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Abstract
The problem of maximizing nonnegative mono-
tone submodular functions under a certain con-
straint has been intensively studied in the last
decade, and a wide range of efficient approxi-
mation algorithms have been developed for this
problem. Many machine learning problems, in-
cluding data summarization and influence maxi-
mization, can be naturally modeled as the problem
of maximizing monotone submodular functions.
However, when such applications involve sensi-
tive data about individuals, their privacy concerns
should be addressed. In this paper, we study the
problem of maximizing monotone submodular
functions subject to matroid constraints in the
framework of differential privacy. We provide
(1− 1

e )-approximation algorithm which improves
upon the previous results in terms of approxima-
tion guarantee. This is done with an almost cubic
number of function evaluations in our algorithm.

Moreover, we study k-submodularity, a natural
generalization of submodularity. We give the
first 1

2 -approximation algorithm that preserves
differential privacy for maximizing monotone
k-submodular functions subject to matroid con-
straints. The approximation ratio is asymptoti-
cally tight and is obtained with an almost linear
number of function evaluations.

1. Introduction
A set function F : 2E → R is submodular if for any S ⊆
T ⊆ E and e ∈ E \ T it holds that F (S ∪ {e})− F (S) ≥
F (T ∪ {e})− F (T ). The theory of submodular maximiza-
tion provides a general and unified framework for various
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combinatorial optimization problems including the Maxi-
mum Coverage, Maximum Cut, and Facility Location prob-
lems. Furthermore, it also appears in a wide variety of
applications such as viral marketing (Kempe et al., 2003),
information gathering (Krause & Guestrin, 2007), feature
selection for classification (Krause & Guestrin, 2005), influ-
ence maximization in social networks (Kempe et al., 2003),
document summarization (Lin & Bilmes, 2011), and speed-
ing up satisfiability solvers (Streeter & Golovin, 2008). For
a survey, see (Krause & Golovin, 2014). As a consequence
of these applications and importance, a wide range of ef-
ficient approximation algorithms have been developed for
maximizing submodular functions subject to different con-
straints (Călinescu et al., 2011; Nemhauser & Wolsey, 1978;
Nemhauser et al., 1978; Vondrák, 2008).

The need for efficient optimization methods that guarantee
the privacy of individuals is wide-spread across many ap-
plications concerning sensitive data about individuals, e.g.,
medical data, web search query data, salary data, social
networks. Let us motivate privacy concerns by an example.

Example 1.1 (Feature Selection (Krause & Guestrin,
2005; Mitrovic et al., 2017)). A sensitive dataset
D = {(xi, Ci)}ni=1 consists of a feature vector xi =
(xi(1), . . . ,xi(m)) associated to each individual i together
with a binary class label Ci. The objective is to select a
small (e.g., size at most k) subset S ⊆ [m] of features that
can provide a good classifier for C. One particular example
for this setting is determining collection of features such as
height, weight, and age that are most relevant in predicting
if an individual is likely to have a particular disease such as
diabetes and HIV. One approach to address the feature se-
lection problem, due to Krause & Guestrin (2005), is based
on maximizing a submodular function which captures the
mutual information between a subset of features and the
class label of interest. Here, it is important that the selection
of relevant features does not compromise the privacy of any
individual who has contributed to the training dataset.

Differential privacy is a rigorous notion of privacy that al-
lows statistical analysis of sensitive data while providing
strong privacy guarantees. Basically, differential privacy
requires that computations be insensitive to changes in any
particular individual’s record. A dataset is a collection of
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records from some domain, and two datasets are neighbor-
ing if they differ in a single record. Simply put, the require-
ment for differential privacy is that the computation behaves
nearly identically on two neighboring datasets; Formally,
for ε, δ ∈ R+, we say that a randomized computation M is
(ε, δ)-differentially private if for any neighboring datasets
D ∼ D′, and for any set of outcomes S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

When δ = 0, we say M is ε-differentially private. Differen-
tially private algorithms must be calibrated to the sensitivity
of the function of interest with respect to small changes in
the input dataset.

In this paper we consider designing a differentially private
algorithm for maximizing nonnegative and monotone sub-
modular functions in low-sensitivity regime. Whilst, a car-
dinality constraint (as in Example 1.1) is a natural one to
place on a submodular maximization problem, many other
problems, e.g., personalized data summarization (Mirza-
soleiman et al., 2016), require the use of more general types
of constraints, i.e., matroid constraints. The problem of max-
imizing a submodular function under a matroid constraint is
a classical problem (Edmonds, 1971), with many important
special cases, e.g., uniform matroid (the subset selection
problem, see Example 1.1), partition matroid (submodular
welfare/partition problem). We consider the following.
Problem 1.1. Given a sensitive dataset D associated to a
monotone submodular function FD : 2E → R+ and a ma-
troidM = (E, I). Find a subset S ∈ I that approximately
maximizes FD in a manner that guarantees differential pri-
vacy with respect to the input dataset D.

Furthermore, we consider a natural generalization of sub-
modular functions, namely, k-submodular functions. k-
submodular function maximization allows for richer prob-
lem structure than submodular maximization. For instance,
coupled feature selection (Singh et al., 2012), sensor place-
ment with k kinds of measures (Ohsaka & Yoshida, 2015),
and influence maximization with k topics can be expressed
as k-submodular function maximization problems. To moti-
vate the privacy concerns, consider the next example. More
examples are given in Section 5.2.
Example 1.2 (Influence Maximization with k Topics). For
k topics, a sensitive dataset is a directed graph G = (V,E)
with an edge probability piu,v for each edge (u, v) ∈ E,
representing the strength of influence from u to v on the i-th
topic. The goal is to distribute these topics to N vertices
of the graph so that we maximize influence spread. The
problem of maximizing influence spread can be formulated
as k-submodular function maximization problem (Ohsaka &
Yoshida, 2015). An example for this setting is in viral mar-
keting where dataset consists of a directed graph where each
vertex represents a user and each edge represents the friend-
ship between a pair of users. Given k kinds of products,

the objective is to promote products by giving (discounted)
items to a selected group of influential people in the hope
that large number of product adoptions will occur. Here,
besides maximizing the influence spread, it is important to
preserve the privacy of individuals in the dataset.

Problem 1.2. Given a sensitive dataset D associated to a
monotone k-submodular function FD : (k + 1)E → R+

and a matroidM = (E, I). Find S = (S1, . . . , Sk) with⋃
i∈[k] Si ∈ I that approximately maximizes FD in a man-

ner that guarantees differential privacy with respect to the
input dataset D.

1.1. Our Contributions

Submodular Maximization: For maximizing a nonnega-
tive monotone submodular function subject to a matroid
constraint, we show that a modification of the continuous
greedy algorithm (Călinescu et al., 2011) yields a good ap-
proximation guarantee as well as a good privacy guarantee.
Following the same idea, we maximize the so-called mul-
tilinear extension of the input submodular function in the
corresponding matroid polytope, denoted by P(M). How-
ever, in order to greedily choose a direction, it requires to
have a discretization of the matroid polytope. Fortunately,
due to Yoshida (2019), an efficient discretization can be
achieved. That is, we can cover a polytope with a small
number of balls in polynomial time. Having these in hand,
we prove the following.

Theorem 1.1. Suppose FD is monotone with sensitivity ∆
and M = (E, I) is a matroid. For every ε > 0, there
is an (εr(M)2)-differentailly private algorithm that, with
high probability, returns S ∈ I with quality at least (1 −
1
e )OPT −O

(√
ε+ ∆r(M)|E| ln |E|

ε3

)
.

For covering C of P(M), the algorithm in Theorem 1.1
makes O(r(M)|E||C|) queries to the evaluation oracle.
We point out that C has a size of roughly |E|1/ε2 . In Sec-
tion 4, we present an algorithm that makes significantly
fewer queries to the evaluation oracle.

Theorem 1.2. Suppose FD is monotone and has sensitivity
∆ andM = (E, I) is a matroid. For every ε > 0, there
is an (εr(M)2)-differentailly private algorithm that, with
high probability, returns S ∈ I with quality at least (1 −
1
e )OPT − O

(√
ε+ ∆r(M)|E| ln(|E|/ε)

ε3

)
. Moreover, this

algorithm makes at most O(r(M)|E|2 ln |E|ε ) queries to
the evaluation oracle.

k-submodular Maximization: To the best of our knowl-
edge, there is no algorithm for maximizing k-submodular
functions concerning differential privacy. We study Prob-
lem 1.2 in Section 5. First, we discuss an (εr(M))-
differentially private algorithm that uses the evaluation ora-
cle at most O(kr(M)|E|) times and outputs a solution with
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quality at least 1/2 of the optimal one.

