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Abstract

Standard RL algorithms assume fixed environ-
ment dynamics and require a significant amount
of interaction to adapt to new environments. We
introduce Policy-Dynamics Value Functions (PD-
VF), a novel approach for rapidly adapting to
dynamics different from those previously seen
in training. PD-VF explicitly estimates the cu-
mulative reward in a space of policies and en-
vironments. An ensemble of conventional RL
policies is used to gather experience on training
environments, from which embeddings of both
policies and environments can be learned. Then,
a value function conditioned on both embeddings
is trained. At test time, a few actions are suf-
ficient to infer the environment embedding, en-
abling a policy to be selected by maximizing the
learned value function (which requires no addi-
tional environment interaction). We show that
our method can rapidly adapt to new dynamics
on a set of MuJoCo domains. Code available at
policy-dynamics-value-functions.

1. Introduction
Deep reinforcement learning (RL) has achieved impressive
results on a wide range of complex tasks (Mnih et al., 2015;
Silver et al., 2016; 2017; 2018; Jaderberg et al., 2019; Berner
et al., 2019; Vinyals et al., 2019). However, recent studies
have pointed out that RL agents trained and tested on the
same environment tend to overfit to that environment’s id-
iosyncracies and are unable to generalize to even small per-
turbations (Whiteson et al., 2011; Rajeswaran et al., 2017;
Zhang et al., 2018c;a; Henderson et al., 2018; Cobbe et al.,
2019; Raileanu & Rocktäschel, 2020; Song et al., 2020). It
is often the case that besides the test environments being
different from the train environments, they will also have
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costly interactions, scarce or unavailable feedback, and ir-
reversible consequences. For example, a self-driving car
might have to adjust its behavior depending on weather con-
ditions, or a prosthetic control system might have to adapt
to a new human. In these cases it is crucial for RL agents to
find and execute appropriate policies as quickly as possible.

Our approach is inspired by Sutton et al. (2011) who intro-
duced the notion of general value functions (GVFs), which
can be used to gather knowledge about the world in the
form of predictions. A GVF estimates the expected return
of an arbitrary policy on a certain task (as defined by a re-
ward function, a termination function and a terminal-reward
function). Similarly, in this work, we aim to learn a value
function conditioned on elements of a space of policies
and tasks, but here, a “task” is specified by the transition
function of the MDP instead of the reward function.

More specifically, we propose PD-VF, a novel framework
for rapid adaptation to new environment dynamics. PD-VF
consists of four phases: (i) a reinforcement learning phase
in which individual policies are learned for each environ-
ment in our training set using standard RL algorithms, (ii) a
self-supervised phase in which trajectories generated by
these policies are used to learn embeddings for both policies
and environments, (iii) a supervised training phase in which
a neural network is used to learn the value function of a
certain policy acting in some environment. The network
takes as inputs the initial state of the environment, as well
as the corresponding policy and environment embeddings
(as learned in the previous phase) and is trained with super-
vision of the cumulative reward obtained during an episode,
and finally (iv) an evaluation phase in which, given a new
environment, its dynamics embedding is inferred using the
first few steps of an episode. Then, a policy is selected by
finding the policy embedding that maximizes the learned
value function. The selected policy is used to act in the
environment until the episode ends.

Our framework uses self-supervised interactions with the
environment to learn an embedding space of both dynamics
and policies. By learning a value function in the policy-
dynamics space, PD-VF can discover useful patterns in the
complex relation between a family of environment dynam-
ics, various behaviors, and the expected return. The value
function is designed to model non-optimal policies along
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with optimal policies in given environments so that it can un-
derstand how changes in dynamics relate to changes in the
return of different policies. PD-VF uses the learned space
of dynamics to rapidly embed a new environment in that
space using only a few interactions. At test time, PD-VF can
evaluate or rank policies (from a certain family) on unseen
environments without the need of full rollouts (i.e. it does
not require full trajectories or rewards to update the policy).
We evaluate our method on a set of continuous control tasks
(with varying dynamics) in MuJoCo (Todorov et al., 2012).
The dynamics of each task instance are determined by phys-
ical parameters such as wind direction or limb length and
can be sampled from a continuous or discrete distribution.
Performance is evaluated on a single episode at test time to
emphasize rapid adaptation. We show that PD-VF outper-
forms other meta-learning and transfer learning approaches
on new environments with unseen dynamics.

2. Related Work
Our work draws inspiration from multiple research areas
such as transfer learning (Taylor & Stone, 2009; Higgins
et al., 2017), skill and task embedding (Devin et al., 2016;
Zhang et al., 2018b; Hausman et al., 2018; Petangoda et al.,
2019), and general value functions (Precup et al., 2001;
Sutton et al., 2011; White et al., 2012).

