
Robust One-Bit Recovery via ReLU Generative Networks

Supplementary Material

A. Omitted Details
The matrix Mx̂↔ẑ in the definition of WDC (Definition 3.7) is defined as

Mx̂↔ẑ := U>

cos∠(x, z) sin∠(x, z) 0
sin∠(x, z) − cos∠(x, z) 0

0 0 0(p−2)×(p−2)

U,
where the matrix U denotes a rotation matrix such that Ux̂ = e1 and Uẑ = cos∠(x, z) · e1 + sin∠(x, z) · e2 with
e1 = [1, 0, · · · , 0]> and e2 = [0, 1, 0, · · · , 0]>. Moreover, if ∠(x, z) = 0 or ∠(x, z) = π, then we have Mx̂↔ẑ = x̂x̂> or
Mx̂↔ẑ = −x̂x̂> respectively.

To verify Theorems 3.8 and 3.10, we illustrate the landscape of L(x) in Figure 1. The simulation is based on a large sample
number m→ +∞, which intends to show the expectation of the risk L(x). We are more interested in Case 1 of Theorem
3.8, where x0 can be potentially recovered. By letting x0 = [1, 1]> which is sufficiently far away from the origin, Figure 1
shows that there are no stationary points outside the neighbors of x0 and its negative multiple and the directional derivatives
along any directions at the origin are negative, which matches the Case 1 of Theorem 3.8. In addition, the function values
at the neighbor of x0 is lower than that of its negative multiple, which therefore verifies the result in Theorem 3.10. The
landscape will further inspire us to design efficient algorithms to solve the ERM in (4).
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Figure 1. Illustration of landscape for L(x). We build a two-layer ReLU network G(·) with input x0 where x0 = [1, 1]>, Gaussian
weights W1 ∈ R64×2 and W2 ∈ R1024×64 such that k = 2 and d = 1024. The samples {(ai, yi)}mi=1 are generated via standard
Guassian vector ai and yi = sign(〈ai, G(x0)〉+ ξi + τi) with noise ξi ∼ N (0, 0.01), dithering τi ∼ Unif[−10, 10], and a large sample
number m→∞.

B. Proof of Theorem 3.2
In this section, we provide the proofs of the two key lemmas, i.e., Lemma 4.1 and Lemma 4.2 as well as other supporting
lemmas. The proof of Theorem 3.4 is immediately obtained by following Lemma 4.1 and Lemma 4.2 as shown in Section
§4.1.

B.1. Bias of the Expected Risk

We prove Lemma 4.1 in this subsection.
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Lemma B.1 (Lemma 4.1). There exists an absolute constant c1 > 0 such that the following holds:∣∣∣∣E[yi〈ai, G(x)−G(x0)〉]− 1

λ
〈G(x0), G(x)−G(x0)〉

∣∣∣∣
≤
√
c1(‖a‖ψ1R+ ‖ξ‖ψ1)(

√
2(λ+ 1) + 2)e−λ/2(‖a‖ψ1

R+‖ξ‖ψ1
)‖G(x)−G(x0)‖2.

Furthermore, for any ε ∈ (0, 1), if λ ≥ 4Ca,ξ,R · log(64Ca,ξ,R · ε−1) where Ca,ξ,R = max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}, and
‖G(x)−G(x0)‖2 > ε, then, we have

‖G(x)‖22 − ‖G(x0)‖22 − 2λE[yi〈ai, G(x)−G(x0)〉] ≥ 1

2
‖G(x)−G(x0)‖22.

Proof of Lemma 4.1. Recall that yi = sign(〈ai, G(x0)〉+ξi+τi). For simplicity of notations, we set Vi = 〈ai, G(x0)〉+ξi
and Zi = 〈ai, G(x)−G(x0)〉. Note first that due to the independence between Vi and τi, we have

E[sign(Vi + τi)|Vi] =
Vi
λ
1{|Vi|≤λ} + 1{Vi>λ} − 1{Vi<−λ}

=
Vi
λ
− Vi
λ
1{|Vi|>λ} + 1{Vi>λ} − 1{Vi<−λ}.