Theorem 1.3. Suppose FD : (k + 1)E → R+ is monotone
and has sensitivity ∆. For any ε > 0, there is anO(εr(M))-
differentially private algorithm that, with high probability,
returns a solution X = (X1, . . . , Xk) ∈ (k + 1)E with⋃
i∈[k]Xi ∈ I and FD(X) ≥ 1

2OPT − O(∆r(M) ln |E|
ε )

by evaluating FD at most O(kr(M)|E|) times.

This 1/2 approximation ratio is asymptotically tight due to
the hardness result in (Iwata et al., 2016). Applying a sam-
pling technique (Mirzasoleiman et al., 2015; Mitrovic et al.,
2017; Ohsaka & Yoshida, 2015), we propose an algorithm
that preserves the same privacy guarantee and the same qual-
ity as before while evaluating FD almost linear number of
times, namely O

(
k|E| ln r(M) ln r(M)

γ

)
. Here, γ is the

failure probability of our algorithm.

1.2. Related Works

Gupta et al. (2010) considered an important case of Prob-
lem 1.1 called the Combinatorial Public Projects (CPP
problem). The CPP problem was introduced by Papadim-
itriou et al. (2008) and is as follows. For a data set
D = (x1, . . . , xn), each individual xi submits a pri-
vate non-decreasing and submodular valuation function
Fxi : 2E → [0, 1]. Our goal is to select a subset S ⊆ E
of size k to maximize function FD that takes the particu-

lar form FD(S) = 1
n

n∑
i=1

Fxi(S). Note that in this setting,

the sensitivity can be always bounded from above by 1
n .

Gupta et al. showed the following.

Theorem 1.4 (Gupta et al. (2010)). For any δ ≤ 1/2, there
is an (ε, δ)-differentially private algorithm for the CPP prob-
lem under cardinality constraint that, with high probability,
returns a solution S ⊆ E of size k with quality at least
(1− 1

e )OPT−O(k ln (e/δ) ln |E|
ε ).

There are many cases which do not fall into the CPP frame-
work. For some problems, including feature selection via
mutual information (Example 1.1), the submodular func-
tion FD of interest depends on the dataset D in ways much
more complicated than averaging functions associated to
each individual. Unfortunately, the privacy analysis of The-
orem 1.4 heavily relies on the assumption that the input
function FD = 1

n

∑n
i=1 Fxi(S) is the average of Fxi ’s, and

does not directly generalize to arbitrary submodular func-
tions. Using a composition theorem for differentially private
mechanisms, Mitrovic et al. (2017) proved the following

Theorem 1.5 (Mitrovic et al. (2017)). Suppose FD is mono-
tone and has sensitivity ∆. For any ε > 0, there is a
(kε)-differentially private algorithm that, with high prob-
ability, returns S ⊆ E of size k with quality at least(
1− 1

e

)
OPT−O

(
∆k ln |E|

ε

)
.

In the same work, Mitrovic et al. (2017) considered matroid
constraints and more generally p-extendable constraints.

Theorem 1.6 (Mitrovic et al. (2017)). Suppose FD is mono-
tone with sensitivity ∆ and letM = (E, I) be a matroid.
Then for any ε > 0, there is an (εr(M))-differentially pri-
vate algorithm that, with high probability, returns a solution
S ∈ I with quality at least 1

2OPT−O
(

∆r(M) ln |E|
ε

)
.

k-submodular Maximization: The terminology for k-
submodular functions was first introduced in (Huber & Kol-
mogorov, 2012) while the concept has been studied previ-
ously in (Cohen et al., 2006). Note for k = 1 the notion of
k-submodularity is the same as submodularity. For k = 2,
this notion is known as bisubmodularity. Bisubmodularity
arises in bicooperative games (Bilbao et al., 2008) as well as
variants of sensor placement problems and coupled feature
selection problems (Singh et al., 2012). For unconstrained
nonnegative k-submodular maximization, Ward & Zivny
(2014) proposed a max{1/3, 1/(1 + a)}-approximation al-
gorithm where a = max{1,

√
(k − 1)/4}. The approxima-

tion ratio was improved to 1/2 by Iwata et al. (2016). They
also provided k/(2k − 1)-approximation for maximization
of monotone k-submodular functions. The problem of max-
imizing a monotone k-submodular function was considered
by Ohsaka & Yoshida (2015) subject to different constraints.
They gave a 1/2-approximation algorithm for total size
constraint, i.e., |

⋃
i∈[k]Xi| ≤ N , and 1/3-approximation

algorithm for individual size constraints, i.e., |Xi| ≤ Ni for
i = 1, . . . , k. Sakaue (2017) proved that 1/2-approximation
can be achieved for matroid constraint, i.e.,

⋃
i∈[k]Xi ∈ I.

2. Preliminaries
For a set S ⊆ E, 1S ∈ RE denotes the characteristic vector
of S. For a vector x ∈ RE and a set S ⊆ E, x(S) denotes
the sum

∑
e∈S x(e).

2.1. Submodular Functions

Let F : 2E → R+ be a set function. We say that F is
monotone if F (S) ≤ F (T ) holds for every S ⊆ T ⊆ E.
We say that F is submodular if F (S∪{e})−F (S) ≥ F (T∪
{e})− F (T ) holds for any S ⊆ T ⊆ E and e ∈ E \ T .

The multilinear extension f : [0, 1]
E → R of a set function

F : 2E → R is f(x) =
∑
S⊆E

F (S)
∏
e∈S

x(e)
∏
e 6∈S

(1− x(e)).

There is a probabilistic interpretation of the multilinear ex-
tension. Given x ∈ [0, 1]

E we can define X to be the ran-
dom subset of E in which each element e ∈ E is included
independently with probability x(e) and is not included
with probability 1− x(e). We write X ∼ x to denote that
X is a random subset sampled this way from x. Then we
can simply write f as f(x) = EX∼x[F (X)].
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Observe that for all S ⊆ E we have f(1S) = F (S). The
following is well known:
Proposition 2.1 (Călinescu et al. (2011)). Let f : [0, 1]

E →
R be the multilinear extension of a monotone submodular
function F : 2E → R. Then

1. f is monotone, meaning ∂f
∂x(e) ≥ 0. Hence, ∇f(x) =

( ∂f
∂x(1) , . . . ,

∂f
∂x(n) ) is a nonnegative vector.

2. f is concave along any direction d ≥ 0.

2.2. k-submodular Functions

Given a natural number k ≥ 1, a function F : (k + 1)E →
R+ defined on k-tuples of pairwise disjoint subsets of E
is called k-submodular if for all k-tuples S = (S1, . . . , Sk)
and T = (T1, . . . , Tk) of pairwise disjoint subsets of E,

F (S) + F (T ) ≥ F (S u T ) + F (S t T ),

where we define

S u T = (S1 ∩ T1, . . . , Sk ∩ Tk),

S t T =

(
(S1 ∪ T1) \

(⋃
i6=1

Si ∪ Ti

)
, . . . ,

(Sk ∪ Tk) \

(⋃
i 6=k

Si ∪ Ti

))
.

2.3. Matroids and Matroid Polytopes

A pair M = (E, I) of a set E and I ⊆ 2E is called a
matroid if 1) ∅ ∈ I, 2) A ∈ I for any A ⊆ B ∈ I, and
3) for any A,B ∈ I with |A| < |B|, there exists e ∈ B \A
such that A ∪ {e} ∈ I. We call a set in I an independent
set. The rank function rM : 2E → Z+ ofM is

rM(S) = max{|I| : I ⊆ S, I ∈ I}.

An independent set S ∈ I is called a base if rM(S) =
rM(E). We denote the set of all bases by B and rank of
M by r(M). The matroid polytope P(M) ⊆ RE ofM
is P(M) = conv{1I : I ∈ I}, where conv denotes the
convex hull. Or equivalently (Edmonds, 2001),

P(M) = {x ≥ 0 : x(S) ≤ rM(S) ∀S ⊆ E} .

Note that the matroid polytope is down-monotone, that is,
for any x,y ∈ RE with 0 ≤ x ≤ y and y ∈ P(M) then
x ∈ P(M).
Definition 2.2 (ρ-covering). Let K ⊆ RE be a set. For
ρ > 0, a set C ⊆ K of points is called a ρ-covering of K if
for any x ∈ K, there exists y ∈ C such that ‖x− y‖ ≤ ρ.
Theorem 2.3 (Theorem 5.5 of Yoshida (2019), paraphrased).
LetM = (E, I) be a matroid. For every ε > 0, we can
construct an εB-cover C of P(M) of size |E|O(1/ε2) in
|E|O(1/ε2) time, where B is the maximum `2-norm of a
point in P(M).

