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A. Transformations to handle arbitrary matrix norms
Consider a more general minimum norm estimator of the following form. Given inputs X and corresponding targets y as
training data, we study the interpolation estimator,

θ̂ = arg min
θ

{
θ>Mθ : Xθ = y

}
, (12)

where M is a positive definite (PD) matrix that incorporates prior knowledge about the true model. For simplicity, we
present our results in terms of the `2 norm (ridgeless regression) as defined in Equation 12. However, all our results hold for
arbitrary M–norms via appropriate rotations. Given an arbitrary PD matrix M , the rotated covariates x←M−1/2x and
rotated parameters θ ←M1/2θ maintain y = Xθ and the M -norm of parameters simplifies to ‖θ‖2.

B. Standard error of minimum norm interpolants
B.1. Projection operators

The projection operators Π⊥std and Π⊥aug are formally defined as follows.

Σstd = X>stdXstd, Π⊥std = I − Σ+
stdΣstd (13)

Σaug = X>stdXstd +X>extXext, Π⊥aug = I − Σ+
augΣaug. (14)

B.2. Invariant transformations may have arbitrary nullspace components

We show that the transformations which satisfy the invariance condition (x̃−x)>θ? = 0 where x̃ ∈ T (x) is a transformation
of x may have arbitrary nullspace components for general transfomation mappings T . Let Πstd and Π⊥std be the column space
and nullspace projections for the original data Xstd. The invariance condition is equivalent to

(x̃− x)>θ? = (Πstd(x̃− x) + Π⊥std(x̃− x))>θ? = 0 (15)

which implies that as long as Π⊥stdθ
? 6= 0, then for any choice of nullspace component Π⊥std(x̃) ∈ Null(X>stdXstd), there is a

choice of Πstdx̃ which satisfies the condition. Thus, we consider augmented points Xext with arbitrary components in the
nullspace of Xstd.

B.3. Proof of Theorem 1

Inequality (8) follows from

Lstd(θ̂aug)− Lstd(θ̂std) = (θ? − θ̂aug)>Σ(θ? − θ̂aug)− (θ? − θ̂std)>Σ(θ? − θ̂std)

= (Π⊥augθ
?)>ΣΠ⊥augθ

? − (Π⊥stdθ
?)>ΣΠ⊥stdθ

?

= w>Σw − (w + v)>Σ(w + v)

= −2w>Σv − v>Σv (16)

by decomposition of Π⊥stdθ
? = v + w where v = Π⊥stdΠaugθ

? and w = Π⊥stdΠ⊥augθ
?. Note that the error difference does scale

with ‖θ?‖2, although the sign of the difference does not.

B.4. Proof of Corollary 1

Corollary 1 presents three sufficient conditions under which the standard error of the augmented estimator Lstd(θ̂aug) is never
larger than the standard error of the standard estimator Lstd(θ̂std).

1. When the population covariance Σ = I , from Theorem 1, we see that

Lstd(θ̂std)− Lstd(θ̂aug) = v>v + 2w>v = v>v ≥ 0, (17)

since v = Π⊥stdΠaugθ
? and w = Π⊥augθ

? are orthogonal.
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2. When Π⊥aug = 0, the vector w in Theorem 1 is 0, and hence we get

Lstd(θ̂std)− Lstd(θ̂aug) = v>v ≥ 0. (18)

3. We prove the eigenvector condition in Section B.7 which studies the effect of augmenting with a single extra point in
general.

B.5. Proof of Proposition 1

The proof of Proposition 1 is based on the following two lemmas that are also useful for characterization purposes in
Corollary 2.

Lemma 1. If a PSD matrix Σ has non-equal eigenvalues, one can find two unit vectors w, v for which the following holds

w>v = 0 and w>Σv 6= 0 (19)

Hence, there exists a combination of original and augmentation dataset Xstd, Xext such that condition (19) holds for two
directions v ∈ Col(Π⊥stdΠaug) and w ∈ Col(Π⊥stdΠ⊥aug) = Col(Π⊥aug).

Note that neither w nor v can be eigenvectors of Σ in order for both conditions in equation (19) to hold. Given a population
covariance, fixed original and augmentation data for which condition (19) holds, we can now explicitly construct θ? for
which augmentation increases standard error.

Lemma 2. Assume Σ, Xstd, Xext are fixed. Then condition (19) holds for two directions v ∈ Col(Π⊥stdΠaug) and w ∈
Col(Π⊥stdΠ⊥aug) iff there exists a θ? such that Lstd(θ̂aug) − Lstd(θ̂std) ≥ c for some c > 0. Furthermore, the `2 norm of θ?

needs to satisfy the following lower bounds with c1 := ‖θ̂aug‖2 − ‖θ̂std‖2

‖θ?‖2 − ‖θ̂aug‖2 ≥ β1c1 + β2
c2

c1

‖θ?‖2 − ‖θ̂std‖2 ≥ (β1 + 1)c1 + β2
c2

c1
(20)

where βi are constants that depend on Xstd, Xext,Σ.

Proposition 1 follows directly from the second statement of Lemma 2 by minimizing the bound (20) with respect to c1
which is a free parameter to be chosen during construction of θ? (see proof of Lemma (2). The minimum is attained for
c1 = 2

√
(β1 + 1)(β2c2). We hence conclude that θ? needs to be sufficiently more complex than a good standard solution,

i.e. ‖θ?‖22 − ‖θ̂std‖22 > γc where γ > 0 is a constant that depends on the Xstd, Xext.

B.6. Proof of technical lemmas

In this section we prove the technical lemmas that are used to prove Theorem 1.

