
Fast Adaptation to New Environments via Policy-Dynamics Value Functions

A. Network Architectures
A.1. Autoencoders

The policy and dynamics autoencoders are parameterised by Transformers using stacked self-attention and point-wise, fully
connected layers for the encoder, and a fully connected feed-forward network for the decoder.

Encoders: The encoders consist of one layer composed of two sublayers, followed by another fully connected layer. The
first sublayer, is a single-head self-attention mechanism, and the second is a simple fully connected feed-forward network.
We employ a residual connection around each of the two sub-layers, followed by layer normalization and dropout. We
use a dropout of 0.1 for all experiments. To facilitate these residual connections, all sublayers in the model, as well as the
embedding layers, produce outputs of dimension dmodel = 64. The second layer of the encoder projects the output of the
first layer into the embedding space (from dmodel to demb).

The policy encoder takes as input a set of state-action pairs (st, at) from an full trajectory and outputs an embedding for
the policy.

The dynamics encoder takes as input a set of state-action-next-state tuples (st, at, st+1) from a full trajectory and outputs
an embedding for the dynamics.

The dimension of both the policy and dynamics embedding is demb = 8 for all environments, with the exception of swimmer
which uses a dynamics embedding of dimension 2.

Decoders: The decoder is a simple fully connected feed-forward network with three layers and ReLU activations after the
first two layers.

The policy decoder takes as input the state of the environment and the policy embedding (outputted by the policy encoder)
and outputs an action (i.e. the predicted action taken by the agent).

The environment decoder takes as input the state of the environment, an action, the dynamics embedding (outputted by the
dynamics encoder) and outputs a state (i.e. the predicted next state in the environment).

The dimensions of the states and actions depend on the given environment.

A.2. The Policy-Dynamics Value Function

The Policy-Dynamics Value Function (PD-VF) takes as inputs the initial state of the environment, as well as a policy
embedding and a dynamics embedding, and outputs a scalar representing the predicted expected return.

PD-VF is parameterised by a fully connected feed-forward network. First, the environment state and dynamics embedding
are concatanated and passed through a linear layer with output dimension 64 followed by a ReLU nonlinearity. The second
layer also has output dimension 64 but is followed by a hyperbolic tangent nonlinearity. The output of the second layer
is then passed through another linear layer with output dimension equal to the square of the policy embedding dimension
which is 64 in this case. Then, the output of this is rearranged in the form of a lower triangular matrix L. This matrix is
used to construct a Hermitian positive-definite matrix A using the Cholesky decomposition, A = LLT . Finally, the value
outputted by the network is obtained by computing zTπAzπ , where zpi is the policy embedding.

A.3. Baselines

All the pretrained PPO policies as well as all the baselines (except for CondPolicy as explained below) and the ablations
use the same actor-critic network architecture. Both the actor and the critic are parameterised two-layer fully connected
networks with hidden size 64 and hyperbolic tangent nonlinearities after each layer. Note that the weights are not shared by
the two networks. The critic layer has another linear layer on top that outputs the estimated value. The actor network also
has a linear layer on top that outputs a vector with the same number of dimensions as the action space. The actions are
sampled from a Gaussian distribution with diagonal covariance matrix and means defined by the vector outputted by the
actor network. The CondPolicy baseline has a similar architecture. The only difference is the first layer of both the actor and
the critic, which has a larger input dimension due to the fact that these networks also take as input the policy embedding
(along with the environment state).



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

B. Training Details
For experiments on Spaceship and Swimmer, we use only Nd = 1 steps to infer the dynamics embedding, while for
Ant-wind we use Nd = 2 and for Ant-legs we use Nd = 4. Note that in all four domains, we only need a few steps to
infer the environment dynamics, which allows us to quickly find a good policy for acting during the rest of the episode.
Consequently, this results in good performance when evaluated on a single episode.

First, we have the reinforcement learning phase, in which we pretrain 5 different initializations of PPO policies in each of
the 20 environments in our distribution (both those used for training and those used for evaluation). We train all policies for
3e6 environment interactions, which we have found to be enough for all of them to converge to a stable expected return.