2.4. Differential Privacy

The definition of differential privacy relies on the notion
of neighboring datasets. Recall that two datasets are neigh-
boring if they differ in a single record. When two datasets
D,D′ are neighboring, we write D ∼ D′.
Definition 2.4 (Dwork et al. (2006)). For ε, δ ∈ R+, we
say that a randomized computationM is (ε, δ)-differentially
private if for any neighboring datasets D ∼ D′, and for any
set of outcomes S ⊆ range(M),

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ.

When δ = 0, we say M is ε-differentially private.

In our case, a dataset D consists of private submodular
functions F1, . . . , Fn : 2E → [0, 1]. Two datasets D and D′

are neighboring if all but one submodular function in those
datasets are equal. The submodular function FD depends
on the dataset D in different ways, for example FD(S) =
n∑
i=1

Fi(S)/n (CPP problem), or much more complicated

ways than averaging functions associated to each individual.

Differentially private algorithms must be calibrated to the
sensitivity of the function of interest with respect to small
changes in the input dataset, defined formally as follows.

Definition 2.5. The sensitivity of a function FD : X →
Y , parameterized by a dataset D, is defined as

max
D′:D′∼D

max
x∈X
|FD(x)−FD′(x)|. A function with sensitivity

∆ is called ∆-sensitive.

2.4.1. COMPOSITION OF DIFFERENTIAL PRIVACY

Let {(εi, δi)}ki=1 be a sequence of privacy parameters and
let M∗ be a mechanism that behaves as follows on an input
D. In each of rounds i = 1, . . . , k, the algorithmM∗ selects
an (εi, δi)-differentially private algorithm Mi possibly de-
pending on the previous outcomesM1(D), . . . ,Mi(D) (but
not directly on the sensitive dataset D itself), and releases
Mi(D). The output of M∗ is informally referred as the
k-fold adaptive composition of (εi, δi)-differentially private
algorithms. For a formal treatment of adaptive composition,
see Dwork & Roth (2014); Dwork et al. (2010). We have
the following guarantee on the differential privacy of the
composite algorithm.

Theorem 2.6. (Bun & Steinke, 2016; Dwork & Lei, 2009;
Dwork et al., 2010) The k-fold adaptive composition of k
(εi, δi)-differentially private algorithms, with εi ≤ ε0 and
δi ≤ δ0 for every 1 ≤ i ≤ k, satisfies (ε, δ)-differential
privacy where

• ε = kε0 and δ = kδ0 (the basic composition), or

• ε = 1
2kε

2
0 +

√
2 ln 1/δ′ε0 and δ = δ′ + kδ for any

δ′ > 0 (the advanced composition).
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Algorithm 1 Differentially Private Continuous Greedy
1: Input: Submodular function FD : 2E → [0, 1], dataset
D, matroidM = (E, I), and ε > 0 and ρ ≥ 0.

2: Let Cρ be a ρ-covering of P(M), and fD be the multi-
linear extension of FD.

3: x0 ← 0, ε′ ← ε
2∆ .

4: α← 1
T , where T = r(M).

5: for t = 1 to T do
6: Sample y ∈ Cρ with probability proportional to

exp
(
ε′〈y,∇fD(xt−1)〉

)
.

7: Let yt−1 be the sampled vector.
8: xt ← xt−1 + αyt−1.
9: end for

10: Output: xT

2.4.2. EXPONENTIAL MECHANISM

One particularly general tool that we will use is the expo-
nential mechanism of McSherry & Talwar (2007). The
exponential mechanism is defined in terms of a quality func-
tion qD : R → R, which is parameterized by a dataset D
and maps a candidate result R ∈ R to a real-valued score.

Definition 2.7 (McSherry & Talwar (2007)). Let ε,∆ > 0
and let qD : R → R be a quality score. Then, the ex-
ponential mechanism EM(ε,∆, qD) outputs R ∈ R with
probability proportional to exp

(
ε

2∆ · qD(R)
)
.

Theorem 2.8 (McSherry & Talwar (2007)). Suppose that
the quality score qD : R → R is ∆-sensitive. Then,
EM(ε,∆, qD) is ε-differentially private, and for every
β ∈ (0, 1) outputs R ∈ R with

Pr

[
qD(R) ≥ max

R′∈R
qD(R′)− 2∆

ε
ln

(
|R|
β

)]
≥ 1− β.

3. Differentially Private Continuous Greedy
Algorithm

In this section we prove Theorem 1.1. Throughout this
section, we fix (private) monotone submodular functions
F1, . . . , Fn : 2E → [0, 1], ε, δ > 0, and a matroid M =
(E, I). Let x∗ ∈ P(M) be a maximizer of fD. We drop
the subscript D when it is clear from the context. Our
algorithm (Algorithm 1) is a modification of the continuous
greedy algorithm (Călinescu et al., 2011).

3.1. Approximation Guarantee

Lemma 3.1. For every x,v ∈ [0, 1]
E with ‖v‖2 ≤ ρ and

x + v ∈ [0, 1]
E , we have |f(x)− f(x + v)| ≤ 4 4

√
|E|√ρ.

Lemma 3.2. Suppose y ∈ [0, 1]
E satisfies ‖y − x∗‖2 ≤ ρ.

Then for any x ∈ [0, 1]
E , we have 〈y,∇f(x)〉 ≥ f(x∗)−

f(x)− C3.2
√
ρ for some constant C3.2 > 0.

Proof. First, we show

〈y,∇f(x)〉 ≥ f(y)− f(x).

Let us consider a direction d ∈ [0, 1]
E such that d(e) =

max{y(e)− x(e), 0} for every e ∈ E. Then, we have

〈y,∇f(x)〉 ≥ 〈d,∇f(x)〉
≥ f(x + d)− f(x)

≥ f(y)− f(x),

where the first inequality follows from y ≥ d and∇f(x) ≥
0, the second inequality follows from the concavitity of f
along d, and the third inequality follows from x + d ≥ y
and the monotonicity of f . By Lemma 3.1, we have

f(y) ≥ f(x∗)− 4 4
√
|E|√ρ,

which yields the desired result with C3.2 = 4 4
√
|E|.

Theorem 3.3. Suppose FD is ∆-sensitive and Cρ is a ρ-
covering of P(M). Then Algorithm 1, with high probability,
returns xT ∈ P(M) such that

fD(xT ) ≥
(

1− 1

e

)
OPT−O

(
C3.2ρ+

∆r(M) ln |E|
ερ2

)
Moreover, the algorithm evaluates fD at most
O (r(M) · |Cρ|) times.

Proof. Clearly Algorithm 1 evaluates f at most
O (r(M)|Cρ|) times. Observe that the algorithm
forms a convex combination of T vertices of the polytope
P(M), each with weight α hence xT ∈ P(M). In what
follows, we focus on the quality of the output of the
algorithm. Suppose y′ ∈ Cρ with ‖y′ − x∗‖2 ≤ ρ. By
Theorem 2.8, with probability at least 1− 1

|E|2 , we have

〈yt,∇f(xt)〉 ≥ argmax
y∈Cρ

〈y,∇f(xt)〉 −
2∆

ε
ln(|E|2|Cρ|)

≥ 〈y′,∇f(xt)〉 −
2∆

ε
ln(|E|2|Cρ|)

By Lemma 3.2
≥ f(x∗)− f(xt)− C3.2

√
ρ− 2∆

ε
ln(|E|2|Cρ|)

By a union bound, with probability at least 1 − 1
poly(|E|) ,

the above inequality holds for every t. In what follows, we
assume this has happened. Further, let us assume that t is a
continuous variable in [0, T ]. We remark that discretization
of t in our algorithm introduces error into the approximation
guarantee. However, this can be handled by sufficiently
large T , say, r(M) as in Algorithm 1, and small step size
α (Călinescu et al., 2011). In what follows t is assumed to
be continuous and we write dxt

dt = αyt, hence

df(xt)

dt
=
∑
e

∂f(xt(e))

∂xt(e)

dxt(e)

dt
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= ∇f(xt) ·
dxt
dt

= α〈yt,∇f(xt)〉

≥ α
(
f(x∗)− f(xt)− C3.2

√
ρ− 2∆

ε
ln(|E|2|Cρ|)