B.6.1. PROOF OF LEMMA 2

Any vector Π⊥stdθ ∈ Null(Σstd) can be decomposed into orthogonal components Π⊥stdθ = Π⊥stdΠ⊥augθ + Π⊥stdΠaugθ. Using
the minimum-norm property, we can then always decompose the (rotated) augmented estimator θ̂aug ∈ Col(Π⊥aug) =

Col(Π⊥stdΠ⊥aug) and true parameter θ? by

θ̂aug = θ̂std +
∑
vi∈ext

ζivi

θ? = θ̂aug +
∑
wj∈rest

ξjwj ,
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where we define “ext” as the set of basis vectors which span Col(Π⊥stdΠaug) and respectively “rest” for Null(Σaug). Requiring
the standard error increase to be some constant c > 0 can be rewritten using identity (16) as follows

Lstd(θ̂aug)− Lstd(θ̂std) = c

⇐⇒ (
∑
vi∈ext

ζivi)
>Σ(

∑
vi∈ext

ζivi) + c = −2(
∑
wj∈rest

ξjwj)Σ(
∑
vi∈ext

ζivi)

⇐⇒ (
∑
vi∈ext

ζivi)
>Σ(

∑
vi∈ext

ζivi) + c = −2
∑

wj∈rest,vi∈ext

ξjζiw
>
j Σvi (21)

The left hand side of equation (21) is always positive, hence it is necessary for this equality to hold with any c > 0, that
there exists at least one pair i, j such that w>j Σvi 6= 0 and one direction of the iff statement is proved.

For the other direction, we show that if there exist v ∈ Col(Π⊥stdΠaug) and w ∈ Col(Π⊥stdΠ⊥aug) for which condition (19) holds
(wlog we assume that the w>Σv < 0) we can construct a θ? for which the inequality (8) in Theorem 1 holds as follows:

It is then necessary by our assumption that ξjζiw>j Σvi > 0 for at least some i, j. We can then set ζi > 0 such that
‖θ̂aug − θ̂std‖2 = ‖ζ‖2 = c1 > 0, i.e. that the augmented estimator is not equal to the standard estimator (else obviously
there can be no difference in error and equality (21) cannot be satisfied for any desired error increase c > 0).

The choice of ξ minimizing ‖θ? − θ̂aug‖2 =
∑
j ξ

2
j that also satisfies equation (21) is an appropriately scaled vector in the

direction of x = W>ΣV ζ where we define W := [w1, . . . , w|rest|] and V := [v1, . . . , v|ext|]. Defining c0 = ζ>V >ΣV ζ for
convenience and then setting

ξ = −c0 + c

2‖x‖22
x (22)

which is well-defined since x 6= 0, yields a θ? such that augmentation increases standard error. It is thus necessary for
Lstd(θ̂aug)− Lstd(θ̂std) = c that ∑

j

ξ2
j =

(c0 + c)2

4‖W>ΣV ζ‖2 =
(ζ>V >ΣV ζ + c)2

4ζ>V >ΣWW>ΣV ζ

≥ (ζ>V >ΣV ζ)2

4ζ>V >ΣWW>ΣV ζ
+

c2

4ζ>V >ΣWW>ΣV ζ

≥ c1
4

λ2
min(V >ΣV )

λ2
max(W>ΣV )

+
c2

4c1λ2
max(W>ΣV )

.

By assuming existence of i, j such that ξjζiw>j Σvi 6= 0, we are guaranteed that λ2
max(W>ΣV ) > 0.

Note due to construction we have ‖θ?‖22 = ‖θ̂std‖22 +
∑
i ζ

2
i +

∑
j ξ

2
j and plugging in the choice of ξj in equation (22) we

have

‖θ?‖22 − ‖θ̂std‖22 ≥ c1
[
1 +

λ2
min(V >ΣV )

4λ2
max(W>ΣV )

]
+

c2

4λ2
max(W>ΣV )

1

c1
.

Setting β1 =
[
1 +

λ2
min(V >ΣV )

4λ2
max(W>ΣV )

]
, β2 = 1

4λ2
max(W>ΣV )

yields the result.

B.6.2. PROOF OF LEMMA 1

Let λ1, . . . , λm be the m non-zero eigenvalues of Σ and ui be the corresponding eigenvectors. Then choose v to be any
combination of the eigenvectors v = Uβ where U = [u1, . . . , um] where at least βi, βj 6= 0 for λi 6= λj . We next construct
w = Uα by choosing α as follows such that the inequality in (19) holds:

αi =
βj

β2
i + β2

j

αj =
−βi

β2
i + β2

j
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and αk = 0 for k 6= i, j. Then we have that α>β = 0 and hence w>v = 0. Simultaneously

w>Σv = λiβiαi + λjβjαj

= (λi − λj)
βiβj

β2
i + β2

j

6= 0

which concludes the proof of the first statement.

We now prove the second statement by constructing Σstd = X>stdXstd,Σext = X>extXext using w, v. We can then obtain
Xstd, Xext using any standard decomposition method to obtain Xstd, Xext. We construct Σstd,Σext using w, v. Without loss
of generality, we can make them simultaneously diagonalizable. We construct a set of eigenvectors that is the same for
both matrices paired with different eigenvalues. Let the shared eigenvectors include w, v. Then if we set the corresponding
eigenvalues λw(Σext) = 0, λv(Σext) > 0 and λw(Σstd) = 0, λv(Σstd) = 0, then λw(Σaug) = 0 such that w ∈ Col(Π⊥stdΠ⊥aug)

and v ∈ Col(Π⊥stdΠaug). This shows the second statement. With this, we can design a θ? for which augmentation increases
standard error as in Lemma 2.

B.7. Characterization Corollary 2

A simpler case to analyze is when we only augment with one extra data point. The following corollary characterizes which
single augmentation directions lead to higher prediction error for the augmented estimator.

Corollary 2. The following characterizations hold for augmentation directions that do not cause the standard error of the
augmented estimator to be higher than the original estimator.

(a) (in terms of ratios of inner products) For a given θ?, data augmentation does not increase the standard error of the
augmented estimator for a single augmentation direction xext if

x>extΠ
⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

− 2
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

x>extΠ
⊥
stdθ

?
≤ 0 (23)

(b) (in terms of eigenvectors) Data augmentation does not increase standard error for any θ? if Π⊥stdxext is an eigenvector
of Σ. However if one augments in the direction of a mixture of eigenvectors of Σ with different eigenvalues, there exists
θ? such that augmentation increases standard error.

(c) (depending on well-conditioning of Σ) If λmax(Σ)
λmin(Σ) ≤ 2 and Π⊥stdθ

? is an eigenvector of Σ, then no augmentations xext

increase standard error.

The form in Equation (23) compares ratios of inner products of Π⊥stdxext and Π⊥stdθ
? in two spaces: the one in the numerator is

weighted by Σ whereas the denominator is the standard inner product. Thus, if Σ scales and rotates rather inhomogeneously,
then augmenting with xext may hurt standard error. Here again, if Σ = γI for γ > 0, then the condition must hold.