Then, in the self-supervised learning phase, we use the policies pretrained on the training environments (75 policies for
each domain) to generate trajectories through the training environments. For each policy-environment pair, we generate 200
trajectories, half of which are used for training the policy and dynamics autoencodesr and the rest are used for evaluation.
We train the autoencoders on this data for a maximum of 200 epochs and we save the models with the lowest evaluation
loss. Note that the autoencoders are never trained on trajectories generated in the evaluation environments or by policies
pretrained on those environments, but only on data produced by interactions with the training environments.

Once we have the pretrained policy and dynamics autoencoders, we use them for learning the policy-dynamics value
function in the supervised training phase. To do this, we again generate 40 trajectories in the training environments (using
only the policies pretrained on those environments). Half of these trajectories are used for training the PD-VF, while the
rest are used for evaluation. In our experiments, we have found 20 trajectories from each policy-environment pair to be
enough for training the model. For each trajectory, a policy embedding is obtained by passing the full trajectory through
the policy encoder. Similarly, a corresponding dynamics embedding is obtained for each trajectory by passing the first few
Nd transitions of that trajectory through the dynamics encoder. The initial state and the return of that trajectory are also
recorded. Now we have all the data needed for training the PD-VF with supervision. The PD-VF takes as inputs the initial
state, the policy and dynamics embeddings and outputs a prediction for the expected return (corresponding to acting with
that policy in the given environment). It is trained with `2 loss using the observed return. For the initial training stage of
the PD-VF, we use 200 epochs, while for the second stage that include data aggregation for the value function and policy
decoder, we use 100 epochs. The second stage is repeated a maximum of 20 times (each training for 100 epochs). We select
the model that obtains the lowest loss on the evaluation data (out of all the models after each stage). We use this model for
probing performace on the evaluation environments.

C. Hyperparameters
For training the PPO policies, as well as the baselines and ablations, we searched for the learning rate in [0.0001, 0.0003,
0.0005, 0.001] and found 0.0003 to work best across the boad. The entropy coefficient was set to 0.0, value loss coefficient
0.5, number of PPO epochs 10, number of PPO steps 2048, number of mini batches 32, gamma 0.99, and generealized
advantage estimator coefficient 0.95. We also linearly decay the learning rate. These values were not searched over since
they have been previously optimized for MuJoCo domains and have been shown to be robust across these environments.

For MAML, we used the best hyperparameters found in the original paper for MuJoCo, so meta batch size of 20, 10 batches,
and 8 workers.

For the dynamics autoencoder, we did a grid search over the learning rate in [0.0001, 0.001, 0.01] and found 0.001 to be
best for the dynamics and 0.01 to be best for the policy. We also searched for the right batch size in [8, 32, 256, 2048]
and found 8 to work best for the dynamics and 2048 for the policy. We also did grid searches over demb ∈ [2, 8, 32] and
found demb = 8 for the policy autoencoders and demb = 2 for the dynamics autoencoders (except for Ant, in which we use
demb = 8. We also searched for the hidden dimension of the transformers dmodel ∈ [32, 64, 128] and found dmodel = 64 to
work best for both the policy and the dynamics embeddings.

For the value function, we tried different values for the number of epochs for the initial training phase Nep,1 ∈ [1000, 500,
200, 100] and for the second training phase Nep,2 ∈ [500, 200, 100] and we found 200 and 100 (i.e. each of the 20 data
aggregation stages has 100 epochs) to work best, respectively. We also tried different learning rates from [0.0005, 0.001,
0.005, 0.01] and found 0.005 to be the best. Similarly, we tried batch sizes in [64, 128, 256] and found 128 to be the best.

All the results shown in this paper are obtained using the best hyperparameters found in our grid searches.



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

D. Environments
D.1. Spaceship Environment

The source code contains the Spaceship domain that we designed, which is wrapped in a gym environment, so it can be
easily integrated with any RL algorithm and used to evaluate agents.