)
,

where the first equality follows from the chain rule. Let β =
f(x∗)−C3.2

√
ρ− 2∆

ε ln(|E|2|Cρ|). Solving the following
differential equation df(xt)

dt = α(β−f(xt)) with f(x0) = 0
gives us f(xt) = β(1−e−αt). For α = 1

T , t = T we obtain

f(xT ) = β(1− e−1)

=

(
1− 1

e

)
f(x∗)−O

(
C3.2
√
ρ+

2∆

ε
ln(|E|2|Cρ|)

)
≥
(

1− 1

e

)
f(x∗)−O

(
C3.2
√
ρ+

∆r(M) ln |E|
ερ2

)
Remark 3.1. As already pointed out in the proof of
Theorem 3.3, the discretization of t introduces error
into the approximation guarantee yielding (1 − 1/e −
1/poly(|E|))OPT. However, this can be shaved off to
(1 − 1/e)OPT by sufficiently large T (Călinescu et al.,
2011). Moreover, evaluating f (even approximately) is
expensive. To achieve the nearly optimal approximation
guarantees, the evaluation error needs to be very small and
in a lot of cases, the error needs to be O(1/|E|) times the
function value. As a result, a single evaluation of the multi-
linear extension f requires Ω(|E|) evaluations of F (see Ene
& Nguyen (2019) for recent improvement). Therefore, our
algorithm requires O(r(M)|E||Cρ|) evaluation of F .

Remark 3.2. From a fractional solution x∗, we can obtain
an integral solution s ∈ {0, 1}E such that f(s) ≥ f(x∗).
Such an integer solution corresponds to a vertex of P(M)
and hence a discrete solution S ∈ I . This can be done using
the so-called swap rounding (Chekuri et al., 2010).

3.2. Privacy Analysis

Theorem 3.4. Algorithm 1 preserves O(εr(M)2)-
differential privacy.

Proof. Let D and D′ be two neighboring datasets and
FD, FD′ be their associated functions. For a fixed yt ∈ Cρ,
we consider the relative probability of Algorithm 1 (denoted
by M ) choosing yt at time step t given multilinear exten-
sions of FD and FD′ . Let Mt(fD | xt) denote the output
of M at time step t given dataset D and point xt. Similarly,
Mt(fD′ | xt) denotes the output of M at time step t given
dataset D′ and point xt. Further, write dy = 〈y,∇fD(xt)〉
and d′y = 〈y,∇fD′(xt)〉. We have

Pr[Mt(fD | xt) = yt]

Pr[Mt(fD′ | xt) = yt]

=
exp(ε′ · dyt)
exp(ε′ · d′yt)

·
∑

y∈Cρ exp(ε′ · d′y)∑
y∈Cρ exp(ε′ · dy)

.

For the first factor, we have

exp(ε′ · dyt)
exp(ε′ · d′yt)

= exp
(
ε′(dyt − d′yt)

)
= exp

(
ε′(〈yt,∇fD(xt)−∇fD′(xt)〉)

)
≤ exp

(
ε′‖yt‖1‖∇fD(xt)−∇fD′(xt)‖∞

)
= exp

(
ε′
∑
e∈E

yt(e) ·
(

max
e∈E

E
R∼xt

[
FD(R ∪ {e})

− FD(R)− FD′(R ∪ {e}) + FD′(R)
]))

≤ exp(O(ε′ · r(M) · 2∆)) = exp(O(ε · r(M)))

Note that the last inequality holds since yt is a member
of the matroid polytope P(M) and by definition we have∑
e∈E yt(e) ≤ rM(E) = r(M). Moreover, recall that FD

is ∆-sensitive.

For the second factor, let us write βy = d′y − dy to be
the deficit of the probabilities of choosing direction y in
instances fD′ and fD. Then, we have∑

y∈Cρ exp(ε′ · d′y)∑
y∈Cρ exp(ε′ · dy)

=

∑
y∈Cρ exp(ε′ · βy) exp(ε′ · dy)∑

y∈Cρ exp(ε′ · dy)

= Ey[exp(ε′ · βy)] ≤ exp
(
O(ε′ · r(M) · 2∆)

)
= exp

(
O(ε · r(M))

)
.

The expectation is taken over the probability distribution
over y selected at time t in instance with input D. Re-
call that we choose y with probability proportional to
exp(ε′dy). By a union bound, Algorithm 1 preserves
O(εTr(M)) ≤ O(εr(M)2)-differential privacy. To obtain
an integral solution from a fractional solution, we use swap
rounding technique (see Remark 3.2) which does not depend
on the input function and hence preserves the privacy.

Note that the privacy factor in the work of Mitrovic et al.
(2017) is O(εr(M)). However, our privacy factor is
O(εr(M)2), this is because we deal with the multilinear
extension of a submodular function rather than the function
itself (which is different from the previous works).

Theorem 3.5 (Formal version of Theorem 1.1). Suppose
FD is ∆-sensitive and Algorithm 1 is instantiated with ρ =
ε

|E|1/2 . Then Algorithm 1 is (εr(M)2)-differentially private
and, with high probability, returns S ∈ I with quality at
least

FD(S) ≥
(

1− 1

e

)
OPT−O

(√
ε+

∆r(M)|E| ln |E|
ε3

)
Example 3.1 (Maximum Coverage). Let G = (U, V,E) be
a bipartite graph, andB be a budget constraint. In Maximum
Coverage problem, the goal is to find a set S ofB vertices in
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U so that the number of vertices in V incident to some vertex
in S is maximized. The edges incident to a vertex v ∈ V are
private information about v. If we instantiate Theorem 3.5
on this problem, the privacy factor is εB2 and the additive
error is O(∆B|U | ln(|U |)/ε3), where ∆ is the maximum
degree of a vertex in V . To have a meaningful privacy
bound, we set ε � 1/B2, and the additive error becomes
∆B7|U | ln(|U |). However, OPT could be Ω(|V |), which
is much larger than the additive error when |V | � |U |.
Indeed, by optimizing ρ, we can improve the additive error
to O(∆B3|U | ln(|U |)), which will be more practical.

4. Improving the Query Complexity
In this section, we improve the number of evaluations of
F from O(r(M)|E|1+(

r(M)
ε )2) to O(r(M)|E|2 ln |E|ε ). In

Algorithm 1, in order to choose a point with probability
proportional to exp(〈y,∇f(x)〉), it requires to compute
Z =

∑
z∈Cρ

exp(〈z,∇f(x)〉). This summation needs evalu-

ating (〈z,∇f(x)〉) for all z in Cρ. One way of improving
the query complexity of this step is as follows. Partition Cρ
into a number of layers such that points in each layer are
almost the same in terms of the inner product 〈·,∇f(x)〉.
Now, instead of choosing a point in Cρ, we carefully select
a layer with some probability (i.e., proportional to its size
and quality of points in it) and then choose a point from that
layer uniformly at random. Of course, to estimate the size
of each layer, we need to sample a sufficiently large number
of points from Cρ.
Definition 4.1 (layer). For a point x ∈ Cρ and µ > 0,
let the i-th layer to be Lx

µ,i = {z ∈ Cρ | (1 + µ)
i−1 ≤

exp
(
〈z,∇f(x)〉

)
< (1 + µ)

i}, for 1 ≤ i ≤ k, where

k =

log1+µ

max
y∈Cρ

exp
(
〈y,∇f(x)〉

)
min
y∈Cρ

exp
(
〈y,∇f(x)〉

)
 .

For a layer Lx
µ,i let |Lx

µ,i| denote the number of points in it,
and define Z̃ ∈ R and Z̃i ∈ R for each i ∈ [k] as follows:

Z̃ =
∑
i∈[k]

|Lx
µ,i|(1 + µ)i−1 , Z̃i = |Lx

µ,i|(1 + µ)i−1.

Then, a layer Lx
µ,i is chosen with probability Z̃i

Z̃
. Note that

we do not want to spend time computing the exact value
of |Lx

µ,i| for every layer, instead, we are interested in effi-
ciently estimating these values. By Hoeffding’s inequality
(Hoeffding, 1963), to estimate |Lx

µ,i|/|Cρ| with additive er-
ror of λ with probability at least 1− θ, it suffices to sample
Θ(ln(1/θ)/λ2) points from Cρ. Hence, by a union bound,
if we want to estimate |Lx

µ,i|/|Cρ| with additive error of λ
for all i = 1, . . . , k with probability at least 1−θ, it suffices
to sample Θ(ln(k/θ)/λ2) points from Cρ.