Multi-Task and Transfer Learning. Taylor & Stone
(2009) presents an overview of transfer learning methods
in RL. A popular approach for transfer in RL is multi-task
learning (Taylor & Stone, 2009; Teh et al., 2017), a paradigm
in which an agent is trained on a family of related tasks. By
simultaneously learning about different tasks, the agent can
exploit their common structure, which can lead to faster
learning and better generalization to unseen tasks from the
same family (Taylor & Stone, 2009; Lazaric, 2012; Ammar
et al., 2012; 2014; Parisotto et al., 2015; Borsa et al., 2016;
Gupta et al., 2017; Andreas et al., 2017; Oh et al., 2017;
Hessel et al., 2019). A large body of work has been inspired
by the Horde architecture (Sutton et al., 2011), which con-
sists of a number of RL agents with different policies and
goals. Each agent is tasked with estimating the value func-
tion of a particular policy on a given task, thus collectively
representing knowledge about the world. Building on these
ideas, other methods leverage the shared dynamics of the
tasks (Barreto et al., 2017; Zhang et al., 2017; Madjiheurem
& Toni, 2019) or the similarity among value functions and
the associated optimal policies (Schaul et al., 2015; Borsa
et al., 2018; Hansen et al., 2019; Siriwardhana et al., 2019).
These approaches assume the same underlying transition
function for all tasks. In contrast, we focus on transferring
knowledge across tasks with different dynamics.

Meta-Learning and Robust Transfer. A popular ap-
proach for fast adaptation to new environments is meta

reinforcement learning (meta RL) (Cully et al., 2015; Finn
et al., 2017; Wang et al., 2017; Duan et al., 2016; Xu et al.,
2018; Houthooft et al., 2018; Sæmundsson et al., 2018;
Nagabandi et al., 2018; Humplik et al., 2019; Rakelly et al.,
2019). Meta RL methods have been designed to work well
with dense reward and recent work has shown that they
struggle to learn from a limited number of interactions and
optimization steps at test time (Yang et al., 2019). In con-
trast, our framework is capable of rapid adaptation to new
environment dynamics and does not require dense reward or
a large number of interactions to find a good policy. More-
over, PD-VF does not update the model parameters at test
time, which makes it less computationally expensive than
meta RL. Another common approach for transfer across dy-
namics is model-based RL, which uses Gaussian processes
(GPs) or Bayesian neural networks (BNNs) to estimate the
transition function (Doshi-Velez & Konidaris, 2013; Killian
et al., 2017). However, such methods require fictional roll-
outs to train a policy from scratch at test time, which makes
them computationally expensive and limits their applicabil-
ity for real-world tasks. Yao et al. (2018) uses a fully-trained
BNN to further optimize latent variables during a single test
episode, but requires an optimal policy for each training
instance, which makes it harder to scale. Robust transfer
methods either require a large number of interactions at test
time (Rajeswaran et al., 2017) or assume that the distribu-
tion over hidden variables is known or controllable (Paul
et al., 2018). An alternative approach was proposed by Pinto
et al. (2017) who use an adversary to perturb the system,
achieving robust transfer across physical parameters such
as friction or mass.

Skill and Task Embeddings. A large body of work pro-
poses the use of learned skill and task embeddings for trans-
fer in RL (Da Silva et al., 2012; Sahni et al., 2017; Oh et al.,
2017; Gupta et al., 2017; Hausman et al., 2018; He et al.,
2018). For example, Hausman et al. (2018) use approximate
variational inference to learn a latent space of skills. Simi-
larly, Arnekvist et al. (2018) learn a stochastic embedding of
optimal Q-functions for various skills and train a universal
policy conditioned on this embedding. In both Hausman
et al. (2018) and Arnekvist et al. (2018), adaptation to a new
task is done in the latent space with no further updates to the
policy network. Co-Reyes et al. (2018) learn a latent space
of low-level skills that can be controlled by a higher-level
policy, in the context of hierarchical reinforcement learning.
This embedding is learned using a variational autoencoder
(Kingma & Welling, 2013) to encode state trajectories and
decode states and actions. Zintgraf et al. (2018) use a meta-
learning approach to learn a deterministic task embedding.
Wang et al. (2017) and Duan et al. (2017) learn embeddings
of expert demonstrations to aid imitation learning using
variational and deterministic methods, respectively. More
recently, Perez et al. (2018) learn dynamic models with
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auxiliary latent variables and use them for model-predictive
control. Zhang et al. (2018b) use separate dynamics and
reward modules to learn a task embedding. They show that
conditioning a policy on this embedding helps transfer to
changes in transition or reward function. While the above
approaches might learn embeddings of skills or tasks, none
of them leverage both the latent space of policies and that
of the environments for estimating the expected return and
using it to select an effective policy at test time.