The task consists of moving a spaceship with a unit point charge from one end of a 2D room through a door at the other end.
The action space consists of a fixed-magnitude force vector that is applied at each timestep. The room contains two fixed
electric charges that deflect/attract the ship as it moves through the environment.

At the beginning of each episode, the agentś location is initialized at the center-bottom of the room with coordinates (2.5,
0.2). The target door is always located at the center-top of the room with coordinates (2.5, 5.0). The size of the room is
5, the size of the door is 1, and the temporal resolution is 0.3 (i.e. the time interval used to compute the next position of
the spaceship given the current location and the applied force). The observation consists of the spaceshipś 2D location in
the room (whose coordinates can be any real number between 0 and 5, the size of the room) and the action consists of the
2D force applied by the agent. The episode ends either when the agent hits a wall, exits the room through the door, or the
agent has taken more than 50 steps in the environment. At the end of an episode, the agent receives reward that decreases
exponentially with its distance to the target door. The decay factor is set to 3.0. For all other steps, the agent receives no
reward. The distribution of dynamics is a centered circle with radius 1.5.

D.2. MuJoCo Environments

For Swimmer we use a circle with radius 0.1 to sample the environment dynamics, while Ant-wind uses a radius of 4.0.
For all three domains with continuous distribution of dynamics (i.e. Spaceship, Swimmer, and Ant-wind), we sample
15 environments for training and we hold out 5 for evaluation. The evaluation environments have dynamics covering a
closed interval from the distribution thus testing the ability of the model to extrapolate (rather than intrapolate) to different
dynamics. The Ant-wind domain has a total of 16 environmets, 4 of which are used for evaluation.

E. Evaluation
In this section, we describe in detail the evaluation method and how the results reported here are obtained. For each trained
model (i.e. PD-VF, a baseline or an ablation) and for each (unseen) test environment, we use that model to obtain a full
trajectory through the given environment. This is repeated 10 times and the average return of the 10 runs is recorded. Then,
we compute the mean and standard deviation (of this average return) across 5 different seeds for each model. These are the
statistics shown in Figures 4 and 5.

To generate the t-SNE plots, we generated 10 trajectories for each policy-environment pair, including both the training and
the evaluation ones. The encoders are used to obtain policy and dynamics embeddings corresponding to each trajectory.
Then, t-Distributed Stochastic Neighbor Embedding (t-SNE) with perplexity 30 is applied to produce Figures 6 and 7. Figure
6 shows the t-SNE for the dynamics embedding, where each point is colored by the environment in which the corresponding
trajectory (used to obtain that dynamics embedding) was collected. Conversely, Figure 7 shows the t-SNE for the policy
embedding, where each point is colored by the policy which generated the corresponding trajectory (used to obtain that
policy embedding).

F. Analysis of Learned Embeddings
Figure 11 shows a t-SNE plot of the learned policy embeddings for Spaceship, Swimmer, and Ant (from left to right).
The top and bottom rows color the embeddings by the policy and environment that generated the corresponding trajectory,
respectively. Trajectories produced by the same policy have similar embeddings, while those generated in the same
environment are not necessarily close in this embedding space. This shows that the policy embedding preserves information
about the policy while disregarding elements of the environment (that generated the corresponding embedded trajectory).

Similarly, Figure 10 shows a t-SNE plot of the learned dynamics embeddings on the three continuous control domains used
for evaluating our method. The top row colors each point by the corresponding environment used to generate the trajectory
(from which the embedding is inferred), while the bottom row colors each point by the corresponding policy. One can see
that the embedding space retrieves the true dynamics distribution and preserves the smoothness of the 1D manifold.



