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Abstract

We study the robust one-bit compressed sens-
ing problem whose goal is to design an algo-
rithm that faithfully recovers any sparse target
vector θ0 ∈ Rd uniformly via m quantized noisy
measurements. Specifically, we consider a new
framework for this problem where the sparsity
is implicitly enforced via mapping a low dimen-
sional representation x0 ∈ Rk through a known
n-layer ReLU generative network G : Rk → Rd
such that θ0 = G(x0). Such a framework poses
low-dimensional priors on θ0 without a known
sparsity basis. We propose to recover the tar-
get G(x0) solving an unconstrained empirical
risk minimization (ERM). Under a weak sub-
exponential measurement assumption, we estab-
lish a joint statistical and computational analysis.
In particular, we prove that the ERM estimator
in this new framework achieves a statistical rate
of m = Õ(kn log d/ε2) recovering any G(x0)
uniformly up to an error ε. When the network
is shallow (i.e., n is small), we show this rate
matches the information-theoretic lower bound
up to logarithm factors on ε−1. From the lens of
computation, we prove that under proper condi-
tions on the network weights, our proposed empir-
ical risk, despite non-convexity, has no stationary
point outside of small neighborhoods around the
true representation x0 and its negative multiple;
furthermore, we show that the global minimizer
of the empirical risk stays within the neighbor-
hood around x0 rather than its negative multiple
under further assumptions on weights.
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1. Introduction
Quantized compressed sensing investigates how to design
the sensing procedure, quantizer, and reconstruction algo-
rithm so as to recover a high dimensional vector from a
limited number of quantized measurements. The prob-
lem of one-bit compressed sensing, which aims at recov-
ering a target vector θ0 ∈ Rd from single-bit observations
yi = sign(〈ai, θ0〉), i ∈ {1, 2, · · · ,m}, m � d and ran-
dom sensing vectors ai ∈ Rd, is particularly challenging.
Previous theoretical successes on this problem (e.g. Jacques
et al. (2013); Plan & Vershynin (2013); Zhu & Gu (2015))
mainly rely on two key assumptions: (1) The Gaussianity
of the sensing vector ai. (2) The sparsity of the vector θ0 on
a given basis. However, the practical significance of these
assumptions are rather limited in the sense that it is difficult
to generate Gaussian vectors and high dimensional targets in
practice are often distributed near a low-dimensional mani-
fold rather than sparse on some given basis. The goal of this
work is to make steps towards addressing these limitations.

1.1. Sub-Gaussian One-Bit Compressed Sensing

As investigated in Ai et al. (2014), sub-Gaussian one-bit
compressed sensing can easily fail regardless of the recovery
algorithms. More specifically, consider two sparse vectors:
θ1 = [1, 0, 0, · · · , 0], θ2 = [1, − 1/2, 0, · · · , 0],
and i.i.d. Bernoulli sensing vectors ai, where each entry
takes +1 and −1 with equal probabilities. Such sensing
vectors are known to perform optimally in the ordinary
linear compressed sensing scenario, but cannot distinguish
between θ1 and θ2 in the current one-bit scenario regardless
of algorithms. Moreover, Ai et al. (2014); Goldstein &
Wei (2018) further propose non-consistent estimators whose
discrepancies are measured in terms of certain distances
between the Gaussian distribution and the distribution of
the sensing vectors.

A major step towards consistent non-Gaussian one-bit com-
pressed sensing is called dithering, which has been con-
sidered in several recent works (Xu & Jacques, 2018;
Dirksen & Mendelson, 2018a). The key idea is that in-
stead of yi = sign(〈ai, θ0〉), one considers a new proce-
dure by adding artificial random noise τi before quanti-
zation: yi = sign(〈ai, θ0〉 + τi), i ∈ {1, 2, · · · ,m}. In
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addition, Dirksen & Mendelson (2018a) proposes a new
computationally-efficient convex recovery algorithm and
shows that under the new quantization procedure and the
sub-Gaussian assumption on ai, one can achieve the best
known statistical rate1 m = Õ(k log d/ε4) estimating any
k sparse θ0 ∈ Rd within radius R uniformly up to error ε
with high probability. Dirksen & Mendelson (2018b) fur-
ther shows that the same algorithm can achieve the rate
m = Õ(k log d/ε2) for vectors ai sampled from a specific
circulant matrix. Without computation tractability, Jacques
et al. (2013); Plan & Vershynin (2013); Dirksen & Mendel-
son (2018a) also show that one can achieve the near-optimal
rate solving a non-convex constrained program with Gaus-
sian and sub-Gaussian sensing vectors, respectively. It is not
known though if the optimal rate is achievable via computa-
tionally tractable algorithms, not to mention more general
measurements than Gaussian/sub-Gaussian vectors.

It is also worth emphasizing that the aforementioned works
Plan & Vershynin (2013); Xu & Jacques (2018); Dirksen
& Mendelson (2018a;b) obtain uniform recovery results
which hold with high probability for all k sparse θ0 ∈ Rd
within radius R. The ability of performing uniform recov-
ery potentially allows θ0 to be adversarially chosen with
the knowledge of the algorithm. It is a characterization of
“robustness” not inherited in the non-uniform recovery re-
sults (Plan & Vershynin, 2013; Zhang et al., 2014; Goldstein
et al., 2018; Thrampoulidis & Rawat, 2018), which provide
guarantees recovering an arbitrary but fixed sparse vector
θ0. However, with the better result comes the greater techni-
cal difficulty unique to one-bit compressed sensing known
as the random hyperplane tessellation problem. Simply put,
uniform recoverability is, in some sense, equivalent to the
possibility of constructing a binary embedding of a sparse
set into the Euclidean space via random hyperplanes. See
Plan & Vershynin (2014); Dirksen & Mendelson (2018a) .