More similar to our work is that of Yang et al. (2019), who
also focus on fast adaptation to new environment dynamics
and evaluate performance on a single episode at test time.
Yang et al. (2019) train an inference model and a probe to
estimate the underlying latent variables of the dynamics,
which are then used as input to a universal control policy.
While similar in scope, our approach is significantly differ-
ent from that of Yang et al. (2019). Importantly, Yang et al.
(2019) does not learn a latent space of policies and instead
trains a universal policy on all the environments. Learning
a value function in a space of policies and dynamics allows
the function approximator to capture relations among dy-
namics, behaviors (both optimal as well as non-optimal),
and rewards that a universal policy cannot learn. Moreover,
the learned structure can aid transfer to new dynamics.

3. Policy-Dynamics Value Functions
In this work, we aim to design an approach that can quickly
find a good policy in an environment with new and unknown
dynamics, after being trained on a family of environments
with related dynamics. The problem can be formalized as
a family of Markov decision processes (MDPs) defined by
(S,A, T ,R, γ), where (S,A,R, γ) are the corresponding
state space, action space, reward function, and discount
factor. Each instance of the family is a stationary MDP with
transition function Td(s′|s, a) ∈ T . Each Td has a hidden
parameter d that is sampled once from a distribution D and
held constant for that instance (i.e. episode). Td can be
continuous or discrete in d. By design, the latent variable d
that defines the MDP’s dynamics cannot be observed from
individual states.

We present Policy-Dynamics Value Functions (PD-VF), a
novel framework for rapid adaptation across such MDPs
with different dynamics. PD-VF is an extension of a value
function that not only conditions on a state, but also on a
policy and a transition function.

A conventional value function V : S → R is defined as the
expected future return from state s of policy π:

V (s) = E [Gt|St = s] = E

[
T∑

k=t+1

γkrk|St = s

]
.

Formally, we define a policy-dynamics value function or PD-
VF as a function W : S ×Π× T → R with two auxiliary
inputs representing the policy π and the dynamics d:

W (s, π, d) = E [Gt|St = s,At ∼ π, St+1 ∼ Td] .

3.1. Problem setup

The dynamics distribution D is partitioned into two disjoint
sets Dtrain and Dtest. These are used to generate a set of
training and test environments, each having different transi-
tion functions, drawn from their respective distributions.

Our model is learned on the training environments in three
stages: (i) a reinforcement learning phase, (ii) a self-su-
pervised phase and (iii) a supervised phase. The resulting
PD-VF model is evaluated on test environments, where it
only experiences a single episode in each. This evaluation
setting probes PD-VF’s ability to very quickly adapt to pre-
viously unseen dynamics.

3.2. Reinforcement Learning Phase

The first phase of training uses standard model-free RL al-
gorithms to acquire experience in the training environments.
An ensemble of N policies are trained, each with a different
random seed on one of the training environments. For each
policy, we save a number of checkpoints at different stages
throughout training. Then, we collect trajectories using each
of these checkpoints in each of our training environments.
This results in experience from a diverse set of policies
(some good, some bad) across environments with different
dynamics. Importantly, this dataset contains the behaviors
of policies in environments they haven’t been trained on. In
the next section, we describe how the collected trajectories
are used to learn policy and dynamics embeddings.

3.3. Self-Supervised Learning Phase

The goal of this phase is to learn an embedding space of the
dynamics that captures variations in the transition function,
as well as an embedding space of the policies that captures
variations in the agent behavior. The space of dynamics is
learned using an encoderEd parameterised as a Transformer
(Vaswani et al., 2017), and a decoder Dd parameterised as a
feed-forward network. The encoder takes as input a set of
transitions {(st, at, st+1)} from the first Nd steps in each
episode and outputs a vector embedding for the dynamics
zd. The decoder takes as inputs the state st, action at and
dynamics embedding zd, and predicts the next state ŝt+1.
The parameters θd and φd of the encoder and decoder are
trained to minimize the `2 error of ŝt+1 and st+1. Formally,

zd = Ed({(st, at, st+1)}; θd)

ŝt+1 = Dd(st, at, zd; φd).
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Figure 1. In the self-supervised learning phase, a pair of autoen-
coders is trained using transitions generated by a diverse set of
policies in a set of environments with different dynamics. By ex-
ploiting the Markov property of the environment, distinct latent
embeddings of the dynamics zd and policy zπ are produced.

This arrangement exploits the inductive bias that, condi-
tioned on d, the environment is Markovian. By using no
positional encoding in the Transformer, the input transitions
lack any temporal ordering, thus preserving the Markov
property. The decoder receives no historical information
(since it is unnecessary in a Markovian setting), so it is
forced to embed information about the dynamics into zd
to make good predictions. Because the input set contains
the actions in each triple, the encoder has no incentive to
encode policy information into zd. This modeling choice en-
courages zd to only contain information about the dynamics,
rather than the policy used to generate the transitions.