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

0 2 4 6 8 10 12 14
Environment

0

100

200

Av
er

ag
e 

Re
tu

rn

Swimmer
PD-VF
NoDaggerPolicy
NoDaggerValue
Kmeans
NN

0 2 4 6 8 10 12 14
Environment

0.00

0.25

0.50

0.75

1.00

Av
er

ag
e 

Re
tu

rn

Spaceship

0 2 4 6 8 10 12 14
Environment

0

200

400

600

Av
er

ag
e 

Re
tu

rn

Ant-Wind

0 2 4 6 8 10
Environment

200

300

400

500

600

700

Av
er

ag
e 

Re
tu

rn

Ant-Legs

Figure 9. Train Performance. Average return on train environments in Swimmer (top-left), Spaceship (top-right), Ant-wind (bottom-left),
and Ant-legs (bottom-right) obtained by PD-VF and a few ablations, namely NoDaggerPolicy, NoDaggerValue, Kmeans, and NN. PD-VF
is comparable with or outperforms the ablations on the train environments. While some of these ablations perform reasonably well on the
environments they are trained on, they generalize poorly to unseen dynamics.

Importantly, this analysis shows that the learned policy and dynamics embeddings are generally disentangled (i.e. information
about the dynamics is not contained in the policy space and vice versa). This is important as we want the dynamics space
to mostly capture information about the transition function and similarly, we want the policy space to capture variation
in the agent behavior. The only exception is the dynamics space of Ant-wind, which contains information about both the
environment and the policy. This is because in this environment, the policy is dominated by the force applied to the body
of the ant, whose goal is to move forward (while incurring a penalty proportional to the applied force). Thus, depending
on the wind direction in the training environment, the agent learns to apply a force of a certain magnitude, a characteristic
captured in the embedding space. When evaluated on environments with different dynamics, that policy will still apply a
similar force. Our experiments indicate that even if the dynamics space is not fully disentangled (yet it contains information
about the environment), the PD-VF is still able to make effective use of the embeddings to find good policies for unseen
environments and even outperform other state-of-the-art RL methods.

G. The Challenge of Transfer
In this section, we emphasize the fact that the family of environments we designed pose a significant challenge to current
state-of-the-art RL methods. To do this, we train PPO policies on each of the environments in our set (until convergence) and
evaluate them on all other environments. The results show that any of the policies trained in this way can drastically fail in
other environments (with different dynamics) from our training and test sets. This demonstrates that our set of environments
provides a wide range of dynamics and that a single policy trained in any of these environments does not generalize well to
the other ones. Moreover, when evaluated on a single environments, the performance across the pretrained policies varies
greatly, illustrating the diversity of collected behaviors (both optimal and suboptimal). This analysis further supports the
need for learning about multiple policies (and their performance in various environments) in order to generalize across
widely different scenarios (or dynamics in this case).



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Spaceship

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Swimmer

−10 −5 0 5 10
t-SNE dimension 1

−10

−5

0

5

10

t-S
NE

 d
im

en
sio

n 
2

Ant-wind
Environment
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Spaceship

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Swimmer

−10 −5 0 5 10
t-SNE dimension 1

−10

−5

0

5

10

t-S
NE

 d
im

en
sio

n 
2

Ant-wind
Policy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 10. t-SNE plots of the learned environment embeddings zd for Spaceship, Swimmer, and Ant-wind (from left to right). The points
are colored by the environment (top) and policy (bottom) used to generate the trajectory of the corresponding dynamics embedding.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

P1 598 354 128 372 291 95.9 -51.8 -50.9 -246 -299
P2 512 461 503 349 228 135 -1.44 -46.8 -28.1 -271
P3 689 620 593 500 334 80 0.4 -152 -51 -258
P4 654 665 557 519 29.9 180 177 -9.41 -90.5 -218.5
P5 935 962 947 930 853 648 429 287 155 -52.9
P6 811 838 794 778 710 600 386 247 123 -5.14
P7 624 659 408 451 351 474 394 82.9 151 55.9
P8 500 470 442 393 321 468 410 315 209 124
P9 303 326 297 295 265 254 243 238 11.1 223
P10 293 54.8 294 293 250 226 200 200 180 -1.28
P11 473 236 212 218 243 144 83.9 132 107 136
P12 266 264 268 242 214 181 55.6 72.7 239.4 240
P13 422 669 612 527 401 270 205 128 68.5 103
P14 436 362 424 366 259 296 97.3 55.7 24.9 -2.44
P15 420 484 264 125 131 66.7 44.5 13.1 5.43 35.1
P16 671 769 573 270 189 212 153 96.4 19.7 0.290
P17 784 793 683 600 56.9 200 56.8 12.4 4.4 19.8
P18 755 703 564 213 170 129 58.1 2.17 -103 -43.7
P19 182 593 415 65.5 250 112 25.8 37.1 -94.9 -19.2
P20 297 589 518 350 134 76.3 6.55 -51.5 -185.4 -11.2