1.2. Generative Models and Compressed Sensing

Deep generative models have been applied to a variety of
modern machine learning areas. In this work, we focus
on using deep generative models to solve inverse problems,
which has find extensive empirical successes in image recon-
structions such as super-resolution (Sønderby et al., 2016;
Ledig et al., 2017), image impainting (Yeh et al., 2017)
and medical imaging (Hammernik et al., 2018; Yang et al.,
2018). In particular, these generative model based methods
have been shown to produce comparable results to the clas-
sical sparsity based methods with much fewer (sometimes
5-10x fewer) measurements, which will greatly benefit ap-
plication areas such as magnetic resonance imaging (MRI)
and computed tomography (CT), where the measurements
are usually quite expensive to obtain. In contrast to widely

1In this paper, we use Õ(·) to hide the logarithm factors.

recognized empirical results, theoretical understanding of
generative models remains limited.

In a recent work, Bora et al. (2017) considers a linear model
y = AG(x0) + η, where A is a Gaussian measurement ma-
trix, η is a bounded noise term and G(·) is an L-Lipschitz
generative model. By showing that the Gaussian measure-
ment matrix satisfies a restricted eigenvalue condition (REC)
over the range of G(·), the authors prove the L2 empirical
risk minimizer

x̂ ∈ arg min
x∈Rk

‖AG(x)− y‖22 (1)

satisfies an estimation error bound ‖η‖2 + ε when the
number of samples is of order O(k log(L/ε)/ε2). They
further show that the log(1/ε) term in the error bound
can be removed when G(·) is a multilayer ReLU net-
work. In addition, Hand & Voroninski (2018); Huang et al.
(2018) consider the same linear model with the aforemen-
tioned L2 empirical risk minimizer and an n-layer ReLU
network G(·). They show when the noise in the linear
model is small enough, the measurement matrix satisfies
range restricted concentration, which is stronger than REC,
m ≥ O(kn log d poly(ε−1))2, and suitable conditions on
the weights of the ReLU function hold, the L2 empirical
risk enjoys a favorable landscape. Specifically, there is no
spurious local stationary point outside of small neighbor-
hoods of radius O(ε1/4) around the true representation x0
and its negative multiple, and with further assumptions, the
point x̂ is guaranteed to be located around x0 instead of its
negative multiple. Moreover, Liu & Scarlett (2019); Kamath
et al. (2019) study sample complexity lower bounds for the
generative compressed sensing model as (1).

More recently, generative models have been applied to sce-
narios beyond linear models with theoretical guarantees.
Wei et al. (2019) considers a non-linear recovery using a
generative model, where the link function is assumed to be
differentiable and the recovery guarantee is non-uniform.
Hand & Joshi (2019) studies the landscape of L2 empirical
risk for blind demodulation problem with an n-layer ReLU
generative prior. Using the same prior, Hand et al. (2018)
analyzes the landscape of the amplitude flow risk objective
for phase retrieval. Furthermore, Aubin et al. (2019) investi-
gates the spiked matrix model using generative priors with
linear activations. Besides these studies, there is another line
of work investigating the problem of compressed sensing
via generative models by the approximate message passing
framework, e.g. Manoel et al. (2017); Pandit et al. (2020).

1.3. Summary of the Main Results

We introduce a new framework for robust dithered one-bit
compressed sensing where the structure of target vector θ0

2Here poly(ε−1) stands for polynomial dependency on ε−1.
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is represented via an n-layer ReLU network G : Rk → Rd,
i.e., θ0 = G(x0) for some x0 ∈ Rk and k � d. Building
upon this framework, we propose a new recovery algorithm
by solving an unconstrained ERM. We show this algorithm
enjoys the following favorable properties:

• Statistically, when taking measurements ai to be sub-
exponential random vectors, with high probability and
uniformly for any G(x0) ∈ G(Rk) ∩ Bd2(R), where
Bd2(R) is the ball of radius R > 0 centered at the ori-
gin, the solution G(x̂m) to the ERM recovers the true
vector G(x0) up to error ε when the number of sam-
ples m ≥ O(kn log4(ε−1)(log d + log(ε−1))/ε2). In
particular, our result does not require REC type assump-
tions adopted in previous analysis of generative signal
recovery works and at the same time weakens the known
sub-Gaussian assumption adopted in previous sparse one-
bit compressed sensing works. Moreover, we further
establish an information-theoretic lower bound for the
sample complexity. When the number of layers n is
small, we show that the proved statistical rate matches the
information-theoretic lower bound up to logarithm factors
on ε−1.

• Computationally, building upon the previous methods
guaranteeing uniform recovery, we show that solving the
ERM and approximate the true representation x0 ∈ Rk
can be tractable under further assumptions on ReLU net-
works. More specifically, we prove with high probability,
there always exists a descent direction outside of two
small neighborhoods around x0 and −ρnx0 with radius
O(ε1/4) respectively, where ρn > 0 is a factor depending
on n. This holds uniformly for any x0 ∈ Bk2(R′) with
R′ = (0.5 + ε)−n/2R, when the ReLU network satis-
fies a weight distribution condition with parameter ε > 0
and m ≥ O(kn log4(ε−1)(log d + log(ε−1))/ε2). Fur-
thermore, when ε is small enough, one guarantees that
the solution x̂m stays within the neighborhood around x0
rather than −ρnx0. Our result is achieved under quantiza-
tion errors and without assuming the REC type conditions,
thereby improving upon previously known computational
guarantees for ReLU generative signal recovery in linear
models with small noise.

From a technical perspective, our proof makes use of the
special piecewise linearity property of ReLU network. The
merits of such a property in the current scenario are two
folds: (1) It allows us to replace the generic chaining type
bounds commonly adopted in previous works, e.g. Dirksen
& Mendelson (2018a), by novel arguments that are “sub-
Gaussian free”. (2) From a hyperplane tessellation point
of view, we show that for a given accuracy level, a binary
embedding of G(Rk)∩Bd2(R) into Euclidean space is “eas-
ier” in that it requires less random hyperplanes than that

of a bounded k sparse set, e.g. Plan & Vershynin (2014);
Dirksen & Mendelson (2018a).