Similarly, the space of policies is learned using an encoder
Eπ parameterised as a Transformer and a decoder Dπ pa-
rameterised as a feed-forward network. The encoder takes
as input a set (again using the Markov property as an induc-
tive bias) of state-action pairs {(st, at)} from a full episode
and outputs a vector embedding for the policy zd. The de-
coder takes as inputs the state st and the policy embedding
zπ to predict the action taken by the policy ât. Since the
policy encoder does not have direct access to full environ-
ment transitions, zπ is constrained to capture information
about the policy without elements of the dynamics. The pa-
rameters θπ and φπ of the encoder and decoder are trained
to minimize the `2 error of ât and at. Formally,

zπ = Eπ({(st, at)}; θπ)

ât = Dπ(st, zπ; φπ).

Both the policy and the dynamics embeddings are normal-
ized to have unit `2-norm.

See Figure 1 for an overview of the self-supervised learning
phase.

Figure 2. In the supervised learning phase, a parametric value
function W is trained to predict the expected return G for an entire
space of policies and dynamics. W takes as inputs the initial state
s0, policy embedding zπ , and dynamics embedding zd (estimated
from a small set of transitions). We trainW in a supervised fashion,
using Monte-Carlo estimates of the expected return G for policy π
in environment with dynamics Td. At test time, zπ is optimized
to maximize Ĝ (red dashed arrow), resulting in z∗π which is then
decoded to an actual policy via Dπ .

3.4. Supervised Learning Phase

In this phase, the goal is to train an estimator W of the
expected return Ĝ for a space of policies and dynamics.
More specifically,W is a function approximator conditioned
on the learned policy and dynamics embeddings, zπ and zd.

A central idea of our PD-VF framework is that W provides
a scoring function over the policy embedding space. It
thus provides a mechanism to allow on-the-fly optimization
of zπ with respect to the estimated return Ĝ, without the
need for any environment interaction, given an estimate (or
embedding) of the environment’s dynamics. This is key to
PD-VF’s ability to rapidly find an effective policy in a new
environment, only requiring enough environment interaction
to give a reliable estimate of the dynamics embedding zd
(just a few steps in practice). We choose W to have a
quadratic form to permit easy optimization with respect to
zπ:

Ĝ = W (s0, zπ, zd) = zTπ A(s0, zd;ψ) zπ.

The matrix A(s0, zd;ψ) is a function of the initial environ-
ment state s0 as well as the dynamics embedding zd. Note
that A only needs to model the initial state s0 rather than an
arbitrary state s since the optimization w.r.t zπ occurs only
once, at the start of an episode. Since A must be Hermitian
positive-definite, a feed-forward network with parameters ψ
is first used to obtain a lower triangular matrix L(s0, zd;ψ).
Then A is constructed from LLT .

Optimizing the policy embedding zπ: The optimization of
the policy embedding zπ has a closed-form solution which
is achieved by performing a singular value decomposition,
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A = USV T , and taking the top singular vector of this
decomposition z∗π. Unit `2 normalization is then applied
to z∗π. We refer to this vector z∗π as the optimal policy
embedding (OPE) of the PD-VF.

Learning ψ – Initial stage: We collect training data for the
PD-VF in the following manner. First, we randomly select a
policy and an environment from our training set (described
in Section 3.2). Second, we generate full trajectories of that
policy in the selected environment and cache the average
return obtained across all episodes. This gives us a Monte-
Carlo estimate for the expected return of the corresponding
policy in that particular environment. Then, we use the first
Nd steps of that trajectory to infer the dynamics embed-
ding. Similarly, we use the full trajectory to infer the policy
embedding (via Eπ , not the above optimization procedure).
After collecting this data into a buffer, we train the estimator
W in a supervised fashion by predicting the expected return
G given an initial state s0, a policy embedding zπ and a
dynamics embedding zd.

Learning ψ – Data Aggregation for the Value Function:
For the method to work well, it is important that the learned
value function W makes accurate predictions for the entire
policy space, and especially for the OPE z∗π (which corre-
spond to the policies selected to act in the environment).
One way to ensure that these estimates are accurate is by
adding the OPEs to the training data. After initial training
of the PD-VF on the original dataset of policy and dynamics
embeddings, we use an iterative algorithm that alternates
between collecting a new dataset of OPEs and training the
PD-VF on the aggregated data (including the original data
as well as data added from all previous iterations). We use
early stopping to select the best value function (i.e. the one
with the lowest loss) to be used at test time.

Learning ψ – Data Aggregation for the Policy Decoder:
Similarly, the policy decoder may poorly estimate an agent’s
actions in states not seen during training. Thus, we itera-
tively train the policy decoder using a combination of the
original set of states as well as new states generated by the
policy embeddings that maximize the current value function.
More specifically, we use the current OPEs (corresponding
to the policies that PD-VF thinks are best) as inputs to the
policy decoder to generate actions and interact with the en-
vironment. Then, we add the states visited by this policy to
the data. The policy decoder is trained using the aggregated
collection of states which includes both the states visited
by the original collection of policies as well as the states
visited by the current OPEs selected by the PD-VF.