Table 1. Performance of PPO policies on the Ant-wind domain. A row shows the mean episode return of a single policy on all
environments, while a column shows the mean episode return of all policies on a single environment. This table contains performance on
the first 10 environments.



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Spaceship

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Swimmer

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Ant-wind Policy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Spaceship

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Swimmer

−15 −10 −5 0 5 10 15
t-SNE dimension 1

−15

−10

−5

0

5

10

15

t-S
NE

 d
im

en
sio

n 
2

Ant-wind
Environment
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Figure 11. t-SNE plots of the learned policy embeddings zπ for Spaceship, Swimmer, and Ant-wind (from left to right). The points are
colored by the policy (top) and environment (bottom) used to generate the trajectory of the corresponding policy embedding.

E11 E12 E13 E14 E15 E16 E17 E18 E19 E20

P1 -336 -136 -55.2 -7.47 -8.11 168 262 473 498 603
P2 -42.2 -101 -28.3 -112 14.2 132 109 345 510 545
P3 -54.1 -10.1 -232 -6.25 59.9 120 207 136 563 372
P4 -279 -278 -135 -4.81 5.49 113 276 150 484 196
P5 -264 -236 -69.8 14.0 77.6 248 457 602 813 634
P6 20.9 -112 98.7 147 14.9 194 321 524 611 639
P7 0.700 -5.74 -61.6 9.51 89.0 267 212 412 579 536
P8 39.6 -33.5 11.7 53.9 21.5 206 218 29.9 469 509
P9 7.05 216 225 224 248 253 284 266 314 281

P10 176 -159 5.98 5.03 57.8 20.6 77.0 287 249 539
P11 92.8 148 206 244 277 351 280 485 556 582
P12 235 235 232 122 139 151 165 299 272 265
P13 84.6 171 230 285 312 300 328 523 640 504
P14 45.2 159 126 302 369 363 537 457 512 396
P15 -4.98 -70.8 41.3 360 571 654 687 546 393 537
P16 -7.77 19.7 63.4 248 457 600 740 493 731 804
P17 -20.0 -102 -8.87 69.8 254 444 515 658 749 703
P18 -93.7 -59.9 -11.6 125 275 434 577 679 781 781
P19 -10.1 -16.9 1.38 18.6 86.5 126 372 508 489 652
P20 -118 -62.4 -125 -81.7 20.1 82.9 131 195 341 392

Table 2. Performance of PPO policies on the Ant-wind domain. A row shows the mean episode return of a single policy on all
environments, while a column shows the mean episode return of all policies on a single environment. This table contains performance on
the last 10 environments.