B.7.1. PROOF OF COROLLARY 2 (A)

Note that for a single augmentation point Xext = x>ext, the orthogonal decomposition of Π⊥stdθ
? into Col(Π⊥aug) and

Col(Π⊥stdΠaug) is defined by v =
Π⊥

stdxext
>
θ?

‖Π⊥
stdxext‖2

Π⊥stdxext and w = Π⊥stdθ
? − v respectively. Plugging back into into identity (16)

then yields the following condition for safe augmentations:

2(v −Π⊥stdθ
?)>Σv − v>Σv ≤ 0 (24)

v>Σv − 2(Π⊥stdθ
?)>Σv ≤ 0

⇐⇒ Π⊥stdxext
>

ΣΠ⊥stdxext ≤ 2(Π⊥stdθ
?)>ΣΠ⊥stdxext ·

‖Π⊥stdxext‖2

Π⊥stdxext
>
θ?

Rearranging the terms yields inequality (23).

Safe augmentation directions for specific choices of θ? and Σ are illustrated in Figure 3.
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B.7.2. PROOF OF COROLLARY 2 (B)

Assume that Π⊥stdxext is an eigevector of Σ with eigenvalue λ > 0. We have

x>extΠ
⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

− 2
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

x>extΠ
⊥
stdθ

?
= −λ < 0

for any θ?. Hence by Corollary 2 (a), the standard error doesn’t increase by augmenting with eigenvectors of Σ for any θ?.

When the single augmentation direction v is not an eigenvector of Σ, by Lemma 1 one can find w such that w>Σv 6= 0. The
proof in Lemma 1 gives an explicit construction for w such that condition (19) holds and the result then follows directly by
Lemma 2.

B.7.3. PROOF OF COROLLARY 2 (C)

Suppose ΣΠ⊥stdθ
? = λΠ⊥stdθ

? for some λmin(Σ) ≤ λ ≤ λmax(Σ). Then starting with the expression (23),

x>extΠ
⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

− 2
(Π⊥stdxext)

>ΣΠ⊥stdθ
?

x>extΠ
⊥
stdθ

?
=
x>extΠ

⊥
stdΣΠ⊥stdxext

x>extΠ
⊥
stdxext

− 2λ

≤ λmax(Σ)− 2λ < 0

by applying λmax(Σ)
λmin(Σ) ≤ 2. Thus when Π⊥stdθ

? is an eigenvector of Σ, there are no augmentations xext that increase the
standard error.

C. Details for spline staircase
We describe the data distribution, augmentations, and model details for the spline experiment in Figure 1 and toy scenario in
Figure 2. Finally, we show that we can construct a simplified family of spline problems where the ratio between standard
errors of the augmented and standard estimators increases unboundedly as the number of stairs.

C.1. True model

We consider a finite input domain
T = {0, ε, 1, 1 + ε, . . . , s− 1, s− 1 + ε} (25)

for some integer s corresponding to the total number of “stairs” in the staircase problem. Let Tline ⊂ T = {0, 1, . . . , s− 1}.
We define the underlying function f? : R 7→ R as f?(t) = btc. This function takes a staircase shape, and is linear when
restricted to Tline.

Sampling training data Xstd We describe the data distribution in terms of the one-dimensional input t, and by the
one-to-one correspondence with spline basis features x = X(t), this also defines the distribution of spline features x ∈ X .
Let w ∈ ∆s define a distribution over Tline where ∆s is the probability simplex of dimension s. We define the data
distribution with the following generative process for one sample t. First, sample a point i from Tline according to the
categorical distribution described by w, such that i ∼ Categorical(w). Second, sample t by perturbing i with probability δ
such that

t =

{
i w.p. 1− δ
i+ ε w.p. δ.

The sampled t is in Tline with probability 1− δ and T cline with probability δ, where we choose δ to be small.

Sampling augmented points Xext For each element ti in the training set, we augment with T̃i = [u
u.a.r∼ B(ti)], an input

chosen uniformly at random from B(ti) = {btic, btic+ ε}. Recall that in our work, we consider data augmentation where
the targets associated with the augmented points are from the ground truth oracle. Notice that by definition, f?(t̃i) = f?(ti)
for all t̃ ∈ B(ti), and thus we can set the augmented targets to be ỹi = yi. This is similar to random data augmentation in
images (Yaeger et al., 1996; Krizhevsky et al., 2012), where inputs are perturbed in a way that preserves the label.
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Figure 7. Visualization of the effect of single augmentation points in the noiseless spline problem given an initial dataset Xstd = {Φ(t) :
t ∈ {0, 1, 2, 3, 4}}. The standard estimator defined by Xstd is linear. (a) Plot of the difference term in Corollary 2 (a), is positive when
augmenting a single point causes higher test error. Augmenting with points on Xline does not affect the bias, but augmenting with any
element of {X(t) : t ∈ {2.5, 3.5, 4.5}} hurts the bias of the augmented estimator dramatically. (b), (c) Augmenting with X(3.5) or
X(4.5) hurts the bias by changing the direction of extrapolation.

C.2. Spline model

We parameterize the spline predictors as fθ(t) = θ>X(t) where X : R→ Rd is the cubic B-spline feature mapping (Fried-
man et al., 2001) and the norm of fθ(t) can be expressed as θ>Mθ for a matrix M that penalizes a large second derivative
norm where [M ]ij =

∫
X

′′

i (u)X
′′

j (u)du. Notice that the splines problem is a linear regression problem from Rd to R in the
feature domain X(t), allowing direct application of Theorem 1. As a linear regression problem, we define the finite domain
as X = {X(t) : t ∈ T } containing 2s elements in Rd. There is a one-to-one correspondence between t and X(t), such that
X−1 is well-defined. We define the features that correspond to inputs in Tline as Xline = {x : X−1(x) ∈ Tline}. Using this
feature mapping, there exists a θ? such that fθ?(t) = f?(t) for t ∈ T .

Our hypothesis class is the family of cubic B-splines as defined in (Friedman et al., 2001). Cubic B-splines are piecewise
cubic functions, where the endpoints of each cubic function are called the knots. In our example, we fix the knots to be
[0, ε, 1, . . . , s − 1, s − 1 + ε], which places a knot on every point in T . This ensures that the function class contains an
interpolating function on all t ∈ T , i.e. for some θ?,

fθ?(t) = θ?>X(t) = f?(t) = btc.