See Figure 2 for an overview of the supervised learning
phase.

3.5. Evaluation Phase

At test time, we want to find a policy that performs well on
a single episode of an environment with unseen dynamics.
This proceeds as follows: (i) the agent uses one of the pre-
trained RL policies to act for Nd steps; (ii) the generated
transitions are then used to infer the dynamics embedding
zd; (iii) once an estimate of the dynamics is obtained, the
matrix A(s0, zd; ψ) can be computed; (iv) we employ the
closed-form optimization described above to compute the
optimal policy embedding z∗π; (v) the policy decoder, con-
ditioned on the z∗π embedding, is then used to take actions
in the environment until the end of the episode. Note that
only a small number of interactions with a new environment
is needed in order to adapt, the policy selection being per-
formed internally within the PD-VF model. Performance
is evaluated on a single trajectory of each environment in-
stance.

4. Experiments

(a) Spaceship (b) Swimmer (c) Ant-wind

(d) Dynamics (e) Ant-legs-v1 (f) Ant-legs-v2

Figure 3. (a) - (c) illustrate the continuous control domains used for
testing adaptation to unseen environment dynamics. In Spaceship,
Swimmer, and Ant-wind, the train and test distribution of the
dynamics is continuous as illustrated in (d). (e) and (f) show two
instances of the Ant-legs task in which limb lengths sampled from
a discrete distribution determine the dynamics.

4.1. Experimental Setup

We evaluate PD-VF on four continuous control domains,
and compare it with an upper bound, four baselines, and
four ablations. For each domain, we create a number of
environments with different dynamics. Then, we split the
set of environments into training and test subsets, so that at
test time, the agent has to find a policy that behaves well
on unseen dynamics. For all our experiments, we show the



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

16 17 18 19 20
Environment

0

50

100

150

200

Av
er

ag
e 

Re
tu

rn

Swimmer
PPOenv
PD-VF
RL2

MAML
PPOdyn
PPOall

16 17 18 19 20
Environment

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Re
tu

rn

Spaceship

16 17 18 19 20
Environment

0

200

400

600

Av
er

ag
e 

Re
tu

rn

Ant-Wind

12 13 14 15
Environment

0

100

200

300

400

Av
er

ag
e 

Re
tu

rn

Mean 695
SD: 291

Mean 862
SD: 18

Mean 374
SD: 52

Mean 758
SD: 28

Mean 695
SD: 291

Mean 862
SD: 18

Mean 374
SD: 52

Mean 758
SD: 28

Mean 695
SD: 291

Mean 862
SD: 18

Mean 374
SD: 52

Mean 758
SD: 28

Mean 695
SD: 291

Mean 862
SD: 18

Mean 374
SD: 52

Mean 758
SD: 28

Mean 695
SD: 291

Mean 862
SD: 18

Mean 374
SD: 52

Mean 758
SD: 28

Mean 695
SD: 291

Mean 862
SD: 18

Mean 374
SD: 52

Mean 758
SD: 28

Ant-Legs

Figure 4. Test Performance. Average return on test environments with unseen dynamics in Swimmer (top-left), Spaceship (top-right),
Ant-wind (bottom-left), and Ant-legs (bottom-right) obtained by PD-VF, the upper bound PPOenv, and baselines RL2, MAML, PPOdyn,
and PPOall. PD-VF outperforms these baselines on most test environments and, in some cases, it is comparable with PPOenv (which was
trained directly on the test environments).

mean and standard deviation of the average return (over
100 episodes) across 5 different seeds of each model. The
dynamics embeddings are inferred using at most Nd = 4
interactions with the environment.

4.2. Environments

Spaceship is a new continuous control domain designed by
us. The task consists of moving a spaceship with a unit point
charge from one end of a 2D room through a door at the
other end. The action space consists of a fixed-magnitude
force vector that is applied at each timestep. The room con-
tains two fixed electric charges that deflect / attract the ship
as it moves through the environment (see Figure 3(a)). The
polarity and magnitude of these charges are parameterised
by d and determine the environment dynamics. The distri-
bution of dynamics D is chosen to be circular and centered
(see Figure 3(d)). Samples d are drawn at intervals of π/10,
each forming a different environment instance with charge
configuration (cos(d), sin(d)). The 5 samples in the range
[ 342π, . . . , 2π] are held out as evaluation environments, the
rest being used for training.

Swimmer is a family of environments with varying dynam-
ics based on MuJoCo’s Swimmer-v3 domain (Todorov et al.,
2012). The goal is to control a three-link robot in a viscuous
fluid to swim forward as fast as possible (Figure 3(b)). The

dynamics are determined by a 2D current within the fluid,
whose direction changes between environments (but has
fixed magnitude). The current direction is determined by
an angle d, which is sampled in the same manner as for
Spaceship above, i.e. train on 3/4 of all possible directions
and hold out the other 1/4 for evaluation.