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

P1 139.17 133.61 119.29 96.78 69.8 38.3 7.88 -19.59 -41.18 -54.88
P2 197.01 191.23 176.68 154.75 125.97 95.2 64.06 36.33 13.79 -1.1
P3 140.38 135.81 122.1 100.15 72.56 41.97 11.69 -15.47 -37.79 -51.59
P4 139.01 134.82 121.15 98.86 71.07 41.13 10.26 -17.24 -39.25 -54.68
P5 215.38 209.66 196.33 174.77 147.62 115.54 84.68 59.61 36.2 22.31
P6 207.08 201.55 186.96 165.49 138.86 107.64 77.12 49.94 28.6 14.55
P7 210.29 205.73 191.61 169.42 141.29 112.15 81.69 53.65 32.87 18.08
P8 213.98 209.7 198.61 179.11 152.56 124.49 95.18 67.78 45.47 32.82
P9 206.51 201.71 190.56 170.55 142.16 114.04 84.64 56.6 33.8 19.84
P10 204.85 201.04 186.64 168.29 141.0 113.45 80.69 53.39 33.46 19.9
P11 197.34 193.67 182.94 164.05 137.93 109.44 80.39 52.76 32.46 18.77
P12 204.92 201.11 186.85 166.49 138.03 108.22 79.32 50.95 29.97 16.23
P13 202.86 204.16 174.7 174.07 139.94 130.12 88.65 45.72 24.26 15.94
P14 205.89 201.64 187.07 166.63 138.54 108.87 77.48 51.66 29.76 15.68
P15 209.19 186.31 190.71 168.87 142.23 114.88 82.87 56.37 35.82 20.97
P16 214.29 204.26 188.0 165.51 140.3 109.66 80.35 56.25 37.05 23.41
P17 202.78 197.79 183.82 160.93 133.64 103.02 71.89 44.94 22.01 9.32
P18 202.66 204.15 190.16 167.73 139.81 109.03 77.82 51.18 29.4 14.83
P19 208.89 204.35 191.05 168.31 139.9 109.16 79.06 51.99 28.93 14.33
P20 141.37 136.28 122.22 100.69 73.13 42.51 12.4 -15.19 -37.6 -51.74

Table 3. Performance of PPO policies on the Swimmer domain. A row shows the mean episode return of a single policy on all
environments, while a column shows the mean episode return of all policies on a single environment. This table contains performance on
the first 10 environments.

E11 E12 E13 E14 E15 E16 E17 E18 E19 E20

P1 -59.39 -54.24 -40.67 -19.18 9.2 39.2 69.81 97.3 119.73 134.49
P2 -6.11 -0.47 13.55 36.02 65.06 96.16 126.34 154.61 177.55 191.34
P3 -57.27 -52.51 -39.14 -16.39 10.56 40.38 71.77 98.78 121.09 135.31
P4 -58.16 -53.38 -39.35 -18.19 9.62 40.21 70.66 98.47 120.61 134.47
P5 16.13 20.32 32.89 56.59 85.07 114.87 144.05 173.91 196.76 210.27
P6 9.8 13.8 27.56 49.58 76.67 107.47 137.03 164.94 188.26 201.71
P7 14.63 19.66 34.54 56.04 82.39 114.16 143.69 171.16 190.65 205.65
P8 25.48 33.05 45.05 68.32 94.65 124.24 153.37 179.63 199.71 210.72
P9 15.39 19.33 31.88 54.41 79.43 110.51 139.44 165.05 186.49 200.29

P10 12.91 16.72 32.59 52.4 79.08 107.42 138.15 161.44 184.87 199.23
P11 12.84 17.28 30.41 50.77 76.78 104.17 132.33 156.83 178.78 191.66
P12 11.56 16.06 29.37 51.48 78.29 108.94 136.79 164.79 187.09 201.86
P13 3.07 -8.63 30.02 59.98 72.13 110.56 128.87 148.73 173.19 192.25
P14 10.65 16.23 30.17 52.24 79.07 109.76 139.88 166.59 187.43 202.78
P15 14.82 21.48 35.28 57.38 82.5 114.19 144.17 169.13 190.07 203.95
P16 18.92 23.92 36.31 57.05 88.57 116.78 147.6 172.97 196.18 209.08
P17 4.5 9.35 23.38 45.9 72.68 103.65 133.52 161.88 183.18 197.69
P18 10.91 14.36 29.04 49.94 78.39 109.27 140.76 167.58 189.9 202.89
P19 9.76 14.41 27.79 49.65 76.61 109.48 140.12 167.97 188.71 203.91
P20 -56.61 -52.49 -38.36 -16.25 11.95 42.14 72.88 100.43 122.74 136.87

Table 4. Performance of PPO policies on the Swimmer domain. A row shows the mean episode return of a single policy on all
environments, while a column shows the mean episode return of all policies on a single environment. This table contains performance on
the last 10 environments.



