

(
∑m
i=1 SiCii)

2

(
∑m
i=1 c

T
i S

2ci + h)

max
C

(
∑m
i=1 SiCii)

2∑m
i=1 S

2
i C

2
ii +

∑
j 6=i S

2
jC

2
ij + h

(8)

Since C = UTP =⇒ Cij = uTi pj =⇒ ‖Cij‖ ≤ 1. To maximize the term given by the Equation
8, we can minimize the denominator by setting the term Cij = 0, which makes the matrix C as
diagonal.
Divide the matrix U and P into two parts: one corresponding to i ≤ m and another i > m, where
i represents the column-index of C = UTP .
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Let U = [U1|U2] and P = [P1|P2]. From above, we have P2 = U2 for i > m, making P = [P1|U2].

UT =

[
UT1
UT2

]
and P = [P1|U2]

UTP =

[
UT1 P1 UT1 U2

UT2 P1 UT2 U2

]
=

[
UT1 P1 0
UT2 P1 I

]
Since, UTP is diagonal, we have UT2 P1 = 0, UT1 P1 = Γ where Γ is diagonal. Also, we have
PT1 P1 = I. Only way to satisfy this would be making P1 = U1 which makes P = U and C = I. It
also results in

q∗m =

∑m
i=1 Si∑m

i=1 S
2
i + h

, where, h = ε2
λ

1 + λ
(9)

Hence, the resulting B would be of the form MQPT where:

M = V, P = U and , (10)

Q =



q∗m 0 ... 0
0 q∗m .. 0
: : : :
: : : :
0 ... 1/sm+1 ..
: : : :
: : : :
0 ... 0 1/sn


(11)
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