Ant-wind is a family of environments based on MuJoCo’s
Ant-v3 domain in which the goal is to make a four-legged
creature walk forward as fast as possible (Figure 3(c)). The
environment dynamics are determined by the direction of a
wind d, which is sampled from a continuous distribution in
the same way as for Swimmer.

Ant-legs is a second task based on MuJoCo’s Ant-v3 do-
main, in which the dynamics are sampled from a discrete
distribution. The training environments are generated by
fixing three ankle lengths (short, medium, and long) and
generating all possible permutations for the four legs. The
length of the ant leg is fixed to medium across all training
environments. Symmetries in the training environments are
removed by considering ants with the same number of short,
medium, or long legs to be the same and choosing one ant
from each equivalency class. There are four test environ-
ments with both the leg and ankle lengths being either short
or long. Note that the test environments are significantly
different from all the training ones, thus making Ant-legs
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Figure 5. Test Performance. Average return in Swimmer (top-left), Spaceship (top-right), Ant-wind (bottom-left), and Ant-legs (bottom-
right) obtained by PD-VF, NoDaggerPolicy, NoDaggerValue, Kmeans, and NN. PD-VF is better than these ablations overall.

a challenging setting for our method. Figures 3(e) and 3(f)
show two instances of this environment.

4.3. Baselines

We use PPO (Schulman et al., 2017) as the base RL algo-
rithm for all the baselines and for the reinforcement learning
phase of training the PD-VF (Sec. 3.2). We use Adam
(Kingma & Ba, 2014) for optimization. All models use the
same network architecture for the policy and value functions.
For a given environment, all methods use the same number
of steps Nd (at the beginning of each episode) to infer the
embedding of the environment dynamics. Then, they each
use a single policy network to act in the environment until
the end of the episode. We report the cumulative reward
obtained by each method throughout an episodes (in which
they first infer the environment dynamics which determines
the policy used for acting until the end of the episode). We
compare with the following baselines:

PPOenv trains a PPO policy for each environment in our
set. This is used as an upper bound for the other models.

MAML is the meta-learning algorithm from Finn et al.
(2017). MAML generally requires some amount of training
on the test environments, so to make it more comparable to
our method and the other baselines, we allow one gradient
step using a trajectory of length Nd (i.e. the same length
as the one used by PD-VF to infer the embedding of the

environment dynamics). Thus, MAML has an advantage
over PD-VF which does not make any parameter updates at
test time.

RL2 is the meta-learning algorithm from Wang et al. (2016)
and Duan et al. (2016), which uses a recurrent policy that
takes as input the previous action and reward.

PPOdyn trains (using PPO) a single policy network con-
ditioned on the dynamics embedding. At test time, it first
infers the dynamics embedding and then conditions the
pretrained policy network on that vector. This is a close
implementation of the approach in Yang et al. (2019)1.

PPOall trains a single PPO policy on all the training envi-
ronments and uses it on the test environments without any
additional fine-tuning.

We also compare PD-VF with four ablations:

NN finds the environment that is closest (in Euclidean
metric) to the test environment’s embedding and uses the
PPOenv policy trained on that environment to act. This ab-
lation aims to tease out the effect of using both the learned
space of policies and that of dynamics to adapt to new en-
vironments, from that of only using the learned dynamics
space.

1An exact match was not feasible as code for Yang et al. (2019)
was not available.
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Figure 6. Train Performance. Average return on train environments in Swimmer (top-left), Spaceship (top-right), Ant-wind (bottom-left),
and Ant-legs (bottom-right) obtained by PD-VF, the upper bound PPOenv, and baselines RL2, MAML, PPOdyn, and PPOall. PD-VF
outperforms the baselines and ablations on most test environments and, in some cases, it is comparable with PPOenv (which was trained
directly on the test environments). While other methods also perform reasonably well on the training environments, they generalize poorly
to new environments with unseen dynamics.

Kmeans clusters the environment embeddings (using tra-
jectories collected in Section 3.2) into K clusters. Then,
for each cluster, we train a new PPO policy on all the en-
vironments assigned to that cluster. At test time, we find
the closest cluster for the given environment embedding and
use the policy corresponding to that cluster to act in the
environment.

NoAggValue trains a PD-VF without using dataset aggre-
gation for the value function (see Section 3.4).

NoAggPolicy uses PD-VF without using dataset aggrega-
tion for the policy decoder (see Section 3.4).