Notation. Throughout this paper, let Sd−1 and Bd2(r) be the
unit Euclidean sphere and the Euclidean ball of radius r cen-
tered at the origin in Rd, respectively. We also use B(x, r)
to denote the Euclidean ball of radius r centered at x ∈ Rk.
For a random variable X ∈ R, the Lp-norm (p ≥ 1) is
denoted as ‖X‖Lp = E[|X|p]1/p. The Olicz ψ1-norm is
denoted ‖X‖ψ1

:= supp≥1 p
−1‖X‖Lp . We say a random

variable is sub-exponential if its ψ1-norm is bounded. A
random vector x ∈ Rd is sub-exponential if there exists a
a constant C > 0 such that supt∈Sd−1 ‖〈x, t〉‖ψ1 ≤ C. We
use ‖x‖ψ1

to denote the minimal C such that this bound
holds. Furthermore, C,C ′, c, c1, c2, c3, c4, c5 denote abso-
lute constants, and their actual values can be different per
appearance. We let [n] denote the set {1, 2, . . . , n}. We
denote Ip and 0p×d as a p× p identity matrix and a p× d
all-zero matrix respectively.

2. Model
In this paper, we focus on one-bit recovery model in which
one observes quantized measurements of the following form

y = sign(〈a,G(x0)〉+ ξ + τ), (2)

where a ∈ Rd is a random measurement vector, ξ ∈ R is a
random pre-quantization noise with an unknown distribu-
tion, τ is a random quantization threshold (i.e., dithering
noise) which one can choose, and x0 ∈ Rk is the unknown
representation to be recovered. We are interested the high-
dimensional scenario where the dimension of the represen-
tation space k is potentially much less than the ambient
dimension d. The function G : Rk → Rd is a fixed ReLU
neural network of the form:

G(x) = σ ◦ (Wnσ ◦ (Wn−1 · · ·σ ◦ (W1x))), (3)

where σ◦(·) denotes the entry-wise application of the ReLU
activation function σ(·) = max{·, 0} on a vector. We con-
sider a scenario where the number of layers n is smaller than
d and the weight matrix of the i-th layer is Wi ∈ Rdi×di−1

with dn = d and di ≤ d, ∀i ∈ [n]. Throughout the paper,
we assume that G(x0) is bounded, i.e. there exists an R ≥ 1
such that ‖G(x0)‖2 ≤ R, and we take τ ∼ Unif[−λ,+λ],
i.e. a uniform distribution bounded by a chosen parameter
λ > 0. Let {(ai, yi)}mi=1 be i.i.d. copies of (a, y). Our
goal is to compute an estimator G(x̂m) of G(x0) such that
‖G(x̂m)−G(x0)‖2 is small.

We propose to solve the following ERM for estimator x̂m:

arg min
x∈Rk

{
L(x) := ‖G(x)‖22 −

2λ

m

m∑
i=1

yi〈ai, G(x)〉
}
, (4)
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where yi = sign(〈ai, G(x0)〉+ξi+τi). It is worth mention-
ing that, in general, there is no guarantee that the minimizer
of L(x) is unique. Nevertheless, in Sections §3.1 and §3.3,
we will show that any solution x̂m to this problem must
satisfy the desired statistical guarantee and stay inside small
neighborhoods around the true signal x0 and its negative
multiple with high probability.

3. Main Results
In this section, we establish our main theorems regarding
statistical recovery guarantee of G(x0) and the associated
information-theoretic lower bound in Sections §3.1 and §3.2.
The global landscape analysis of the empirical risk L(x) is
presented in Section §3.3.

3.1. Statistical Guarantee

We start by presenting the statistical guarantee of using
ReLU network for one-bit compressed sensing. Our statis-
tical guarantee relies on the following assumption on the
measurement vector and noise.

Assumption 3.1. The measurement vector a ∈ Rd is mean
0, isotropic and sub-exponential. The noise ξ is also a
sub-exponential random variable.

Under this assumption, we have the following main statisti-
cal performance theorem.

Theorem 3.2. Suppose Assumption 3.1 holds and consider
any ε ∈ (0, 1). SetCa,ξ,R = max{c1(R‖a‖ψ1

+‖ξ‖ψ1
), 1},

λ ≥ 4Ca,ξ,R · log(64Ca,ξ,R · ε−1), and

m ≥ c2‖a‖2ψ1
λ2 log2(λm)

[
kn log(ed)

+ k log(2R) + k logm+ u
]
/ε2.

(5)

Then, with probability at least 1 − c3 exp(−u), ∀u ≥ 0,
any solution x̂m to (4) satisfies

‖G(x̂m)−G(x0)‖2 ≤ ε

for all x0 such that ‖G(x0)‖2 ≤ R, where c1, c2, c3 ≥ 1
are absolute constants.

Remark 3.3 (Sample Complexity). One can verify that
the sample complexity enforced by (5) holds when m ≥
C log4(Ca,ξ,R ·ε−1)(kn log(ed)+k log(2R)+k log(ε−1)+
u)/ε2, where C is a large enough absolute constant. This
gives the O(kn log4(ε−1)(log d + log(ε−1))/ε2) sample
complexity. In particular, when the number of layers n is
small, our result meets the optimal rate of sparse recovery
(up to a logarithm factor) and demonstrate the effective-
ness of recovery via generative models theoretically. The
dependence on the number of layers n results from the fact
that our bound counts the number of linear pieces split by
the ReLU generative network (see Lemma B.2 for details).

Measuring certain complexities of a fixed neural network
via counting linear pieces arises in several recent works
(e.g. Lei et al. (2018)), and the question whether or not the
linear dependence on n is tight warrants further studies.

Note that our result is a uniform recovery result in the sense
that the bound ‖G(x̂m) − G(x0)‖2 ≤ ε holds with high
probability uniformly for any target x0 ∈ Rk such that
‖G(x0)‖2 ≤ R. This should be distinguished from known
bounds (Plan & Vershynin, 2013; Zhang et al., 2014; Gold-
stein et al., 2018; Thrampoulidis & Rawat, 2018) on sparse
one-bit sensing which hold only for a fixed sparse vector.
The boundedness of G(x0) is only assumed for theoretical
purpose, which could be removed for practice.