Algorithm 2 Improved Differentially Private Continuous
Greedy Algorithm

1: Input: Submodular function FD : 2E → [0, 1], dataset
D, a matroidM = (E, I), and ε, µ, ρ, λ, θ > 0.

2: Let Cρ be a ρ-covering of P(M), and fD be the multi-
linear extension of FD.

3: x(0)← 0, ε′ ← ε
2∆ .

4: for t = 1 to T = r(M) do
5: C ′ρ ← Sample Θ(ln(k/θ)/λ2) points from Cρ uni-

formly at random.
6: Define Lxt−1

µ,i as in Definition 4.1, and estimate each
|Lxt−1

µ,i | using C ′ρ.
7: Let L̃xt−1

µ,i denote the estimated value.
8: Set Z̃i ← L̃

xt−1

µ,i (1 + µ)ε
′(i−1) and Z̃ ←∑

i∈[k]

L̃
xt−1

µ,i (1 + µ)ε
′(i−1)

9: Let L be the chosen layer Lxt−1

µ,i with probability

proportional to Z̃i
Z̃

.
10: Let yt−1 be a point sampled uniformly at random

from L.
11: xt ← xt−1 + αyt−1.
12: end for
13: Outout: xT

Corollary 4.2. Let Cρ be a ρ-covering of P(M) and xt be
a point in P(M). Algorithm 2 estimates |Lxt

µ,i|/|Cρ| with
an additive error λ4.2 with probability at least 1− θ4.2.

Lemma 4.3 (Analogous to Theorem 2.8). At each time step
t, Algorithm 2 returns yt−1 such that for every β ∈ (0, 1)

and ξ = ln

(
|Cρ|(1+kλ|Cρ|)(1+µ)ε

′

β

)
we have

Pr

[
〈yt−1,∇f(xt−1)〉 ≥ max

z∈Cρ
〈z,∇f(xt−1)〉 − 2∆

ε
ξ

]
≥ 1− β.

Theorem 4.4. Suppose FD is ∆-sensitive and Cρ is a ρ-
covering of P(M). Then Algorithm 2, with high probability
(depending on θ4.2), returns xT ∈ P(M) such that

f(xT ) ≥
(

1− 1

e

)
OPT−O

(
C3.2
√
ρ+ ln(1 + µ)+

(
∆r(M)

ερ2

)
(ln |E|+ ln(kλ4.2))

)

Theorem 4.5. Algorithm 2 preserves O
(
εr(M)2

)
-

differential privacy.

Theorem 4.6 (Formal version of Theorem 1.2). Suppose
FD is ∆-sensitive and Algorithm 2 is instantiated with
ρ = ε

|E|1/2 , µ = eε, λ4.2 = 1/
√
|E|, θ4.2 = 1/|E|2. Then
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Algorithm 2 is (εr(M)2)-differentially private and, with
high probability, returns S ∈ I with quality at least

FD(S) ≥
(

1− 1

e

)
OPT−O

(
√
ε+

∆r(M)|E| ln( |E|ε )

ε3

)
.

Moreover, it evaluates FD at most O(r(M)|E|2 ln( |E|ε ))
times.

5. k-Submodular Function Maximization
In this section, we study a natural generalization of sub-
modular functions, namely k-submodular functions. Asso-
ciate (S1, . . . , Sk) ∈ (k + 1)

E with s ∈ {0, 1, . . . , k}E by
Si = {e ∈ E | s(e) = i} for i ∈ [k] and define the support
of s as supp(s) = {e ∈ E | s(e) 6= 0}. Let � be a partial
ordering on (k + 1)

E such that, for s = (S1, . . . , Sk) and
t = (T1, . . . , Tk) in (k + 1)

E , s � t if Si ⊆ Ti for every
i ∈ [k]. We say that a function F : (k + 1)

E → R+ is
monotone if F (s) ≤ F (t) holds for every s � t. Define
the marginal gain of adding e 6∈

⋃
`∈[k] S` to the i-th set of

s ∈ (k + 1)
E to be

∆e,iF (s) = F (S1, . . . , Si−1, Si ∪ {e}, Si+1, . . . , Sk)

− F (S1, . . . , Sk).

The monotonicity of F is equivalent to ∆e,iF (s) ≥ 0 for
any s = (S1, . . . , Sk) and e 6∈

⋃
`∈[k] S` and i ∈ [k].

Our goal is maximizing a monotone k-submodular function
under matroid constraints. That is, given a monotone k-
submodular function FD : (k + 1)

E → R+ and a matroid
M = (E, I), we want to solve the following problem.

max
x∈(k+1)E

FD(x) subject to
⋃
i∈[k]

Xi ∈ I

The following are known due to Sakaue (2017). They may
have appeared in other literature that we are not aware of.

Lemma 5.1 (Sakaue (2017)). For any maximal optimal
solution o we have |supp(o)| = r(M).

Lemma 5.2 (Sakaue (2017)). Suppose A ∈ I and B ∈ B
(recall B denotes the set of bases) satisfy A ⊆ B. Then, for
any e 6∈ A satisfying A ∪ {e} ∈ I, there exists e′ ∈ B \A
such that B \ {e′} ∪ {e} ∈ B.

Having Lemma 5.1, our algorithm runs in r(M) iterations
and at each iteration chooses an element e with probability
proportional to exp(ε′∆e,iFD(x)) and adds e to supp(x).
The analysis for the approximation guarantee is similar to
the ones in Iwata et al. (2016); Ohsaka & Yoshida (2015);
Sakaue (2017); Ward & Zivny (2014) and relies on Theo-
rem 2.8.

Algorithm 3 Differentially private k-submodular maximiza-
tion with a matroid constraint

1: Input: monotone k-submodular functions
FD : (k + 1)

E → [0, 1], a matroid M = (E, I),
and ε > 0.

2: x← 0, ε′ ← ε
2∆

3: for t = 1 to r(M) do
4: Let Λ(x) = {e ∈ E\supp(x) | supp(x)∪{e} ∈ I}
5: Choose e ∈ Λ(x) and i ∈ [k] with probability pro-

portional to exp(ε′∆e,iFD(x)).
6: x(e)← i.
7: end for
8: Output: x

Theorem 5.3. Suppose FD has sensitivity ∆. Then Algo-
rithm 3, with high probability, returns x ∈ (k + 1)

E such
that supp(x) ∈ B and FD(x) ≥ 1

2OPT−O(∆r(M) ln |E|
ε ).

The privacy guarantee follows immediately from the ε-
differential privacy of the exponential mechanism, together
with Theorem 2.6.
Theorem 5.4. Algorithm 3 preserves O(εr(M))-
differential privacy. It also provides ( 1

2r(M)ε2 +√
2 ln 1/δ′ε, δ′)-differential privacy for every δ′ > 0.

Clearly, Algorithm 3 evaluates FD at most O(k|E|r(M))
times. Next theorem summarizes the results of this section.
Theorem 5.5. Suppose FD has sensitivity ∆. Then
Algorithm 3, with high probability, outputs a solution
x ∈ (k + 1)

E such that supp(x) is a base of M and
FD(x) ≥ 1

2OPT − O(∆r(M) ln |E|
ε ) by evaluating FD at

most O(k|E|r(M)) times. Moreover, this algorithm pre-
serves O(r(M)ε)-differential privacy.

5.1. Improving the Query Complexity

By applying a sampling technique (Mirzasoleiman et al.,
2015; Ohsaka & Yoshida, 2015), we improve the num-
ber of evaluations of F from O(k|E|r(M)) to O(k|E|
ln r(M) ln r(M)

γ ), where γ > 0 is a failure probability.
Hence, even when r(M) is as large as |E|, the number of
function evaluations is almost linear in |E|. The main dif-
ference from Algorithm 3 is that we sample a sufficiently
large subset R of E, and then greedily assign a value only
looking at elements in R.
Theorem 5.6. Suppose FD has sensitivity ∆. Then Algo-
rithm 4, with probability at least 1− γ, outputs a solution

with quality at least 1
2OPT−O

(
∆r(M) ln

|E|
γ

ε

)
by evalu-

ating FD at most O
(
k|E| ln r(M) ln r(M)

γ

)
times.

Similar to Theorem 5.4 and using the composition The-
orem 2.6, Algorithm 4 preserves O(εr(M))-differential
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Algorithm 4 Improved differentially private k-submodular
maximization with a matroid constraint

1: Input: monotone k-submodular functions
FD : (k + 1)

E → [0, 1], a matroid M = (E, I),
ε > 0, and a failure probability γ > 0.