We solve the minimum norm problem

θ̂std = arg min
θ
{θ>Mθ : Xstdθ = ystd} (26)

for the standard estimator and the corresponding augmented problem to obtain the augmented estimator.

C.3. Evaluating Corollary 2 (a) for splines

We now illustrate the characterization for the effect of augmentation with different single points in Theorem 2 (a) on
the splines problem. We assume the domain to T as defined in equation 25 with s = 10 and our training data to be
Xstd = {X(t) : t ∈ {0, 1, 2, 3, 4}}. Let local perturbations be spline features for t̃ /∈ Tline where t̃ = t+ ε is ε away from
some t ∈ {0, 1, 2, 3, 4} from the training set. We examine all possible single augmentation points in Figure 7 (a) and plot
the calculated standard error difference as defined in equation (24). Figure 7 shows that augmenting with an additional point
from {X(t) : t ∈ Tline} does not affect the bias, but adding any perturbation point in {X(t̃) : t̃ ∈ {2.5, 3.5, 4.5}} where
t̃ /∈ Tline increases the error significantly by changing the direction in which the estimator extrapolates. Particularly, local
augmentations near the boundary of the original dataset hurt the most while other augmentations do not significantly affect
the bias of the augmented estimator.

C.3.1. LOCAL AND GLOBAL STRUCTURE IN THE SPLINE STAIRCASE

In the spline staircase, the local perturbations can be thought of as fitting high frequency noise in the function space, where
fitting them causes a global change in the function.
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θ∗ − θ̂std

ΠlgX(5)
ΠlgX(1.5)

Global (q3)

Local (q2s)

Figure 8. Nullspace projections onto global direction q3 and local direction q2s in Null(Σ) via Πlg, representing global and local
eigenvectors respectively. The local perturbation ΠlgΦ̂(1.5) has both local and global components, creating a high-error component in the
global direction.

To see this, we transform the problem to minimum `2 norm linear interpolation using features XM (t) = X(t)M−1/2 so
that the results from Section 3.2 apply directly. Let Σ be the population covariance of XM for a uniform distribution over
the discrete domain consisting of s stairs and their perturbations (Figure 2). Let Q = [qi]

2s
i=1 be the eigenvectors of Σ in

decreasing order of their corresponding eigenvalues. The visualization in Figure 4 shows that qi are wave functions in the
original input space; the “frequency” of the wave increases as i increases.

Suppose the original training set consists of two points, Xstd = [XM (0), XM (1)]>. We study the effect of augmenting
point xext in terms of qi above. First, we find that the first two eigenvectors corresponding to linear functions satisfy
Π⊥stdq1 = Π⊥stdq2 = 0. Intuitively, this is because the standard estimator is linear. For ease of visualization, we consider the
2D space in Null(Σ) spanned by Π⊥stdq3 (global direction, low frequency) and Π⊥stdq2s (local direction, high frequency). The
matrix Πlg = [Π⊥stdq3, Π⊥stdq2s]

> projects onto this space. Note that the same results hold when projecting onto all Π⊥stdqi in
Null(Σ).

In terms of the simple 3-D example in Section 3.1, the global direction corresponds to the costly direction with large
eigenvalue, as changes in global structure heavily affect the standard error. Figure 8 plots the projections Πlgθ

? and ΠlgXext

for different Xext. When θ? has high frequency variations and is complex, Πlgθ
? = (θ? − θ̂std) is aligned with the local

dimension. For xext immediately local to training points, the projection Πlgxext (orange vector in Figure 8) has both local
and global components. Augmenting these local perturbations introduces error in the global component. For other xext
farther from training points, Πlgxext (blue vector in Figure 8) is almost entirely global and perpendicular to θ? − θ̂std, leaving
bias unchanged. Thus, augmenting data close to original data cause estimators to fit local components at the cost of the
costly global component which changes overall structure of the predictor like in Figure 2(middle). The choice of inductive
bias in the M–norm being minimized results in eigenvectors of Σ that correspond to local and global components, dictating
this tradeoff.

C.4. Data augmentation can be quite painful for splines

We construct a family of spline problems such that as the number the augmented estimator has much higher error than the
standard estimator. We assume that our predictors are from the full family of cubic splines.

Sampling distribution. We define a modified domain with continuous intervals T = ∪s−1
t=0 [t, t+ ε]. Considering only s

which is a multiple of 2, we sample the original data set as described in Section C.1 with the following probability mass w:

w(t) =

{
1−γ
s/2 t < s/2, t ∈ Tline
γ
s/2 t ≥ s/2, t ∈ Tline.

(27)

for γ ∈ [0, 1). We define a probability distribution PT on T for a random variable T by setting T = Z + S(Z) where
Z ∼ Categorical(w) and the Z-dependent perturbation S(z) is defined as

S(z) ∼
{

Uniform([z, z + ε]) w.p. δ
z, w.p. 1− δ. (28)

We obtain the training dataset Xstd = {X(t1), . . . , X(tn)} by sampling ti ∼ PT .
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Augmenting with an interval. Consider a modified augmented estimator for the splines problem, where for each point ti
we augment with the entire interval [btic, btic+ε] with ε ∈ [0, 1/2) and the estimator is enforced to output fθ̂(x) = yi = btic
for all x in the interval [btic, btic+ ε]. Additionally, suppose that the ratio s/n = O(1) between the number of stairs s and
the number of samples n is constant.

In this simplified setting, we can show that the standard error of the augmented estimator grows while the standard error of
the standard estimator decays to 0.

Theorem 3. Let the setting be defined as above. Then with the choice of δ = log(s7)−log(s7−1)
s and γ = c/s for a constant

c ∈ [0, 1), the ratio between standard errors is lower bounded as

R(θ̂aug)

R(θ̂std)
= Ω(s2) (29)

which goes to infinity as s→∞. Furthermore, R(θ̂std)→ 0 as s→∞.