Moreover, apart from the ReLU network, the proof of this
theorem can be extended to other networks possessing the
piecewise linearity property. Whether the analysis can be
applied to networks with a wider class of nonlinear acti-
vation functions remains to be further studied. The proof
sketch is presented in Section §4.2 with more proof details
in Supplement §C.

3.2. Information-Theoretic Lower Bound

In this section, we show that when the network is shallow,
i.e., n is small, for any k and d, there exists a ReLU network
of the form (3) such that the above rate in Theorem 3.2 is
optimal up to some logarithm factors. More specifically, we
have the following theorem.

Theorem 3.4. For any positive k and d large enough such
that k � d with k ≤ d/4, there exists a generative network
G of the form (3) with a k + 1 dimensional input, depth
n = 3 such that for the linear model before quantization:
y̌ = 〈a, θ0〉+ξ, where θ0 ∈ G(Rk+1)∩Bd2(1), ξ ∼ N (0, 1),
a ∼ N (0, Id) and m ≥ c1k log(d/k), we have

inf
θ̂

sup
θ0∈G(Rk+1)∩Bd2(1)

E‖θ̂ − θ0‖2 ≥ c2

√
k log(d/k)

m
, (6)

where c1, c2 > 0 are absolute constants and the infimum
is taken over all estimators θ̂ generated by all possible
algorithms depending only on m i.i.d. copies of (a, y̌).

This theorem gives a lower bound of sample complexity
over the set of all algorithms Ã recovering θ0 from the
noisy linear model y̌ = 〈a, θ0〉+ ξ by observing (ai, y̌i)

m
i=1.

It gets connected to the one-bit dithered observations as
follows: We consider a subset A ⊆ Ã of algorithms, which
adds dithering noise τi and then uses quantized observations
(ai, yi)

m
i=1 to recover θ0, where yi = sign(y̌i + τi). The

corresponding estimators generated by any algorithm in
A will also satisfy (6). Thefore, we have the following
corollary of Theorem 3.4, which gives the lower bound of
sample complexity for one-bit recovery via ReLU network.
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Corollary 3.5. For any positive k and d large enough such
that k � d with k ≤ d/4, there exists a generative network
G of the form (3) with a k+ 1 dimensional input, depth n =
3 such that for the quantizd linear model: y = sign(〈a, θ0〉+
ξ + τ), where θ0 ∈ G(Rk+1) ∩ Bd2(1), ξ ∼ N (0, 1), a ∼
N (0, Id) and m ≥ c1k log(d/k), we have

inf
θ̂

sup
θ0∈G(Rk+1)∩Bd2(1)

E‖θ̂ − θ0‖2 ≥ c2

√
k log(d/k)

m
,

where c1, c2 > 0 are absolute constants and the infimum is
taken over all estimators θ̂ generated by all possible algo-
rithms depending on m i.i.d. copies (ai, yi)

m
i=1 of (a, y).

Remark 3.6 (Lower Bound). This corollary indicates that
the sample complexity recovering θ0 within error ε is at
least Ω

(
k log(d/k)/ε2

)
. Thus, when the ReLU network

is shallow (the depth n is small) and k � d, the sample
complexity we have obtained in Theorem 3.2 and Remark
3.3 is near-optimal up to logarithm factors of ε−1 and k.

The proof is inspired by an observation in Liu & Scarlett
(2019) that for a specifically chosen ReLU network (with
offsets), the linear recovery problem considered here is
equivalent to a group sparse recovery problem. The main
difference here, though, are two folds: first, we need to
tackle the scenario where the range of the generative net-
work is restricted to a unit ball; second, our ReLU network
(3) has no offset. The proof is postponed in Section §4.2
with more proof details in Supplement §C.

3.3. Global Landscape Analysis

In this section, we present the theoretical properties of the
global landscape of the proposed empirical risk L(x) in (4).
We start by introducing some notations used in the rest of
this paper. For any fixed x, we defineW+,x := diag(Wx >
0)W , where diag(Wx > 0) is a diagonal matrix whose i-
th diagonal entry is 1 if the product of the i-th row of W
and x is positive, and 0 otherwise. Thus, W+,x retains the
rows of W which has a positive product with x, and sets
other rows to be all zeros. We further define Wi,+,x :=
diag(WiWi−1,+,x · · ·W1,+,xx > 0)Wi recursively, where
only active rows ofWi are kept, such that the ReLU network
G(x) defined in (3) can be equivalently rewritten asG(x) =
(Πn

i=1Wi,+,x)x := Wn,+,xWn−1,+,x · · ·W1,+,xx. Next,
we introduce the Weight Distribution Condition, which is
widely used in recent works to analyze the landscape of
different empirical risk (Hand & Voroninski, 2018; Hand
et al., 2018; Huang et al., 2018).

Definition 3.7 (Weight Distribution Condition (WDC)). A
matrix W satisfies the Weight Distribution Condition with
εwdc > 0 if for any nonzero vectors x, z ∈ Rp,∥∥W>+,xW+,z −Qx,z

∥∥
2
≤ εwdc,

where Qx,z := π−∠(x,z)
2π Ip + sin∠(x,z)

2π Mx̂↔ẑ with Mx̂↔ẑ
being the matrix3 transforming x̂ to ẑ, ẑ to x̂, and ϑ to 0
for any ϑ ∈ span({x, z})⊥. Here we denote x̂ = x

‖x‖2 and
ẑ = z

‖z‖2 as normalized x and z.