2: x← 0, ε′ ← ε
2∆

3: for t = 1 to r(M) do
4: R ← a random subset of size

min{ |E|−t+1
r(M)−t+1 log r(M)

γ , |E|} uniformly sam-
pled from E \ supp(x).

5: Choose e ∈ R with supp(x) ∪ {e} ∈ I and i ∈ [k]
with probability proportional to exp(ε′∆e,iFD(x)).

6: x(e)← i.
7: end for
8: Output: x

privacy. It also provides O
(

1
2r(M)ε2 +

√
2 ln 1/δ′ε, δ′

)
-

differential privacy for every δ′ > 0. In summary, we have

Theorem 5.7. Suppose FD has sensitivity ∆. Then, with
probability at least 1 − γ, Algorithm 4 returns a solution
x ∈ (k + 1)

E such that supp(x) ∈ B and FD(x) ≥
1
2OPT − O

(
∆r(M) ln

|E|
γ

ε

)
by evaluating FD at most

O
(
k|E| ln r(M) ln r(M)

γ

)
times. Moreover, this algorithm

preserves O(εr(M))-differential privacy.

5.2. Motivating Examples

Example 5.1. Suppose that we have m ad slots and k ad
agencies, and we want to allocate at most B(≤ m) slots
to the ad agencies. Each ad agency i has a influence graph
Gi, which is a bipartite graph (U, V,Ei), where U and V
correspond to ad slots and users, respectively, and an edge
uv ∈ Ei indicates that if the ad agency i takes the ad slot
u (and put an ad there), the user v will be influenced by
the ad. The goal is to maximize the number of influenced
people (each person will be counted multiple times if he/she
is influenced by multiple ad agencies), based on which we
get revenue from the ad agencies. This problem can be
modeled as k-submodular function maximization under a
cardinality constraint (a special case of matroid constraints),
and edges incident to a user v in G1, . . . , Gk are sensitive
data about v.

Example 5.2. Another example comes from (a variant of)
facility location. Suppose that we have a set E of n lands,
and we want to provide k resources (e.g., gas and electricity)
to all the lands by opening up facilities at some of the lands.
For each resource type i and lands e, e′ ∈ E, we have a cost
ci(e, e

′) of sending the resource of type i from e to e′. For
a set S ⊆ E, let ci(e, S) = mine′∈S ci(e, e

′), which is the
cost of sending a resource of type i to e when we open up
facilities of type i at lands in S. Assume we cannot open

two or more facilities in the same land. Then, the goal is to
find disjoint sets S1, . . . , Sk with

∑
i |Si| <= B for some

fixed B that maximize
∑
e

∑
i(C − ci(e, Si)), where C is

a large number so that the objective function is always non-
negative. This problem can be modeled as k-submodular
function maximization under a cardinality constraint, and
the costs ci(e, ·) are sensitive data about e.

6. Conclusion
We proposed a differentially private algorithm for maxi-
mizing monotone submodular functions under matroid con-
straint. Our algorithm provides the best possible approxi-
mation guarantee that matches the approximation guarantee
in non-private setting. It also has a competitive number
of function evaluations that is significantly faster than the
non-private one. We also presented a differentially private
algorithm for k-submodular maximization under matroid
constraint that uses almost liner number of function evalua-
tions and has an asymptotically tight approximation ratio.
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A. Probability Distributions
Let P be a probability distribution over a finite set E. For an element e ∈ E, we write P (e) to denote the probability that e
is sampled from P .

Let P and Q be two distributions over the same set E. The total variation distance and the Hellinger distance between P
and Q are

dTV(P,Q) =
1

2

∑
e∈E
|P (e)−Q(e)| and

h(P,Q) =
1√
2

√∑
e∈E

(√
P (e)−

√
Q(e)

)2

,

respectively. It is well known that dTV(P,Q) ≤
√

2h(P,Q) holds.

For two distributions P and Q, we denote by P ⊗Q their product distribution. The following is well known:

Lemma A.1. Let P1, . . . , Pn and Q1, . . . , Qn be probability distributions over E. Then, we have

h(P1 ⊗ P2 ⊗ · · · ⊗ Pn, Q1 ⊗Q2 ⊗ · · · ⊗Qn)
2 ≤

n∑
i=1

h(Pi, Qi)
2.

Finally, we use the following result due to Hoeffding in order to bound the error of our sampling step in Section 4.

Theorem A.2 (Hoeffding’s inequality (Hoeffding, 1963)). Let X1, . . . , Xn be independent random variables bounded by
the interval [0, 1] : 0 ≤ Xi ≤ 1. We define the empirical mean of these variables by X̄ = 1

n (X1 + · · ·+Xn). Then

Pr[X̄ − E[X̄] ≥ t] ≤ exp(−2nt2).

B. Missing Proofs from Section 3
Proof of Lemma 3.1. We have

|f(x)− f(x + v)| =

∣∣∣∣∣ ∑
S⊆E

F (S)

(∏
e∈S

x(e)
∏
e 6∈S

(
1− x(e)

)
−
∏
e∈S

(
x(e) + v(e)

)∏
e 6∈S

(
1− x(e)− v(e)

))∣∣∣∣∣
≤
∑
S⊆E

∣∣∣∣∣ ∏
e∈S

x(e)
∏
e 6∈S

(
1− x(e)

)
−
∏
e∈S

(
x(e) + v(e)

)∏
e 6∈S

(1− x(e)− v(e))

∣∣∣∣∣. (1)

Now, we define probability distributions {Pe}e∈E and {Qe}e∈E over {0, 1} so that Pe(1) = x(e) andQe(1) = x(e)+v(e),
respectively, for every e ∈ E. Note that

g(x(e)) = h(Pe, Qe)
2

=
(√

x(e)−
√
x(e) + v(e)

)2

+
(√

1− x(e)−
√

1− x(e)− v(e)
)2

is a convex function with domain x(e) ∈ [0, 1 − v(e)]. The maximum value for this function happens at x(e) = 0 and
x(e) = 1− v(e). Further its minimum is at x(e) = [1− v(e)]/2.

h(Pe, Qe)
2

= g(x(e)) ≤ g(0) = g(1− v(e))

= 2− 2
√

1− v(e)

≤ v(e)
2

+ v(e)

≤ 2v(e) (for v(e) ∈ [0, 1])

Letting P =
⊗

e∈E Pe and Q =
⊗

e∈E Qe, we have

(1) ≤ 2 · dTV(P,Q) = 2
√

2 · h(P,Q)
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≤ 2
√

2

√∑
e∈E

h(Pe, Qe)
2 (By Lemma A.1)

= 2
√

2

√∑
e∈E

2v(e)

= 4
√
|v|1

≤ 4

√√
|E|‖v‖2

≤ 4 4
√
|E|√ρ

C. Missing Proofs from Section 4
C.1. Proof of Lemma 4.3

Proof of Lemma 4.3. Let OPT = maxz∈Cρ〈z,∇f(xt−1)〉 and qt(z) = 〈z,∇f(xt−1)〉 for every z ∈ P(M). Further, let
yt be the output of the algorithm and L̃xt−1

µ,i denote the estimated size of the i-th layer.

Pr

[
q(yt) ≤ OPT −

2∆

ε
ξ

]
≤

Pr[q(yt) ≥ OPT − 2∆
ε ξ]

Pr[q(yt) = OPT ]

≤
exp

[
ε′
(
OPT − 2∆

ε ξ + ln(1 + µ)
)]

k∑
j=1

L̃
xt−1

µ,j (1 + µ)ε′(j−1)

×

k∑
j=1

|Lxt−1

µ,j |(1 + µ)ε
′(j−1)

exp(ε′OPT )

=
exp

[
ε′
(
OPT − 2∆

ε ξ + ln(1 + µ)
)]

exp(ε′OPT )
×

k∑
j=1

|Lxt−1

µ,j |(1 + µ)ε
′(j−1)

k∑
j=1

L̃
xt−1

µ,j (1 + µ)ε′(j−1)

Consider the first term,

exp
[
ε′
(
OPT − 2∆

ε ξ + ln(1 + µ)
)]

exp(ε′OPT )
= exp

[
ε′
(
−2∆

ε
ξ + ln(1 + µ)

)]
= exp(−ξ) exp (ε′ ln(1 + µ))