Proof. We first lower bound the standard error of the augmented estimator. Define E1 as the event that only the lower
half of the stairs is sampled, i.e. {t : t < s/2}, which occurs with probability (1− γ)n. Let t? = maxibtic be the largest
“stair” value seen in the training set. Note that the min-norm augmented estimator will extrapolate with zero derivative for
t ≥ maxibtic. This is because on the interval [t?, t? + ε], the augmented estimator is forced to have zero derivative, and the
solution minimizing the second derivative of the prediction continues with zero derivative for all t ≥ t?. In the event E1,
t? ≤ s/2− 1, where t∗ = s/2− 1 achieves the lowest error in this event. As a result, on the points in the second half of the
staircase, i.e. t = {t ∈ T : t > s

2 − 1}, the augmented estimator incurs large error:

R(θ̂aug | E1) ≥
s∑

t=s/2

(t− (s/2− 1))2 · γ

s/2

=

s/2∑
t=1

t2 · γ

s/2
=
γ

6
(s2 + 2s+ 1).

Therefore the standard error of the augmented estimator is bounded by

R(θ̂aug) ≥ R(θ̂aug | E1)P (E1) =
γ

6
(s2 + 2s+ 1)(1− γ)n

≥ 1

6
γ(1− γn)(s2 + 2s+ 1)

= Ω(
c− c2
s

(s2 + 2s+ 1)) = Ω(s)

where in the first line, we note that the error on each interval is the same and the probability of each interval is (1− δ) γ
s/2 +

ε δε ·
γ
s/2 = γ

s/2 .

Next we upper bound the standard error of the standard estimator. Define E2 to be the event where all points are sampled
from Tline, which occurs with probability (1− δ)n. In this case, the standard estimator is linear and fits the points on Tline
with zero error, while incurring error for all points not in Tline. Note that the probability density of sampling a point not in
Tline is either δε ·

1−γ
s/2 or δε ·

γ
s/2 , which we upper bound as δ

ε · 1
s/2 .

R(θ̂std | E2) =

s−1∑
t=1

δ

ε
· 1

s/2

∫ ε

0

u2du =
δ

ε
· 1

s/2
O(sε3)

= O(δ)
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Therefore for event E2, the standard error is bounded as

R(θ̂std | E2)P (E2) = O(δ)(1− δ)n

= O(δ)e−δn

= O(δ · s
7 − 1

s7
)

= O(δ) = O(
log(s7)− log(s7 − 1)

s
) = O(1/s)

since log(s7)− log(s7 − 1) ≤ 1 for s ≥ 2. For the complementary event Ec2, note that cubic spline predictors can grow
only as O(t3), with error at most O(t6). Therefore the standard error for case Ec2 is bounded as

R(θ̂std | Ec2)P (Ec2) ≤ O(t6)(1− e−δn)

= O(t6)O(
1

s7
) = O(1/s)

Putting the parts together yields

R(θ̂std) = R(θ̂std | E2)P (E2) +R(θ̂std | Ec2)P (Ec2)

≤ O(1/s) +O(1/s) = O(1/s).

Thus overall, R(θ̂std) = O(1/s) and combining the bounds yields the result.

D. Robust Self-Training
We define the linear robust self-training estimator from Equation (11) and expand all the terms.

θ̂rst ∈ arg min
θ

{
EPx [(x

>θint-std − x>θ)2] :

Xstdθ = ystd, max
xadv∈T (x)

(x>advθ − y)2 = 0 ∀x, y ∈ Xstd, ystd,

EPx [ max
xadv∈T (x)

(x>advθ − x>θ)2] = 0
}
. (30)

Notice that for unlabeled components of the estimator, we assume access to the data distribution Px and thus optimize the
population quantities.

As we show in the next subsection, we can rewrite the robust self-training estimator into the following reduced form, more
directly connecting to the general analysis of adding extra data Xext in min-norm linear regression.

θ̂rst ∈ arg min
θ

{
(θ − θint-std)>Σ(θ − θint-std) : Xstdθ = ystd, Xextθ = 0

}
(31)

for the appropriate choice of Xext, as shown in Section D.1. Here, we can interpret Xext as the difference between the
perturbed inputs and original inputs. These are perturbations which we want the model to be invariant to, and hence output
zero.

D.1. Robust self-training algorithm in linear regression

We give an algorithm for constructing Xext which enforces the population robustness constraints. Suppose we are given Σ,
the population covariance of Px. In robust self-training, we enforce that the model is consistent over perturbations of the
labeled data Xstd and (infinite) unlabeled data. To do this, we add linear constraints of the form x>advθ − x>θ = 0, where
xadv ∈ T (x) for all x. We can view these linear constraints as augmenting the dataset with input-target pairs (xext, 0) where
xext = xadv − x. By assumption, x>extθ

? = 0 so these augmentations fit into our data augmentation framework.

However, when we enforce these constraints over the entire population Px or when there are an infinite number of
transformations in T (x), a naive implementation requires augmenting with infinitely many points. Noting that the space of
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augmentations xext satisfying x>extθ
? = 0 is a linear subspace, we can instead summarize the augmentations with a basis

that spans the transformations. Let the space of perturbations be T = ∪x∈supp(Px),xadv∈T (x)xadv − x. Note that this space of
perturbations also contains perturbations of the original data Xstd if Xstd is in the support of Px. If Xstd is not in the support
of Px, the behavior of the estimator on these points do not affect standard or robust error. Assuming that we can efficiently
optimize over T , we construct the basis by an iterative procedure reminiscent of adversarial training.

1. Set t = 0. Initialize θt = θint-std and (Xext)0 as an empty matrix.

2. At iteration t, solve for xtext = arg maxxext∈T (x>extθ
t)2. If the objective is unbounded, choose any xtext such that

x>extθ
t 6= 0.

3. If θt>xtext = 0, stop and return (Xext)t.

4. Otherwise, add xtext as a row in (Xext)t. Increment t and let θt solve (31) with Xext = (Xext)t.

5. Return to step 2.

In each iteration, we search for a perturbation that the current θt is not invariant to. If we can find such a perturbation, we
add it to the constraint set in (Xext)t. We stop when we cannot find such a perturbation, implying that the rows of (Xext)t
and Xstd span T . The final RST estimator solves (31) using Xext returned from this procedure.

This procedure terminates within O(d) iterations. To see this, note that θt is orthogonal to all rows of (Xext)t. Any vector
in the span of (Xext)t is orthogonal to θt. Thus, if θt>xtext 6= 0, then xtext must not be in the span of (Xext)t. At most
d− rank(Xstd) such new directions can be added until (Xext)t is full rank. When (Xext)t is full rank, θt>xtext = 0 must hold
and the algorithm terminates.