Intuitively, the WDC characterizes the invertibility of the
ReLU network in the sense that the output of each layer of
the ReLU network nearly preserves the angle of any two
input vectors. As is shown in Hand & Voroninski (2018), for
any arbitrarily small εwdc > 0, if the network is sufficiently
expansive at each layer, namely di ≥ cdi−1 log di−1 for all
i ∈ [n] with di being polynomial on ε−1wdc, and entries of Wi

are i.i.d. N (0, 1/di), then Wi ∈ Rdi×di−1 for all i ∈ [n]
satisfies WDC with constant εwdc with high probability. In
particular, it does not require Wi and Wj to be independent
for i 6= j. The question whether WDC is necessary for ana-
lyzing the computational aspect of the generative network
remains open and warrants further studies.

Next, we present the Theorems 3.8 and 3.10. We denote the
directional derivative along the direction of the non-zero vec-
tor z as DzL(x) = limt→0+

L(x+tẑ)−L(x)
t with ẑ = z

‖z‖2 .
Specifically, DzL(x) equals 〈∇L(x), ẑ 〉 if L(x) is differ-
entiable at x and otherwise equals limN→+∞〈∇L(xN ), ẑ 〉.
Here {xN}N≥0 is a sequence such that xN → x and
L(x) is differentiable at any xN . The existence of
such a sequence is guaranteed by the piecewise linear-
ity of G(x). Particularly, the gradient of L(x) is com-
puted as ∇L(x) = 2(Πn

j=1Wj,+,x)>(Πn
j=1Wj,+,x)x −

2λ
m

∑m
i=1 yi(Π

n
j=1Wj,+,x)>ai.

Theorem 3.8. Suppose that G(·) is a ReLU network with
weights Wi satisfying WDC with εwdc for all i ∈ [n] where
n > 1. Let vx = limxN→x∇L(xN ) where {xN} is the
sequence such that ∇L(xN ) exists for all xN (and vx =
∇L(x) if L(x) is differentiable at x). If εwdc sastisfies
c1n

8ε
1/4
wdc ≤ 1, by setting λ ≥ 4Ca,ξ,R ·log(64Ca,ξ,R ·ε−1wdc)

and m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) +

k logm+ u)/ε2wdc, then with probability 1− c3 exp(−u),
for any nonzero x0 satisfying ‖x0‖2 ≤ R(1/2 + εwdc)

−n/2,
the directional derivatives satisfy

1. If ‖x0‖2 > δ̌, then

D−vxL(x) < 0, ∀x /∈ B(x0, δ1) ∪ B(−ρnx0, δ2) ∪ {0},
DwL(0) < 0, ∀w 6= 0.

2. If ‖x0‖2 ≤ δ̌, then

D−vxL(x) < 0, ∀x /∈ B(x0, δ1) ∪ B(−ρnx0, δ2) ∪ B(0, δ̌),

where we have δ̌ = 2n/2ε
1/2
wdc, δ1 = c4n

3ε
1/4
wdc‖x0‖2, δ2 =

c5n
14ε

1/4
wdc‖x0‖2, and 0 < ρn ≤ 1 with ρn → 1 as n→∞.

Remark 3.9 (Interpretation of Theorem 3.8). Note that
in the above theorem, Case 1 indicates that the when the

3The detailed definition of Mx̂↔ẑ is shown in Supplement §A.
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magnitude of the true representation ‖x0‖22 is larger than
δ̌2 = O(εwdc) (signal x0 is strong), the global minimum
lies in small neighborhoods around x0 and its scalar multi-
ple −ρnx0, while for any point outside the neighborhoods
of x0 and −ρnx0, one can always find a direction with a
negative directional derivative. Note that x = 0 is a local
maximum due to DwL(0) < 0 along any non-zero direc-
tions w. One the other hand, Case 2 implies that when
‖x0‖22 is smaller than δ̌2, the global minimum lies in the
neighborhood around 0 (and thus around x0). We will see
in Theorem 3.10 that one can further pin down the global
minimum around the true x0 for Case 1.

The next theorem shows that in Case 1 of Theorem 3.8, un-
der certain conditions, the true global minimum lies around
the true representation x0 instead of its negative multiple.
Theorem 3.10. Suppose that G(·) is a ReLU network with
wights Wi satisfying WDC with error εwdc for all i ∈ [n]

where n > 1. Assume that c1n3ε
1/4
wdc ≤ 1 , and x0 is any

nonzero vector satisfying ‖x0‖2 ≤ R(1/2 + εwdc)
−n/2.

Then, setting λ ≥ 4Ca,ξ,R · log(64Ca,ξ,R · ε−1wdc) and m ≥
c2‖a‖2ψ1

λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+

u)/ε2wdc, with probability 1−2c3 exp(−u), for any x0 such
that ‖x0‖2 ≥ δ̌ = 2n/2ε

1/2
wdc, the risk L(·) satisfies

L(x) < L(z), ∀x ∈ B(ϕx0, δ3) and ∀z ∈ B(−ζx0, δ3),

where ϕ, ζ are any scalars in [ρn, 1] and δ3 = c4n
−5‖x0‖2.

Particularly, we have that the radius δ3 < ρn‖x0‖2,∀n > 1,
such that 0 /∈ B(ϕx0, δ3) and 0 /∈ B(−ζx0, δ3).
Remark 3.11 (Interpretation of Theorem 3.10). The signifi-
cance of Theorem 3.10 are two folds: first, it shows that the
value of the empirical risk L(x) is always smaller around x0
compared to its negative multiple −ρnx0; second, when the
network is sufficiently expansive such that εwdc is small, i.e.
cn19ε

1/4
wdc ≤ 1, along with Case 1 in Theorem 3.8, we have

B(x0, δ1) ⊆ B(ϕx0, δ3) and B(−ρnx0, δ2) ⊆ B(−ζx0, δ3)
for some ϕ and ζ , so that one can guarantee that the global
minimum of L(x) stays around x0. Since we do not focus on
optimizing the order of n in our results, further improvement
of such a dependency will be one of our future works.

For better understanding of the landscape analyzed in Theo-
rem 3.8 and Theorem 3.10, we present an illustration of the
landscape via a simulation in Supplement §A.