5. Results
5.1. Adaptation to New Environment Dynamics

As seen in Figures 4 and 5, PD-VF outperforms all other
methods on test environments with new dynamics. In some
cases (particularly on Spaceship and Swimmer), our ap-
proach is comparable to the PPOenv upper bound which
was directly trained on the respective test environment (in
contrast, PD-VF has never interacted with that environment
before). While the strength of PD-VF lies in quickly adapt-
ing to new dynamics, its performance on training environ-

ments is still comparable to that of the other baselines, as
shown in Figure 6. This result is not surprising since current
state-of-the-art RL algorithms such as PPO can generally
learn good policies for the environments they are trained
on, given enough interactions, updates, and the right hy-
perparamters. However, as predicted, standard model-free
RL methods such as the baseline PPOall do not generalize
well to environments with dynamics different from the ones
experiences during training. Even meta-learning approaches
like MAML orRL2 struggle to adapt when they are allowed
to use only a short trajectory for updating the policy at test
time, as is the case here.

But most importantly, PD-VF also outperforms the ap-
proaches that use the dynamics embedding such as NN,
Kmeans, and PPOdyn. This supports our claim that learning
a value function for an entire space of policies (rather than
for a single optimal policy as standard RL methods do) can
be beneficial for adapting to unseen dynamics. By simul-
taneously estimating the return of a collection of policies
in a family of environments with different but related dy-
namics, PD-VF can learn how variations in dynamics relate
to differences in the performance of various policies. This
allows the model to rank different policies and understand
that sub-optimal behaviors in certain environments might
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be optimal in others. Thus, at least in theory, PD-VF has the
ability to find policies that are better than the ones seen dur-
ing training. Our empirical results indicate that this might
also hold true in practice. Overall, PD-VF proves to be more
robust to changes in dynamics relative to the other methods,
especially in completely new environments.

5.2. Analysis of Learned Embeddings

The performance of PD-VF relies on learning useful policy
and dynamics embeddings that capture variations in agent
behaviors and transition functions, respectively. In this
section, we analyze the learned embeddings.
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Figure 7. t-SNE plots of the learned environment embeddings zd
for Spaceship (a), Swimmer (b), and Ant-wind (c). The color
corresponds to the environment that generated the transitions used
to encode the corresponding dynamics embeddings. The plot
contains embeddings of both train and test environments.
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Figure 8. t-SNE plots of the learned policy embeddings zπ for
Spaceship (a), Swimmer (b), and Ant-wind (c). The color corre-
sponds to the policy that generated the transitions used to encode
the corresponding policy embeddings. The plot contains embed-
dings of policies trained on both train and test environments.

Figure 7 shows a t-SNE plot (van der Maaten & Hin-
ton, 2008) of the learned dynamics embeddings on the
three continuous control domains used for evaluating our
method. Environment i corresponds to dynamics defined by
d = i× π/10 (i.e. the direction of the wind in Swimmer’s
environment 1 is at π/10 degrees). Environments 1 - 15
are used for training, while 16 - 20 are used for evaluation.
The latent space captures the continuous nature of the dis-
tribution used to generate the environment dynamics. For
example, in Figure 7(c), one can see the wind direction cor-
responding to a particular environment, indicating that the
learned embedding space uncovers the manifold structure
of the true dynamics distribution. Even if, during training,

the dynamics model never sees trajectories through the test
environments, it is still able to embed them within the 1D
manifold, thus preserving smoothness in the latent space.

Similarly, Figure 8 shows the corresponding t-SNE (van der
Maaten & Hinton, 2008) of the learned policy embeddings
for Spaceship, Swimmer, and Ant. The embeddings are
clustered according to the policy that generated them.

6. Discussion and Future Work
In this work, we propose policy-dynamics value functions
(PD-VF), a novel framework for fast adaptation to new envi-
ronment dynamics. The key idea is to learn a value function
conditioned on both a policy and a dynamics embedding
which are learned in a self-supervised way. At test time,
the environment embedding can be inferred from only a
few interactions, which allows the selection of a policy that
maximizes the learned value function. PD-VF has a number
of desirable properties: it leverages the structure in both
the policy and the dynamics space to estimate the expected
return, it only needs a small number of steps to adapt to
unseen dynamics, it does not update any parameters at test
time, and it does not require dense reward or long rollouts
to find an effective policy in a new environment. Empirical
results on a set of continuous control domains show that
PD-VF outperforms other methods on unseen dynamics,
while being competitive on training environments.