= exp(−ξ)(1 + µ)ε
′

Consider the second term. By Corollary 4.2, the algorithm estimates |Lxt−1

µ,j |/|Cρ| within additive error λ4.2 with probability
at least 1− θ4.2 = 1− β. Therefore,

k∑
j=1

|Lxt−1

µ,j |(1 + µ)ε
′(j−1)

k∑
j=1

L̃
xt−1

µ,j (1 + µ)ε′(j−1)

≤

k∑
j=1

(L̃
xt−1

µ,j + λ4.2|Cρ|)(1 + µ)ε
′(j−1)

k∑
j=1

L̃
xt−1

µ,j (1 + µ)ε′(j−1)

≤ 1 +

k∑
j=1

(λ4.2|Cρ|)(1 + µ)ε
′(j−1)

k∑
j=1

L̃
xt−1

µ,j (1 + µ)ε′(j−1)

≤ 1 +

k∑
j=1

λ4.2|Cρ|
L̃
xt−1

µ,j

≤ 1 + kλ4.2|Cρ|
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Therefore, putting both upper bounds together yields

Pr

[
q(yt) ≤ OPT −

2∆

ε
ξ

]
≤ exp(−ξ)(1 + µ)ε

′
(1 + kλ4.2|Cρ|)

As there are at most |Cρ| outputs with quality OPT − 2∆
ε ξ their cumulative probability is at most

|Cρ|(1 + kλ4.2|Cρ|)(1 + µ)
ε′

exp(−ξ) =
|Cρ|(1 + kλ4.2|Cρ|)(1 + µ)

ε′
β

|Cρ|(1 + kλ4.2|Cρ|)(1 + µ)ε′

= β.

C.2. Proof of Theorem 4.4

Proof of Theorem 4.4. Suppose y′ ∈ Cρ with ‖y′ − x∗‖2 ≤ ρ. Let β = 1
|E|2 . By Lemma 4.3, with probability at least

1− 1
|E|2 , we have

〈yt,∇f(xt)〉 ≥ argmax
y∈Cρ

〈y,∇f(xt)〉 −
2∆

ε
ξ

≥ 〈y′,∇f(xt)〉 −
2∆

ε
ξ

≥ f(x∗)− f(xt)− C3.2
√
ρ− 2∆

ε
ξ (by Lemma 3.2)

By a union bound, with probability at least 1− 1
poly(|E|) , the above inequality holds for every t. In what follows, we assume

this has happened. As in the proof of Theorem 3.3, suppose t is a continuous variable and define dxt
dt = αyt.

df(xt)

dt
=
∑
e

∂f(xt(e))

∂xt(e)

dxt(e)

dt

= ∇f(xt) ·
dxt
dt

= α〈yt,∇f(xt)〉

≥ α
(
f(x∗)− f(xt)− C3.2

√
ρ− 2∆

ε
ξ

)
,

Solving the differential equation with f(x0) = 0 gives us

f(xt) = (1− e−αt)

(
f(x∗)− C3.2

√
ρ− 2∆

ε
ξ

)
.

For α = 1
T and t = T we obtain

f(xT ) = (1− e−1)

(
f(x∗)− C3.2

√
ρ− 2∆

ε
ξ

)
= f(x∗)(1− e−1)−O

(
C3.2
√
ρ+

2∆

ε
ξ

)
.

Recall that ξ = ln
([
|Cρ|(1 + kλ4.2|Cρ|)(1 + µ)ε

′
]
/β
)

and β = 1/|E|2. Next we give an upper bound for the error term.

O

(
C3.2
√
ρ+

2∆

ε
ξ

)
= O

(
C3.2
√
ρ+

2∆

ε
ln(|E|2|Cρ|) +

2∆

ε
ln(1 + µ)ε

′
+

2∆

ε
ln(kλ4.2|Cρ|)

)
= O

(
C3.2
√
ρ+ ln(1 + µ) +

2∆

ε

[
ln(|E|2|Cρ|) + ln(kλ4.2|Cρ|)

])
= O

(
C3.2
√
ρ+ ln(1 + µ) +

∆

ε
(
B

ρ
)2(ln |E|+ ln(kλ4.2))

)
Note that by letting µ = eε − 1 we get ln(1 + µ) = ε. Moreover, we get k ≤ r(M)

ε .
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C.3. Proof of Theorem 4.5

Proof of Theorem 4.5. Let M denote Algorithm 2. Let D and D′ be two neighboring datasets and FD and FD′ be their
associated functions. Suppose C ′ρ(D, t) denotes the set of sampled points at time step t given dataset D. Similarly, C ′ρ(D

′, t)
denotes set of sampled points at time step t given dataset D′. Samples are drawn uniformly at random and independent from
the input function. Hence, Line 2 of M is 0-differentially private. Therefore, we assume C ′ρ(D, t) = C ′ρ(D

′, t) = St for
every time step t. Define k, k′ as follow:

k =

log1+µ

max
y∈Cρ

exp
(
〈y,∇fD(x)〉

)
min
y∈Cρ

exp
(
〈y,∇fD(x)〉

)


k′ =

log1+µ

max
y∈Cρ

exp
(
〈y,∇fD′(x)〉

)
min
y∈Cρ

exp
(
〈y,∇fD′(x)〉

)


Note that the layers might be different. Let us use Li(D) and Li(D′) for the i-th layer given dataset D and D′, respectively.
Further, L̃i(D) and L̃i(D′) denote the estimated size of the i-th layer.

For a fixed y ∈ Cρ, we consider the relative probability of M choosing y at time step t given multilinear extensions
of FD and FD′ . Let Mt(fD | xt) denote the output of M at time step t given dataset D and point xt. Similarly,
Mt(fD′ | xt) denote the output of M at time step t given dataset D′ and point xt. Further, write dy = 〈y,∇fD(xt)〉 and
d′y = 〈y,∇fD′(xt)〉.

Suppose y ∈ Li(D) given dataset D, and y ∈ Li′(D′) given dataset D′. Then, we have

Pr[Mt(fD | xt) = y]

Pr[Mt(fD′ | xt) = y]
=

Pr[y ∈ St | D]

Pr[y ∈ St | D′]
×

|L̃i(D)|(1+µ)ε
′(i−1)

|L̃i(D)|
|L̃i′ (D′)|(1+µ)ε′(i′−1)

|L̃i′ (D′)|

×

k′∑
j=1

L̃j(D
′) exp(ε′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ε′ · (1 + µ)j−1)

=
(1 + µ)ε

′(i−1)

(1 + µ)ε′(i′−1)
×

k′∑
j=1

L̃j(D
′) exp(ε′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ε′ · (1 + µ)j−1)

(2)

The second equality holds since points are sampled uniformly at random from Cρ in Line 2.

Lemma C.1. Let D,D′ be neighboring datasets and F be ∆-sensitive. Suppose z ∈ Cρ is a point in Lj(D). Then

(1 + µ)ε
′(j−1) exp(−εr(M)

2
) ≤ exp(ε′〈z,∇fD′(xt)〉)

< (1 + µ)ε
′j exp(

εr(M)

2
)

Proof. Since z ∈ Cρ is a point in Lj(D), then (1 + µ)j−1 ≤ exp(〈z,∇fD(x)〉) < (1 + µ)j . Since FD is ∆-sensitive
hence fD is ∆r(M)-sensitive (recall the proof of Theorem 3.4). Therefore,

exp(〈z,∇fD′(xt)〉) ≤ exp(〈z,∇fD(xt)〉+ ∆r(M)) < (1 + µ)j exp(∆r(M)) (3)

(1 + µ)j−1 exp(−∆r(M)) ≤ exp(〈z,∇fD(xt)〉 −∆r(M))) ≤ exp(〈z,∇fD′(xt)〉) (4)

(3), (4)⇒ (1 + µ)j−1 exp(−∆r(M)) ≤ exp(〈z,∇fD′(xt)〉) < (1 + µ)j exp(∆r(M)) (5)

(5)⇒ (1 + µ)ε
′(j−1) exp(−εr(M)

2
) ≤ exp(ε′〈z,∇fD′(xt)〉) < (1 + µ)ε

′j exp(
εr(M)

2
) (6)
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The interpretation of (5) is that if a point z ∈ St appears in layer Lj(D) then it can be in any of the layers Lp(D′) for
(j − 1) + log1+µ[exp(−∆r(M))] ≤ p < j + log1+µ[exp(∆r(M))]1. In a sense, the same argument in Claim C.2 shows
that bk

′

k c = 1. Now, we are ready to provide an upper bound for (2).