3.4. Connections with Invertibility of Neural Network

As a straightforward corollary to Theorems 3.8 and 3.10, we
obtain the approximate invertibility of ReLU network under
noisy quantized measurements. Specifically, previous re-
sults (Hand & Voroninski, 2018; Gilbert et al., 2017; Arora
et al., 2015) show that under proper assumptions, one can in-
vert the neural network (NN) and approximate x0 by observ-
ing the outcome G(x0) and solving argminx∈Rd ‖G(x)−

G(x0)‖2. Here, we consider a generalized version of the
previous setting in the sense that instead of observing the
full G(x0), we only observe the randomly probed and
quantized information λ

m

∑m
i=1 sign(〈ai, G(x0)〉 + τi)ai.

Theorems 3.8 and 3.10 essentially show that by solving
following minimization problem: argminx∈Rk

∥∥G(x) −
λ
m

∑m
i=1 sign(〈ai, G(x0)〉+ τ)ai

∥∥
2
, one can still invert the

NN and approximate the true representation x0.

On the other hand, without this random sensing vector ai,
it is not always possible to approximate x0 via directly
quantized measurements sign([G(x0)]i + τi),∀i ∈ [d]. A
simple example would be a G(x0) which is exactly sparse
(e.g. G(x0) = σ ◦ ([Ik×k 0k×(d−k)]

>x0)) and x0 is entry-
wise positive. Then, G(x0) corresponds to a vector with
first k entries being x0 and other entries 0. In this case,
the observations sign([G(x0)]i + τi),∀i ∈ [d], are just
sign(x0,i + τi),∀i ∈ [k], and 0 otherwise. It is then ob-
vious to see that any estimation procedure would incur a
constant error estimating x0 regardless of the choices τi.

4. Proofs of Main Results
4.1. Proof of Theorem 3.2

Consider the excessive risk L(x)− L(x0) for any x ∈ Rk.
Our goal is to show that under the conditions that m is
sufficiently large and λ is set properly, with high probability,
for any x ∈ Rk and any x0 ∈ Rk satisfying ‖G(x0)‖2 ≤ R,
if ‖G(x)−G(x0)‖2 > ε, then L(x)−L(x0) > 0 holds. By
proving this claim, we can get that for x̂m, i.e. the solution to
(4), satisfying L(x̂m) ≤ L(x0), then ‖G(x̂m)−G(x0)‖2 ≤
ε holds with high probability.

Recall that {(yi, ai)}mi=1 arem i.i.d. copies of (y, a) defined
in (2). For abbreviation, across this section, we let

∆G
x,x0

:= G(x)−G(x0). (7)

Then, we have the following decomposition

L(x)− L(x0)

= ‖G(x)‖22 − ‖G(x0)‖22 −
2λ

m

m∑
i=1

yi〈ai,∆G
x,x0
〉

= ‖G(x)‖22 − ‖G(x0)‖22 − 2λE
[
yi〈ai,∆G

x,x0
〉
]︸ ︷︷ ︸

(I)

− 2λ

m

m∑
i=1

(
yi〈ai,∆G

x,x0
〉 − E

[
yi〈ai,∆G

x,x0
〉
])

︸ ︷︷ ︸
(II)

.

The term (I) is the bias of the expected risk, and the term
(II) is the variance resulting from the empirical risk. Thus,
to see whether L(x)− L(x0) > 0 when ‖∆G

x,x0
‖2 > ε, we

focus on showing the lower bound of term (I) and the upper
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bound of term (II). For term (I), we give its lower bound
according to the following lemma.

Lemma 4.1. Letting Ka,ξ,R = ‖a‖ψ1
R + ‖ξ‖ψ1

, there
exists an absolute constant c1 > 0 such that∣∣E[yi〈ai,∆G

x,x0
〉
]
− λ−1〈G(x0),∆G

x,x0
〉
∣∣

≤
√
c1Ka,ξ,R(

√
2(λ+ 1) + 2)e−λ/(2Ka,ξ,R)‖∆G

x,x0
‖2.

Moreover, ∀ε ∈ (0, 1), if λ ≥ 4Ca,ξ,R · log(64Ca,ξ,R · ε−1)
with Ca,ξ,R = max{c1Ka,ξ,R, 1}, and ‖∆G

x,x0
‖2 > ε, then

‖G(x)‖22−‖G(x0)‖22−2λE
[
yi
〈
ai,∆

G
x,x0

〉]
≥ 1

2
‖∆G

x,x0
‖22.

It shows that term (I) ≥ 1
2‖∆

G
x,x0
‖22 when ‖∆G

x,x0
‖2 > ε.

This lemma is proved via the ingredient of dithering, i.e.,
artificially adding the noise smooths the sign(·) function.
To see this, for a fixed V , it holds that

Eτ [sign(V + τ)] =
V

λ
1{|V |≤λ} + 1{V >λ} − 1{V <−λ},

where the dithering noise τ ∼ Unif[−λ,+λ], and 1{·} is
an indicator function. As a consequence, E[yi|ai, ξi] =
(〈ai, G(x0)〉+ ξi)/λ given that |〈ai, G(x0)〉+ ξi| is not too
large, and then Lemma 4.1 follows. Detailed proof can be
found in Supplement §B.1.

Next, we present the analysis for showing the upper bound
of the term (II), which is the key to proving Theorem 3.2.
To give the upper bound of term (II), it suffices to bound the
following supremum over all x ∈ Rk and all x0 satisfying
x0 ∈ Rk, ‖G(x0)‖2 ≤ R:

sup

∣∣ 1
m

∑m
i=1 yi〈ai,∆G

x,x0
〉 − E

[
yi〈ai,∆G

x,x0
〉
]∣∣

‖∆G
x,x0
‖2

. (8)

Recall that yi = sign(〈ai, G(x0)〉 + ξi + τi). By sym-
metrization inequality (Lemma B.7 in the supplement), the
following lemma readily implies the similar bound for (8).