Fast Adaptation to New Environments via Policy-Dynamics Value Functions

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.97 0.97 0.92 0.92 0.90 0.91 0.93 0.95 0.99 0.95
P3 0.97 0.92 0.85 0.85 0.86 0.86 0.86 0.91 0.94 0.94
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P5 0.61 0.61 0.60 0.58 0.57 0.55 0.53 0.51 0.50 0.49
P6 0.96 0.90 0.87 0.87 0.88 0.90 0.91 0.92 0.96 0.95
P7 0.83 0.89 0.93 0.96 0.97 0.96 0.94 0.89 0.84 0.80
P8 0.84 0.84 0.84 0.82 0.81 0.79 0.78 0.77 0.75 0.74
P9 0.97 0.93 0.90 0.87 0.86 0.86 0.87 0.87 0.87 0.86
P10 0.91 0.90 0.88 0.87 0.87 0.88 0.89 0.92 0.96 0.98
P11 0.77 0.78 0.79 0.80 0.82 0.78 0.72 0.76 0.79 0.80
P12 0.67 0.56 0.39 0.46 0.58 0.41 0.39 0.46 0.49 0.47
P13 0.38 0.36 0.32 0.26 0.30 0.25 0.32 0.32 0.33 0.40
P14 0.82 0.79 0.76 0.74 0.73 0.72 0.72 0.73 0.75 0.76
P15 0.67 0.66 0.65 0.63 0.62 0.62 0.61 0.61 0.61 0.61
P16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P17 0.86 0.82 0.80 0.78 0.77 0.78 0.79 0.82 0.85 0.87
P18 0.69 0.68 0.66 0.65 0.64 0.63 0.63 0.63 0.63 0.63
P19 0.80 0.81 0.81 0.73 0.75 0.78 0.81 0.79 0.78 0.90
P20 0.96 0.94 0.90 0.88 0.87 0.86 0.86 0.86 0.85 0.83

Table 5. Performance of PPO policies on the Spaceship domain. A row shows the mean episode return of a single policy on all
environments, while a column shows the mean episode return of all policies on a single environment. This table contains performance on
the first 10 environments.

E11 E12 E13 E14 E15 E16 E17 E18 E19 E20

P1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P2 0.89 0.85 0.82 0.79 0.79 0.79 0.81 0.84 0.87 0.92
P3 0.93 0.91 0.86 0.83 0.82 0.82 0.84 0.86 0.91 0.95
P4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P5 0.49 0.49 0.49 0.50 0.51 0.53 0.55 0.57 0.59 0.61
P6 0.91 0.85 0.82 0.79 0.78 0.78 0.80 0.82 0.86 0.92
P7 0.74 0.70 0.67 0.65 0.64 0.65 0.66 0.70 0.75 0.79
P8 0.73 0.71 0.70 0.70 0.70 0.71 0.73 0.76 0.79 0.82
P9 0.84 0.82 0.80 0.79 0.80 0.81 0.84 0.87 0.93 0.97
P10 0.94 0.90 0.86 0.84 0.83 0.83 0.85 0.88 0.90 0.92
P11 0.81 0.93 0.90 0.87 0.84 0.82 0.80 0.78 0.77 0.77
P12 0.46 0.83 0.61 0.44 0.77 0.74 0.64 0.59 0.59 0.63
P13 0.43 0.73 0.64 0.81 0.67 0.69 0.80 0.63 0.51 0.41
P14 0.79 0.80 0.82 0.85 0.86 0.89 0.91 0.91 0.89 0.85
P15 0.61 0.62 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.68
P16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
P17 0.90 0.91 0.92 0.93 0.94 0.96 0.98 0.98 0.94 0.90
P18 0.63 0.63 0.64 0.64 0.65 0.67 0.68 0.69 0.70 0.70
P19 0.91 0.89 0.87 0.93 0.89 0.86 0.83 0.81 0.80 0.80
P20 0.80 0.78 0.77 0.76 0.76 0.77 0.80 0.85 0.90 0.93

Table 6. Performance of PPO policies on the Spaceship domain. A row shows the mean episode return of a single policy on all
environments, while a column shows the mean episode return of all policies on a single environment. This table contains performance on
the last 10 environments.