Thus, we have∣∣∣∣E[Zi sign(Vi + τi)]−
E[ZiVi]

λ

∣∣∣∣ =

∣∣∣∣−E[ZiViλ 1{|Vi|>λ}

]
+ E

[
Zi1{Vi>λ}

]
− E

[
Z1{Vi>λ}

]∣∣∣∣
≤
∣∣∣∣E[ZiViλ 1{|Vi|>λ}

]∣∣∣∣+ 2
∣∣E[Zi1{|Vi|>λ}]∣∣

≤
‖Zi‖L2 · ‖Vi1{|Vi|>λ}‖L2

λ
+ 2‖Zi‖L2

Pr(|Vi| > λ)1/2, (12)

where the last line follows from Cauchy-Schwarz inequality. Now we bound these terms respectively. First of all, by the
isotropic assumption of ai, we have

‖Zi‖L2
=
{
E
[
|〈ai, G(x)−G(x0)〉|2

]}1/2
= ‖G(x)−G(x0)‖2.

Next, we have

‖Vi1{|Vi|>λ}‖L2
= E

[
V 2
i 1{|Vi|>λ}

]1/2
=

(∫ ∞
λ

w2dP (w)

)1/2

=

(
2

∫ ∞
λ

wP (|Vi| > w)dw

)1/2

≤
(

2c1

∫ ∞
λ

we−w/‖〈ai,G(x0)〉+ξi‖ψ1dw

)1/2

≤
√

2c1(λ+ 1)‖〈ai, G(x0)〉+ ξi‖ψ1
e−λ/2‖〈ai,G(x0)〉+ξi‖ψ1 ,

where the second from the last inequality follows from sub-exponential assumption of 〈ai, G(x0)〉+ ξi and c1 > 0 is an
absolute constant. Note that

‖〈ai, G(x0)〉+ ξi‖ψ1
≤ ‖〈ai, G(x0)〉‖ψ1

+ ‖ξi‖ψ1
≤ ‖a‖ψ1

‖G(x0)‖2 + ‖ξ‖ψ1
≤ ‖a‖ψ1

R+ ‖ξ‖ψ1
,

where we use the assumption that ‖G(x0)‖2 ≤ R. Substituting this bound into the previous one gives

‖Vi1{|Vi|>λ}‖L2
≤
√

2c1(λ+ 1)(‖a‖ψ1
R+ ‖ξ‖ψ1

)e−λ/2(‖a‖ψ1
R+‖ξ‖ψ1

).

Furthermore,

Pr(|Vi| > λ)1/2 ≤
√
c1(‖a‖ψ1

R+ ‖ξ‖ψ1
)e−λ/2(‖a‖ψ1

R+‖ξ‖ψ1
).
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Overall, substituting the previous computations into (12), we obtain∣∣∣∣E[Zi sign(Vi + τi)]−
E[ZiVi]

λ

∣∣∣∣
≤
√
c1(‖a‖ψ1

R+ ‖ξ‖ψ1
)(
√

2(λ+ 1)/λ+ 2)e−λ/2(‖a‖ψ1
R+‖ξ‖ψ1

)‖G(x)−G(x0)‖2,

finishing the first part of the proof.

To prove the second part, we need to compute∣∣∣2λE[yi〈ai, G(x)−G(x0)〉]− 2〈G(x0), G(x)−G(x0)〉
∣∣∣ = 2

∣∣∣λE[Zi sign(Vi + τi)]− E[ZiVi]
∣∣∣.

Note that when ε < 1 and

λ ≥ 4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/ε).

One can check that

|λE[Zi sign(Vi + τi)]− E[ZiVi]|

≤
√
c1(‖a‖ψ1

R+ ‖ξ‖ψ1
)(
√

2(λ+ 1) + 2λ)e−λ/2(‖a‖ψ1
R+‖ξ‖ψ1

)‖G(x)−G(x0)‖2

≤ 1

4
ε‖G(x)−G(x0)‖2.

Thus, it follows

‖G(x)‖22 − ‖G(x0)‖22 − 2λE[yi〈ai, G(x)−G(x0)〉]

≥ ‖G(x)‖22 − ‖G(x0)‖22 − 2〈G(x0), G(x)−G(x0)〉 − 1

2
ε‖G(x)−G(x0)‖2

= ‖G(x)−G(x0)‖22 −
1

2
ε‖G(x)−G(x0)‖2.

Thus, when ‖G(x)−G(x0)‖2 > ε the second claim holds.

B.2. Analysis of Variances: Uniform Bounds of An Empirical Process

Our goal in this subsection is to prove Lemma 4.2. Note that one can equivalently write the {G(x0) : ‖G(x0)‖2 ≤ R, x0 ∈
Rk} asG(Rk)∩Bd2(R), where Bd2(R) denotes the `2-ball of radiusR. The strategy of bounding this supremum is as follows:
Consider a δ-covering net over the set G(Rk) ∩ Bd2(R), namely N (G(Rk) ∩ Bd2(R), δ), and bounding the supremum over
each individual covering ball. The δ value will be decided later.