Lemma 4.2. Suppose Assumption 3.1 holds and the num-
ber of samples m ≥ c2‖a‖2ψ1

λ2 log2(λm)[kn log(ed) +

k log(2R) + k logm+ u]/ε2 for some absolute constant c2
large enough, then, with probability at least 1− c exp(−u),

sup
x0∈Rk, ‖G(x0)‖2≤R,x∈Rk

∣∣ 1
m

∑m
i=1 εiyi〈ai,∆G

x,x0
〉
∣∣

‖∆G
x,x0
‖2

≤ ε

16λ
,

where {εi}mi=1 are i.i.d. Rademacher random variables and
c > 0 is an absolute constant.

We provide a proof sketch for Lemma 4.2 as below. Details
can be found in Supplement §B.2. The main difficulty is
the simultaneous supremum over both x0 and x, whereas
in ordinary uniform concentration bounds (e.g. in non-
uniform recovery), one only requires to bound a supremum

over x. The idea is to consider a δ-covering net over the
set G(Rk) ∩ Bd2(R), namely N (G(Rk) ∩ Bd2(R), δ), and
bounding the supremum over each individual covering ball.
The δ value has to be carefully chosen so as to achieve the
following goals:

• We replace each sign(〈ai, G(x0)〉 + ξi + τi) by
sign(〈ai, G(v)〉 + ξi + τi), where G(v) is the nearest
point to G(x0) in the δ-net, and show that this supremum
when fixing G(v) is small. This is done via a “one-step
chaining” argument making use of the piecewise linearity
structure of G.

• We consider the gap of such a replacement, i.e., the sign
changes when replacing G(x0) by G(v), and show that
the fraction of sign changes, namely dH(G(x0), G(v)) :=
1
m

∑m
i=1 1{sign(〈ai,G(x0)〉+ξi+τi) 6=sign(〈ai,G(v)〉+ξi+τi)},

is uniformly small for all G(x0) and G(v) pairs. This
can be rephrased as the uniform hyperplane tessel-
lation problem: Given an accuracy level ε > 0, for
any two points θ1, θ2 ∈ G(Rk) ∩ Bd2(R) such that
‖θ1 − θ2‖2 ≤ δ, what is the condition on m and δ such
that dH(θ1, θ2) ≤ ‖θ1 − θ2‖2 + ε? We answer this
question with a tight sample bound on m in terms of ε by
counting the number of linear pieces in G(·) with a VC
dimension argument.

• We bound the error regarding a small portion of the in-
dices {1, 2, · · · ,m} for which the signs do change in the
previous replacement, and take a union bound over the
δ-net.

Proof of Theorem 3.2. By Lemma 4.2 and symmetrization
inequality (Lemma B.7 in the supplement), one readily gets
that (8) is bounded by ε/8λ with probability at least 1 −
c3 exp(−u). This further implies the following bound

2λ

m

m∑
i=1

(
yi〈ai,∆G

x,x0
〉−E

[
yi〈ai,∆G

x,x0
〉
])
≤ ε

4
‖∆G

x,x0
‖2.

Thus, when ‖∆G
x,x0
‖2 > ε, the left-hand side of the above

inequality is further bounded by ‖∆G
x,x0
‖22/4. Combining

with Lemma 4.1, we finally obtain L(x)− L(x0) = (I)−
(II) ≥ ‖∆G

x,x0
‖22/4 > 0, if ‖∆G

x,x0
‖2 > ε. Note that with

high probability, this inequality holds for any x ∈ Rk and
x0 ∈ Rk satisfying ‖G(x0)‖2 ≤ R. This further implies
‖G(x̂m)−G(x0)‖2 ≤ ε, which finishes the proof.

4.2. Proof of Theorem 3.4

The key to proving Theorem 3.4 is to build a connection
between our problem and the sparse recovery problem. Then
we can further analyze the lower bound by employing tools
from the area of sparse recovery. The detailed proofs for
this subsection are presented in Supplement §C.
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Definition 4.3. A vector v ∈ Rd is k-group sparse if, when
dividing v into k blocks of sub-vectors of size d/k,4 each
block has exactly one non-zero entry.

We establish the following proposition to build a connection
between the ReLU network and the group sparse vector.
Proposition 4.4. Any nonnegative k-group sparse vector in
Bd2(1) can be generated by a ReLU network of the form (3)
with a k + 1 dimensional input and depth n = 3.

The idea is to map each of the first k input entries into one
block in Rd of length d/k respectively, and use the remain-
ing one entry to construct proper offsets. We construct this
mapping via a ReLU network with no offset as follows:

Consider a three-layer ReLU network, which has k + 1
dimensional input of the form: [x1, · · · , xk, z]> ∈ Rk+1.
The first hidden layer has the width of (k + 2d/k) whose
first k nodes outputs σ(xi), ∀i ∈ [k], and the next 2d/k
nodes output σ(r · z),∀r ∈ [2d/k], which become the
offset terms for the second layer. Then, with σ(xi) and
σ(r · z) from the first layer, the second hidden layer will
output the values of Υr(xi, z) = σ(σ(xi)− 2σ(r · z)) and
Υ′r(xi, z) = σ(σ(xi) − 2σ(r · z) − σ(z)), ∀i ∈ [k] and
∀r ∈ [d/k]. Finally, by constructing the third layer, we
have the following mapping: ∀i ∈ [k] and ∀r ∈ [d/k],
Γr(xi, z) := σ

(
Υr(xi, z)− 2Υ′r(xi, z)

)
.

Note that Γr(xi, z) fires only when xi ≥ 0, in which case
we have σ(xi) = xi. Letting z always equal to 1, we
can observe that {Γr(xi, 1)}d/kr=1 is a sequence of d/k non-
overlapping triangle functions on the positive real line with
width 2 and height 1. Therefore, the function Γr(xi, 1) can
generate the value of the r-th entry in the i-th block of a
nonnegative k-group sparse vector in Bd2(1).