D.2. Proof of Theorem 2

In this section, we prove Theorem 2, which we reproduce here.

Theorem 2. Assume the noiseless linear model y = x>θ?. Let θint-std be an arbitrary interpolant of the standard data, i.e.
Xstdθint-std = ystd. Then

Lstd
(
θ̂rst) ≤ Lstd(θint-std).

Simultaneously, Lrob(θ̂rst) = Lstd(θ̂rst).

Proof. We work with the RST estimator in the form from Equation (31). We note that our result applies generally to any
extra data Xext, yext. We define Σstd = X>stdXstd. Let {ui} be an orthonormal basis of the kernel Null(Σstd +X>extXext) and
{vi} be an orthonormal basis for Null(Σstd) \ span({ui}). Let U and V be the linear operators defined by Uw =

∑
i uiwi

and V w =
∑
i viwi, respectively, noting that U>V = 0. Defining Π⊥std := (I − Σ†stdΣstd) to be the projection onto the null

space of Xstd, we see that there are unique vectors ρ, α such that

θ? = (I −Π⊥std)θ? + Uρ+ V α. (32a)

As θint-std interpolates the standard data, we also have

θint-std = (I −Π⊥std)θ? + Uw + V z, (32b)

as XstdUw = XstdV z = 0, and finally,
θ̂rst = (I −Π⊥std)θ? + Uρ+ V λ (32c)

where we note the common ρ between Eqs. (32a) and (32c).

Using the representations (32) we may provide an alternative formulation for the augmented estimator (30), using this to
prove the theorem. Indeed, writing θint-std − θ̂rst = U(w − ρ) + V (z − λ), we immediately have that the estimator has the
form (32c), with the choice

λ = arg min
λ

{
(U(w − ρ) + V (z − λ))>Σ(U(w − ρ) + V (z − λ))

}
.
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The optimality conditions for this quadratic imply that

V >ΣV (λ− z) = V >ΣU(w − ρ). (33)

Now, recall that the standard error of a vector θ is R(θ) = (θ − θ?)>Σ(θ − θ?) = ‖θ − θ?‖2Σ, using Mahalanobis norm
notation. In particular, a few quadratic expansions yield

R(θint-std)−R(θ̂rst)

= ‖U(w − ρ) + V (z − α)‖2Σ − ‖V (λ− α)‖2Σ
= ‖U(w − ρ) + V z‖2Σ + ‖V α‖2Σ − 2(U(w − ρ) + V z)>ΣV α− ‖V λ‖2Σ − ‖V α‖

2
Σ + 2(V λ)>ΣV α

(i)
= ‖U(w − ρ) + V z‖2Σ − 2(V λ)>ΣV α− ‖V λ‖2Σ + 2(V λ)>V α

= ‖U(w − ρ) + V z‖2Σ − ‖V λ‖
2
Σ , (34)

where step (i) used that (U(w − ρ))>ΣV = (V (λ− z))>ΣV from the optimality conditions (33).

Finally, we consider the rightmost term in equality (34). Again using the optimality conditions (33), we have

‖V λ‖2Σ = λ>V >Σ1/2Σ1/2(U(w − ρ) + V z) ≤ ‖V λ‖Σ ‖U(w − ρ) + V z‖Σ
by Cauchy-Schwarz. Revisiting equality (34), we obtain

R(θint-std)−R(θ̂rst) = ‖U(w − ρ) + V z‖2Σ −
‖V λ‖4Σ
‖V λ‖2Σ

≥ ‖U(w − ρ) + V z‖2Σ −
‖V λ‖2Σ ‖U(w − ρ) + V z‖2Σ

‖V λ‖2Σ
= 0,

as desired.

Finally, we show that Lstd(θ̂rst) = Lrob(θ̂rst). Here, choose Xext to contain at most d basis vectors which span {xadv : xadv ∈
T (x),∀x ∈ supp(Px)}. Thus, the robustness constraint EPx [maxxadv∈T (x)(x

>
advθ̂rst − x>θ̂rst)] = 0 is satisfied by fitting Xext.

By fitting Xext, we thus have x>advθ̂rst − x>θ̂rst = 0 for all xadv ∈ T (x), x ∈ supp(Px) up to a measure zero set of x. Thus,
the robust error is

Lrob(θ̂rst) = EPx [ max
xadv∈T (x)

(x>advθ̂rst − x>advθ
?)2] = EPx [(x

>θ̂rst − x>θ)] = Lstd(θ̂rst)

where we used that x>advθ
? = x>θ? by assumption. Since Lrob(θ̂rst) ≥ Lstd(θ̂rst), θ̂rst has perfect consistency, achieving the

lowest possible robust error (matching the standard error).

D.3. Different instantiations of the general RST procedure

The general RST estimator (Equation 10) is simply a weighted combination of some standard loss and some robust loss
on the labeled and unlabeled data. Throughout, we assume the same notation as that used in the definition of the general
estimator. Xstd, ystd denote the standard training set and we have access to m unlabeled points x̃i, i = 1, . . .m.

D.3.1. PROJECTED GRADIENT ADVERSARIAL TRAINING

In the first variant, RST + PG-AT, we use multiclass logistic loss (cross-entropy) as the standard loss. The robust loss is the
maximum cross-entropy loss between any perturbed input (within the set of tranformations T (·)) and the label (pseudo-label
in the case of unlabeled data). We set the weights such that the estimator can be written as follows.

θ̂rst+pg-at := arg min
θ

{
1− λ
n

∑
(x,y)∈[Xstd,ystd]

(1− β)`(fθ(x), y) + β `(fθ(xadv), y)

+
λ

m

m∑
i=1

(1− β)`(fθ(x̃i), fθ̂std
(x̃i)) + β `(fθ(x̃advi), fθ̂std

(x̃i))

}
, (35)

In practice, xadv is found by performing a few steps of projected gradient method on `(fθ(x), y), and similarly x̃adv by
performing a few steps of projected gradient method on `(fθ(x̃), fθ̂std

(x̃)).
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D.3.2. TRADES

TRADES (Zhang et al., 2019) was proposed as a modification of the projected gradient adversarial training algorithm
of (Madry et al., 2018). The robust loss is defined slightly differently–it -operates on the normalized logits, which can be
thought of as probabilities of different labels. The TRADES loss minimizes the maximum KL divergence between the
probability over labels for input x and a perturbaed input x̃ ∈ T (x). Setting the weights of the different loss of the general
RST estimator (10) similar to RST+PG-AT above gives the following estimator.