Consider the first term (1+µ)ε
′(i−1)

(1+µ)ε′(i′−1) . Recall that y ∈ Li(D) given dataset D, and y ∈ Li′(D′) given dataset D′. By

Lemma C.1, we have (1 + µ)ε
′(i−1) exp(− εr(M)

2 ) ≤ exp(ε′〈z,∇fD′(xt)〉). Therefore,

(1 + µ)ε
′(i−1)

(1 + µ)ε′(i′−1)
≤ (1 + µ)ε

′(i−1)

(1 + µ)ε′(i−1) exp(− εr(M)
2 )

= exp(
εr(M)

2
)

Now, we provide an upper bound for the second term of (2):

k′∑
j=1

L̃j(D
′) exp(ε′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ε′ · (1 + µ)j−1)

≤

k∑
j=1

L̃j(D) exp(εr(M)) exp(ε′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ε′ · (1 + µ)j−1)

=

[exp(εr(M))]
k∑
j=1

L̃j(D) exp(ε′ · (1 + µ)j−1)

k∑
j=1

L̃j(D) exp(ε′ · (1 + µ)j−1)

≤ exp(εr(M))

By a union bound and composition Theorem 2.6, Algorithm 2 preserves O(εTr(M)) ≤ O(εr(M)2)-differential privacy.
The heart of the above inequality is that, given the set of sample points, the layers defined for both instances are almost
identical.

Claim C.2. k′

k ≤ 1 + 2∆r(M)
k ln(1+µ) .

Proof.

k′ = log1+µ

max
y∈Cρ

exp
(
〈y,∇fD′(x)〉

)
min
y∈Cρ

exp
(
〈y,∇fD′(x)〉

)


≤ log1+µ

max
y∈Cρ

exp
(
〈y,∇fD(x)〉+ ∆r(M)

)
min
y∈Cρ

exp
(
〈y,∇fD(x)〉 −∆r(M)

)


≤ log1+µ

max
y∈Cρ

exp
(
〈y,∇fD(x)〉

)
min
y∈Cρ

exp
(
〈y,∇fD(x)〉

)


+ log1+µ exp(2∆r(M))

= k +
2∆r(M)

ln(1 + µ)

= k

(
1 +

2∆r(M)

k ln(1 + µ)

)
.

1Note that in low-sensitivity regime, where ∆� r(M), we have j − 1 ≤ p < j.
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D. Missing Proofs from Section 5
D.1. Proof of Theorem 5.3

Proof of Theorem 5.3. Consider the j-th iteration of the algorithm. Let (e(j), i(j)) be the pair chosen in this iteration.
Further, let o be the optimal solution and x(j) be the solution after the j-th iteration. Note that |supp(x(j))| = j for
j ∈ [r(M)]. We define a sequence of vectors o(0) = o,o(1), . . . ,or(M), as in (Iwata et al., 2016; Ohsaka & Yoshida, 2015;
Sakaue, 2017; Ward & Zivny, 2014), such that

1. x(j) ≺ o(j) for all 0 ≤ j ≤ r(M)− 1,

2. x(r(M)) = o(r(M)),

3. O(j) := supp(o(j)) ∈ B for all 0 ≤ j ≤ r(M).

For the sake of completeness, let us describe how to obtain o(j) from o(j−1) assuming x(j−1) ≺ o(j−1) and O(j−1) ∈ B.
Let X(j) = supp(x(j)). x(j−1) ≺ o(j−1) implies that X(j−1) ( O(j−1) and e(j) is chosen to satisfy X(j−1) ∪ {e(j)} ∈ I.
By Lemma 5.2, there exists e′ ∈ O(j−1) \X(j−1) such that O(j−1) \ {e′} ∪ {e(j)} ∈ B.

Now let o(j) = e′ and define o(j−1/2) as the vector obtained by assigning 0 to the o(j)-th element of o(j−1). We then
define o(j) as the vector obtained from o(j−1/2) by assigning i(j) to the e(j)-th element. Therefore, for vector o(j) we have
O(j) ∈ B and x(j) ≺ o(j).

By Theorem 2 in (Sakaue, 2017), if we always selected (e(j), i(j)) with e(j) ∈ Λ(x), i ∈ [k] and maximum ∆e,if(x), we
would have

F (x(j))− F (x(j−1)) ≥ F (o(j−1))− F (o(j)).

Instead we use the exponential mechanism which, by Theorem 2.8, selects (e(j), i(j)) within 2∆
ε ln |Λ(x(j))|

β from the optimal
choice with probability at least 1− β. Therefore,

F (x(j))− F (x(j−1)) ≥ F (o(j−1))− F (o(j))− 2∆

ε
ln
|Λ(x(j))|

β

with probability at least 1− β. Given this, one can derive the following:

F (o)− F (x(r(M))) =

r(M)∑
j=1

F (o(j−1))− F (o(j))

≤
r(M)∑
j=1

(
F (x(j−1))− F (x(j)) +

2∆

ε
ln
|Λ(x(j))|

β

)

= F (x(r(M)))− F (0) + r(M)

(
2∆

ε
ln
|Λ(x(j))|

β

)
= F (x(r(M))) + r(M)

(
2∆

ε
ln
|Λ(x(j))|

β

)
,

which means Algorithm 3 returns x = x(r(M)) with quality at least 1
2OPT − r(M)( 2∆

ε ln |Λ(x(j))|
β ) with probability at

least 1− r(M)β. Having β = 1
|E|2 , |Λ(x(j))| ≤ |E| gives us

F (x) ≥ 1

2
OPT−O

(
∆r(M) ln |E|

ε

)
.

D.2. Proof of Theorem 5.6

Proof of Theorem 5.6. Let R(j) be R in the j-th iteration, o be the optimal solution and x(j) be the solution after the j-th
iteration. Further, let X(j) = supp(x(j)), O(j) = supp(o(j)), and

Λ(x)
(j)

= {e ∈ E \ supp(x(j)) | supp(x(j)) ∪ {e} ∈ I}
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We iteratively define o(0) = o,o(1), . . . ,or(M) as follows. If R(j) ∩ Λ(x)
(j)

= ∅, then we regard that the algorithm failed.
Else we proceed as follows. By Lemma 5.2, for any e(j) ∈ R(j) ∩ Λ(x)

(j), there exists e′ such that e′ ∈ O(j−1) \X(j−1)

and O(j−1) \ {e′} ∪ {e(j)} ∈ B. Now let o(j) = e′ and define o(j−1/2) as the vector obtained by assigning 0 to the
o(j)-th element of o(j−1). We then define o(j) as the vector obtained from o(j−1/2) by assigning i(j) to the e(j)-th element.
Therefore, for vector o(j) we have O(j) ∈ B and x(j) ≺ o(j).

If the algorithm does not fail and o(0) = o,o(1), . . . ,or(M) are well defined, or in other words, if R(j) ∩ Λ(x)
(j) is not

empty for every j ∈ [r(M)], then the rest of the analysis is completely the same as in Theorem 5.3, and we achieve an
approximation ratio of (roughly) 1/2. Hence, it suffices to show that R(j) ∩ Λ(x)

(j) is not empty with a high probability.

Lemma D.1. With probability at least 1− γ
r(M) , we have R(j) ∩ Λ(x)

(j) 6= ∅ for every j ∈ [r(M)].

Analogous to the analysis in Theorem 5.3, for every time step 0 ≤ j ≤ r(M), with probability at least 1− γ
r(M) we have

F (x(j))− F (x(j−1)) ≥ F (o(j−1))− F (o(j))− 2∆

ε
ln(

r(M)|Λ(x(j))|
γ

).

By a union bound over j ∈ [r(M)], with probability at least 1− γ, it follows that

F (x) ≥ 1

2
OPT−O

(
∆r(M) ln(|E|/γ)

ε

)
.

Applying a similar argument as in (Ohsaka & Yoshida, 2015), the number of evaluations of f is at most

k

r(M)∑
t=1

|E| − t+ 1

r(M)− t+ 1
ln
r(M)

γ
= k

r(M)∑
t=1

|E| − r(M) + t

t
log

r(M)

γ

= O

(
k|E| ln r(M) ln

r(M)

γ

)
Proof of Lemma D.1.

Pr[R(j) ∩ Λ(x)
(j)

= ∅] =

(
1− r(M)− supp(x(j))

|E \ supp(x(j))|

)|R(j)|

≤ exp

(
−r(M)− j + 1

|E| − j + 1

|E| − j + 1

r(M)− j + 1
ln
r(M)

γ

)
= exp

(
− ln

r(M)

γ

)
=

γ

r(M)