The above proposition implies that the set of nonnegative
k-group sparse vectors in Bd2(1) is the subset of G(Rk+1)∩
Bd2(1) where G(·) is defined by the mapping Γ.
Lemma 4.5. Assume that θ0 ∈ K ⊆ Bd2(1) where K is a
set containing any k-group sparse vectors in Bd2(1), and K
satisfies that ∀v ∈ K then λv ∈ K, ∀λ ∈ [0, 1). Assume
that y̌ = 〈a, θ0〉+ ξ with ξ ∼ N (0, σ2) and a ∼ N (0, Id).
Then, there exist absolute constants c1, c2 > 0 such that any
estimator θ̂ which depends only on m observations of (a, y̌)
satisfies that when m ≥ c1k log(d/k), there is

sup
θ0∈K

E‖θ̂ − θ0‖2 ≥ c2

√
k log(d/k)

m
.

Then, we are ready to show the proof of Theorem 3.4.

Proof of Theorem 3.4. According to Proposition 4.4, let
G(·) be defined by the mapping Γ. One can verify that

4We assume WLOG that d/k is an integer.

G(λx) = λG(x), ∀λ ≥ 0, by the positive homogeneity of
ReLU network with no offsets. Letting K = G(Rk+1) ∩
Bd2(1) and then by Lemma 4.5, we can obtain Theorem 3.4,
which completes the proof.

4.3. Proof Outline of Theorem 3.8 and Theorem 3.10

The key to proving Theorems 3.8 and 3.10 lies in under-
standing the concentration of L(x) and ∇L(x). We prove
two critical lemmas, Lemmas D.1 and D.2 in Supplement
§D, to show that, with high probability, when λ and m are
sufficiently large, for any x, z and x0 such that |G(x0)| ≤ R,
the following holds∣∣∣∣〈 λ

m

m∑
i=1

yiai −G(x0), Hx(z)

〉∣∣∣∣ ≤ ε‖Hx(z)‖2, (9)

where Hx(z) :=
∏n
j=1Wj,+,xz and G(x) = Hx(x). In

particular, this replaces the range restricted isometry condi-
tion (RRIC) adopted in previous works (Hand & Voroninski,
2018).

Under the conditions of Theorems 3.8 and 3.10, the in-
equality (9) essentially implies λ/m

∑m
i=1 yi〈ai, Hx(z)〉 ≈

〈G(x0), Hx(z)〉,∀x, z. Therefore, by definition of L(x) in
(4), we can approximate∇L(x) and L(x) as follows:

〈∇L(x), z〉 ≈ 2〈G(x), Hx(z)〉 − 2〈G(x0), Hx(z)〉, (10)

L(x) ≈ ‖G(x0)‖22 − 2〈G(x0), G(x)〉. (11)

We give a sketch proof of Theorem 3.8 as follows. Please
see Supplement §D for proof details.

• We show that ∀x, z, 〈G(x), Hx(z)〉− 〈G(x0), Hx(z)〉 ≈
〈hx,x0 , z〉, where we define a certain approximation
function hx,x0

:= 2−nx − 2−n
[(∏n−1

i=0
π−%i
π

)
x0 +∑n−1

i=0
sin %i
π

(∏d−1
j=i+1

π−%j
π

)‖x0‖2
‖x‖2 x

]
with %i = g(%i−1),

%0 = ∠(x, x0), and g(%) := cos−1
(

(π−%) cos %+sin %
π

)
as

shown in Lemmas D.3 and D.4. Combining with (10), we
obtain 〈∇L(x), z〉 ≈ 2〈hx,x0

, z〉.

• With vx being defined in Theorem 3.8, the directional
derivative along the direction vx is approximated as
D−vxL(x)‖vx‖2 ≈ −4‖hx,x0‖22 following the previous
step. Particularly, ‖hx,x0‖2 being small implies x is close
to x0 or −ρnx0 by Lemma D.3 and ‖hx,x0‖2 gets small
as ‖x0‖2 approaches 0.

• We consider the error of approximating D−vxL(x)‖vx‖2
by−4‖hx,x0

‖22. When ‖x0‖2 is not small, and x 6= 0, one
can show the error is negligible compared to −4‖hx,x0

‖22,
so that by the previous step, one finishes the proof of Case
1 when x 6= 0. On the other hand, for Case 2, when
‖x0‖2 approaches 0, such an error is decaying slower
than −4‖hx,x0‖22 itself and eventually dominates it. As
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a consequence, one can only conclude that x̂m is around
the origin.

• For Case 1 when x = 0, we can show DwL(0) · ‖w‖2 ≤
|〈G(x0), HxN (w)〉 − λ/m

∑m
i=1 yi〈ai, HxN (w)〉| −

〈G(x0), HxN (w)〉 with xN → 0. By giving the upper
bound of the first term and the lower bound of the
second term according to (9) and Lemma D.4, we obtain
DwL(0) < 0,∀w 6= 0.

Theorem 3.10 is proved in Supplement §E. We have the
following proof sketch. We show by (11) that L(x) ≈
2〈hx,x0

, x〉 − ‖G(x)‖22. With such approximation, by Lem-
mas E.1, E.2 in the supplement, under certain conditions, we
have that if x and z are around x0 and −ρnx0 respectively,
L(x) < L(z) holds.

5. Conclusion
We consider the problem of one-bit compressed sensing
via ReLU generative networks, in which G : Rk → Rd
is an n-layer ReLU generative network with a low dimen-
sional representation x0 to G(x0). We propose to recover
the target G(x0) solving an unconstrained empirical risk
minimization problem. Under a weak sub-exponential mea-
surement assumption, we establish a joint statistical and
computational analysis. We prove that the ERM estima-
tor in this new framework achieves a statistical rate of
m = Õ(kn log d/ε2) recovering any G(x0) uniformly up
to an error ε. When the network is shallow, this rate matches
the information-theoretic lower bound up to logarithm fac-
tors on ε−1. Computationally, we prove that under proper
conditions on the network weights, the proposed empirical
risk has no stationary point outside of small neighborhoods
around the true representation x0 and its negative multi-
ple. Under further assumptions on weights, we show that
the global minimizer of the empirical risk stays within the
neighborhood around x0 rather than its negative multiple.
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