θ̂rst+trades := arg min
θ

{
(1− λ)

n

∑
(x,y)∈[Xstd,ystd]

`(fθ(x), y) + β KL(pθ(xadv)||pθ(x))

+
λ

m

m∑
i=1

`(fθ(x̃i), fθ̂std
(x̃i)) + β KL(pθ(x̃advi)||pθ̂std

(x̃i))

}
. (36)

In practice, xadv and x̃adv are obtained by performing a few steps of projected gradient method on the respective KL
divergence terms.

E. Experimental Details
E.1. Spline simulations

For spline simulations in Figure 2 and Figure 1, we implement the optimization of the standard and robust objectives
using the basis described in (Friedman et al., 2001). The penalty matrix M computes second-order finite differences of the
parameters θ. We solve the min-norm objective directly using CVXPY (Diamond & Boyd, 2016). Each point in Figure 1(a)
represents the average standard error over 25 trials of randomly sampled training datasets between 22 and 1000 samples.
Shaded regions represent 1 standard deviation.

E.2. RST experiments

We evaluate the performance of RST applied to `∞ adversarial perturbations, adversarial rotations, and random rotations.

E.2.1. SUBSAMPLING CIFAR-10

We augment with `∞ adversarial perturbations of various sizes. In each epoch, we find the augmented examples via
Projected Gradient Ascent on the multiclass logistic loss (cross-entropy loss) of the incorrect class. Training the augmented
estimator in this setup uses essentially the adversarial training procedure of (Madry et al., 2018), with equal weight on both
the ”clean” and adversarial examples during training.

We compare the standard error of the augmented estimator with an estimator trained using RST. We apply RST to adversarial
training algorithms in CIFAR-10 using 500k unlabeled examples sourced from Tiny Images, as in (Carmon et al., 2019).

We use Wide ResNet 40-2 models (Zagoruyko & Komodakis, 2016) while varying the number of samples in CIFAR-10.
We sub-sample CIFAR-10 by factors of {1, 2, 5, 8, 10, 20, 40} in Figure 1(a) and {1, 2, 5, 8, 10} in Figure 1(b). We report
results averaged from 2 trials for each sub-sample factor. All models are trained for 200 epochs with respect to the size of
the labeled training dataset and all achieve almost 100% standard and robust training accuracy.

We evaluate the robustness of models to the strong PGD-attack with 40 steps and 5 restarts. In Figure 1(b), we used a simple
heuristic to set the regularization strength on unlabeled data λ in Equation (35) to be λ = min(0.9, p) where p ∈ [0, 1] is the
fraction of the original CIFAR-10 dataset sampled. We set β = 0.5. Intuitively, we give more weight to the unlabeled data
when the original dataset is larger, meaning that the standard estimator produces more accurate pseudo-labels.

Figure 9 shows that the robust accuracy of the RST model improves about 5-15% percentage points above the robust model
(trained using PGD adversarial training) for all subsamples, including the full dataset (Tables 2,3).

We use a smaller model due to computational constraints enforced by adversarial training. Since the model is small, we
could only fit adversarially augmented examples with small ε = 2/255, while existing baselines use ε = 8/255. Note that
even for ε = 2/255, adversarial data augmentation leads to an increase in standard error. We show that RST can fix this.
While ensuring models are robust is an important goal in itself, in this work, we view adversarial training through the lens of
covariate-shifted data augmentation and study how to use augmented data without increasing standard error. We show that
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Figure 9. (a) Difference in robust error between the RST adversarial training model and the vanilla adversarial training (AT) model for
CIFAR-10. RST improves upon the robust error of the AT model by approximately a 15% percentage point increase for small subsamples
and 5% percentage point increase for larger subsamples of CIFAR-10. (b) Relative difference in standard error between augmented
estimators (the RST model and the AT model) and the standard estimator on CIFAR-10. We achieve up to 20% better standard error than
the standard model for small subsamples.

Standard AT RST+AT

Standard Acc 94.63% 94.15% 95.58%
Robust Acc (ε = 1/255) - 85.59% 88.74%

Table 2. Test accuracies for the standard, vanilla adversarial training (AT), and AT with RST for ε = 1/255 on the full CIFAR-10 dataset.
Accuracies are averaged over two trials. The robust accuracy of the standard model is near 0%.

RST preserves the other benefits of some kinds of data augmentation like increased robustness to adversarial examples.

E.2.2. `∞ ADVERSARIAL PERTURBATIONS

In Table 1, we evaluate RST applied to PGD and TRADES adversarial training. The models are trained on the full CIFAR-
10 dataset, and models which use unlabeled data (self-training and RST) also use 500k unlabeled examples from Tiny
Images. All models except the Interpolated AT and Neural Architecture Search model use the same base model WideResNet
28-10. To evaluate robust accuracy, we use a strong PGD-attack with 40 steps and 5 restarts against `∞ perturbations of size
8/255. For RST models, we set β = 0.5 in Equation (35) and Equation (36), following the heuristic λ = min(0.9, p) with
p = 1 since we use the entire labeled trainign set. We train for 200 epochs such that 100% training standard accuracy is
attained.

E.2.3. ADVERSARIAL AND RANDOM ROTATION/TRANSLATIONS

In Table 1 (right), we use RST for adversarial and random rotation/translations, denoting these transformations as xadv in
Equation (35). The attack model is a grid of rotations of up to 30 degrees and translations of up to ∼ 10% of the image size.
The grid consists of 31 linearly spaced rotations and 5 linearly spaced translations in both dimensions. The Worst-of-10
model samples 10 uniformly random transformations of each input and augment with the one where the model performs the
worst (causes an incorrect prediction, if it exists). The Random model samples 1 random transformation as the augmented
input. All models (besides cited models) use the WRN-40-2 architecture and are trained for 200 epochs. We use the same
hyperparameters λ, β as in E.2.2 for Equation (35).

F. Comparison to standard self-training algorithms
The main objective of RST is to allow to perform robust training without sacrificing standard accuracy. This is done by
regularizing an augmented estimator to provide labels close to a standard estimator on the unlabeled data. This is closely
related to but different two broad kinds of semi-supervised learning.