PD-VF opens up many promising directions for future re-
search. First of all, the formulation can be extended to
estimate the value function not only for a family of policies
and environment dynamics, but also for a family of reward
functions. Another avenue for future research is to use a
more general class of function approximators (such as neu-
ral networks) to parameterise the value estimator instead
of a quadratic form. The PD-VF framework can, in princi-
ple, also be used to evaluate a family of policies and envi-
ronments on other metrics of interest besides the expected
return, such as, for example, reward variance, agent proso-
ciality, deviation from expert behavior, and so on. Another
interesting direction is to integrate additional constraints (or
prior knowledge) to the optimization problem (e.g. maxi-
mize expected return while only using policies in a certain
region of the policy space). As noted by Precup et al. (2001),
Sutton et al. (2011), and White et al. (2012), learning about
multiple policies in parallel via general value functions can
be useful for lifelong learning. Similarly, PD-VF can be
a useful tool for an agent to continually gather knowledge
about various policies and dynamics in the world. Finally,
PD-VF can also be applied to multi-agent settings for adapt-
ing to different opponents or teammates whose behaviors
determine the environment dynamics.
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Raileanu, R. and Rocktäschel, T. Ride: Rewarding impact-
driven exploration for procedurally-generated environ-
ments. ArXiv, abs/2002.12292, 2020.

Rajeswaran, A., Lowrey, K., Todorov, E. V., and Kakade,
S. M. Towards generalization and simplicity in continu-
ous control. In Advances in Neural Information Process-
ing Systems, pp. 6550–6561, 2017.

Rakelly, K., Zhou, A., Finn, C., Levine, S., and Quillen, D.
Efficient off-policy meta-reinforcement learning via prob-
abilistic context variables. In International conference on
machine learning, pp. 5331–5340, 2019.

Sæmundsson, S., Hofmann, K., and Deisenroth, M. P. Meta
reinforcement learning with latent variable gaussian pro-
cesses. arXiv preprint arXiv:1803.07551, 2018.

Sahni, H., Kumar, S., Tejani, F., and Isbell, C. Learning to
compose skills. arXiv preprint arXiv:1711.11289, 2017.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International conference
on machine learning, pp. 1312–1320, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Sci-
ence, 362(6419):1140–1144, 2018.

Siriwardhana, S., Weerasakera, R., Matthies, D. J., and
Nanayakkara, S. Vusfa: Variational universal suc-
cessor features approximator to improve transfer drl
for target driven visual navigation. arXiv preprint
arXiv:1908.06376, 2019.

Song, X., Jiang, Y., Tu, S., Du, Y., and Neyshabur, B. Ob-
servational overfitting in reinforcement learning. ArXiv,
abs/1912.02975, 2020.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., White, A., and Precup, D. Horde: a scalable
real-time architecture for learning knowledge from unsu-
pervised sensorimotor interaction. In AAMAS, 2011.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-
ment learning domains: A survey. Journal of Machine
Learning Research, 10(Jul):1633–1685, 2009.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. Distral: Robust
multitask reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 4496–4506, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp.
5026–5033, 2012.

van der Maaten, L. and Hinton, G. E. Visualizing data using
t-sne. 2008.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

Wang, J. X., Kurth-Nelson, Z., Soyer, H., Leibo, J. Z., Tiru-
mala, D., Munos, R., Blundell, C., Kumaran, D., and
Botvinick, M. M. Learning to reinforcement learn. ArXiv,
abs/1611.05763, 2016.

Wang, Z., Merel, J., Reed, S. E., de Freitas, N., Wayne,
G., and Heess, N. M. O. Robust imitation of diverse
behaviors. In NIPS, 2017.

White, A., Modayil, J., and Sutton, R. S. Scaling life-
long off-policy learning. In 2012 IEEE International
Conference on Development and Learning and Epigenetic
Robotics (ICDL), pp. 1–6. IEEE, 2012.

Whiteson, S., Tanner, B., Taylor, M. E., and Stone, P. Pro-
tecting against evaluation overfitting in empirical rein-
forcement learning. 2011 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (AD-
PRL), pp. 120–127, 2011.

Xu, Z., van Hasselt, H., and Silver, D. Meta-gradient rein-
forcement learning. In NeurIPS, 2018.

Yang, J., Petersen, B., Zha, H., and Faissol, D. Single
episode policy transfer in reinforcement learning. arXiv
preprint arXiv:1910.07719, 2019.

Yao, J., Killian, T. W., Konidaris, G., and Doshi-Velez,
F. Direct policy transfer via hidden parameter markov
decision processes. 2018.

Zhang, A., Ballas, N., and Pineau, J. A dissection of over-
fitting and generalization in continuous reinforcement
learning. arXiv preprint arXiv:1806.07937, 2018a.

Zhang, A., Satija, H., and Pineau, J. Decoupling dynamics
and reward for transfer learning. ArXiv, abs/1804.10689,
2018b.

Zhang, C., Vinyals, O., Munos, R., and Bengio, S. A
study on overfitting in deep reinforcement learning. arXiv
preprint arXiv:1804.06893, 2018c.

Zhang, J., Springenberg, J. T., Boedecker, J., and Bur-
gard, W. Deep reinforcement learning with successor
features for navigation across similar environments. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2371–2378. IEEE, 2017.

Zintgraf, L. M., Shiarlis, K., Kurin, V., Hofmann, K., and
Whiteson, S. Fast context adaptation via meta-learning.
In ICML, 2018.