1. Self-training (pseudo-labeling): Classical self-training does not deal with data augmentation or robustness. We view
RST as a a generalization of self-training in the context of data augmentations. Here the pseudolabels are generated
by a standard non-augmented estimator that is not trained on the labeled augmented points. In contrast, standard
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Standard AT RST+AT

Standard Acc 94.63% 92.69% 95.15%
Robust Acc (ε = 2/255) - 77.87% 83.50%

Table 3. Test accuracies for the standard, vanilla adversarial training (AT), and AT with RST for ε = 2/255 on the full CIFAR-10 dataset.
Accuracies are averaged over two trials. The robust test accuracy of the standard model is near 0%.

self-training would just use all labeled data to generate pseudo-labels. However, since some augmentations cause a
drop in standard accuracy, and hence this would generate worse pseudo-labels than RST.

2. Robust consistency training: Another popular semi-supervised learning strategy is based on enforcing consistency in a
model’s predictions across various perturbations of the unlabeled data (Miyato et al., 2018; Xie et al., 2019; Sajjadi
et al., 2016; Laine & Aila, 2017)). RST is similar in spirit, but has an additional crucial component. We generate
pseudo-labels first by performing standard training, and rather than enforcing simply consistency across perturbations,
RST enforces that the unlabeled data and perturbations are matched with the pseudo-labels generated.

G. Minimum `1-norm problem where data augmentation hurts standard error
We present a problem where data augmentation increases standard error for minimum `1-norm estimators, showing that the
phenomenon is not special to minimum Mahalanobis norm estimators.

G.1. Setup in 3 dimensions

Define the minimum `1-norm estimators

θ̂std = arg min
θ

{
‖θ‖1 : Xstdθ = ystd

}
θ̂aug = arg min

θ

{
‖θ‖1 : Xstdθ = ystd, Xextθ = yext

}
.

We begin with a 3-dimensional construction and then increase the number of dimensions. Let the domain of possible values
be X = {x1,x2,x3} where

x1 = [1 + δ, 1, 0], x2 = [0, 1, 1 + δ], x3 = [1 + δ, 0, 1].

Define the data distribution through the generative process for the random feature vector x

x =


x1 w.p. 1− p
x2 w.p. ε
x3 w.p. p− ε

where 0 < δ < 1 and ε > 0. Define the optimal linear predictor θ? = 1 to be the all-ones vector, such that in all cases,
x>θ? = 2 + δ. We define the consistent perturbations as

T (x) =

{
{x1,x2} x ∈ {x1,x2}
{x3} o.w.

The augmented estimator will add all possible consistent perturbations of the training set as extra data Xext. For example, if
x1 is in the training set, then the augmented estimator will add x2 as extra data since x2 ∈ T (x1). The standard error is
measured by mean squared error.

We give some intuition for how augmentation can hurt standard error in this 3-dimensional example. Define E1 to be the
event that we draw n samples with value x1. Given E1, the standard and augmented estimators are

θ̂std =

[
2 + δ

1 + δ
, 0, 0

]
, θ̂aug = [0, 2 + δ, 0]. (37)
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Note that the θ̂aug has slightly higher norm (‖θ̂aug‖1 = 2 + δ > 2+δ
1+δ = ‖θ̂std‖1). Since x3

>θ̂aug = 0 in this case, the squared
error of θ̂aug wrt to x3 is (x3

>θ̂aug − 2 + δ)2 = (2 + δ)2. The standard estimator fits x3 perfectly, but has high error on
x2. If the probability of E1 occurring is high and the probability of x3 is higher relative to x2, then the θ̂aug will have high
standard error relative to θ̂std. Here, due to the inductive bias that minimizes the `1 norm, certain augmentations can cause
large changes in the sparsity pattern of the solution, drastically affecting the error. Furthermore, the optimal solution θ?

is quite large with respect to the `1 norm, satisfying the conditions of Proposition 1 in spirit and suggesting that the `1
inductive bias (promoting sparsity) is mismatched with the problem.

G.2. Construction for general d

We construct the example by sampling x in 3 dimensions and then repeating the vector d times. In particular, the samples
are realizations of the random vector [x;x;x; . . . ;x] which have dimension 3d and every block of 3 coordinates have the
same values. Under this setup, we can show that there is a family of problems such that the difference between standard
errors of the augmented and standard estimators grows to infinity as d, n→∞.
Theorem 4. Let the setting be defined as above, where the dimension d and number of samples n are such that n/d→ γ
approaches a constant. Let p = 1/d2, ε = 1/d3, and δ be a constant. Then the ratio between standard errors of the
augmented and standard estimators grows as

Lstd(θ̂aug)

Lstd(θ̂std)
= Ω(d) (38)

as d, n→∞.

Proof. We define an event where the augmented estimator has high error relative to the standard estimator and bound the
ratio between the standard errors of the standard and augmented estimators given this event. Define E1 as the event that
we have n samples where all samples are [x1;x1; . . . ;x1]. The standard and augmented estimators are the corresponding
repeated versions

θ̂std =

[
2 + δ

1 + δ
, 0, 0, . . . ,

2 + δ

1 + δ
, 0, 0

]
, θ̂aug = [0, 2 + δ, 0, . . . , 0, 2 + δ, 0]. (39)

The event E1 occurs with probability (1− p)n + (p− ε)n. It is straightforward to verify that the respective standard errors
are

Lstd(θ̂std | E1) = εd2(2 + δ)2, Lstd(θ̂aug | E1) = (p− ε)d2(2 + δ)2

and that the ratio between standard errors is

Lstd(θ̂aug | E1)

Lstd(θ̂std | E1)
=
p− ε
ε

.

The ratio between standard errors is bounded by

Lstd(θ̂aug)

Lstd(θ̂std)
=

∑
E∈{E1,Ec

1}

P (E)
Lstd(θ̂aug | E)

Lstd(θ̂std | E)

> P (E1)
Lstd(θ̂aug | E1)

Lstd(θ̂std | E1)

= ((1− p)n + (p− ε)n)(
p− ε
ε

)

> (1− p)n(d− 1)

≥ (1− n

d3
)(d− 1)

= d− n

d2
− 1 +

n

d3
= Ω(d)

as n, d→∞, where we used Bernoulli’s inequality in the second to last step.