B.2.1. BOUNDING SUPREMUM UNDER FIXED SIGNS: A COVERING NET ARGUMENT

First of all, since for any point θ ∈ G(Rk) ∩ Bd2(R), there exists a v ∈ Rk such that θ = G(v), we use G(v) to denote any
point in the net N (G(Rk) ∩ Bd2(R), δ). We replace each sign(〈ai, G(x0)〉 + ξi + τi) by sign(〈ai, G(v)〉 + ξi + τi) and
have the following lemma regarding the supremum for each fixed G(v):
Lemma B.2. Let c, c1 > 0 be some absolute constants. For any u ≥ 0 and fixed G(v), the following holds with probability
at least 1− 2 exp(−u− c2kn log ed),

sup
x∈Rk, x0∈Rk

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(v)〉+ ξi + τi)〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

≤
√

8(u+ ckn log(ed))

m
+

4‖a‖ψ1
(u+ ckn log(ed))

m
.

Proof of Lemma B.2. First of all, since v is fixed and εi is independent of sign(〈ai, G(v)〉+ξi+τi), it follows the distribution
of εi is the same as the distribution of εi sign(〈ai, G(v)〉+ ξi+ τi). Thus, it is enough to work with the following supremum:

sup
x∈Rk, x0∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

.
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To this point, we will then use the piecewise linear structure of the ReLU function. Note that the ReLU network has n layers
with each layer having at most d nodes, where each layer of the network is a linear transformation followed by at most d
pointwise nonlinearities. Consider any node in the first layer, which can be written as max{〈w, x〉, 0} with a weight vector
w and an input vector x, splits the input space Rk into two disjoint pieces, namely P1 and P2, where for any input in P1, the
node is a linear mapping 〈w, x〉 and for any input in P2 is the other linear mapping 〈0, x〉.

Thus, each node in the first layer corresponds to a splitting hyperplane in Rk. We have the following claim on the number of
possible pieces split by d hyperplanes:

Claim 1: The maximum number of pieces when splitting Rk with d hyperplanes, denoted as C(d, k), is

C(d, k) =

(
d

0

)
+

(
d

1

)
+ · · ·+

(
d

k

)
.

The proof of this claim, which follows from, for example (Winder, 1966), is based on an induction argument on both d and
k and omitted here for brevity. Note that C(d, k) ≤ dk + 1. For the second layer, we can consider each piece after the first
layer, which is a subset of Rk and will then be further split into at most dk + 1 pieces. Thus, we will get at most (dk + 1)2

pieces after the second layer. Continuing this argument through all n layers and we have the input space Rk is split into at
most (dk + 1)n ≤ (2d)kn pieces, where within each piece the function G(·) is simply a linear transformation from Rk to
Rd.

Now, we consider any two pieces, namely P1, P2 ⊆ Rk, from the aforementioned collection of pieces, and aim at bounding
the following quantity:

sup
t1∈P1,t2∈P2

∣∣ 1
m

∑m
i=1 εi〈ai, G(t1)−G(t2)〉

∣∣
‖G(t1)−G(t2)‖2

.

By the previous argument, we know that within P1 and P2, the function G(·) can simply be represented by some fixed linear
maps W1 and W2, respectively. As a consequence, it suffices to bound

sup
t1∈P1,t2∈P2

∣∣ 1
m

∑m
i=1 εi〈ai,W1t1 −W2t2〉

∣∣
‖W1t1 −W2t2‖2

≤ sup
t1, t2∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai,W1t1 −W2t2〉

∣∣
‖W1t1 −W2t2‖2

≤ sup
t∈R2k

∣∣ 1
m

∑m
i=1 εi〈ai,W0t〉

∣∣
‖W0t‖2

,

where W0 := [W1, −W2], and the last inequality follows from concatenating t1 and t2 to form a vector t ∈ R2k and then
expanding the set to take supremum over t ∈ R2k. Let E2k be the subspace in Rd spanned by the 2k columns of W0, then,
the above supremum can be rewritten as

Em := sup
b∈E2k∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ .
To bound the supremum, we consider a 1/2-covering net of the set E2k ∩ Sd−1, namely, N (E2k ∩ Sd−1, 1/2). A simple
volume argument shows that the cardinality |N (E2k ∩ Sd−1, 1/2)| ≤ 32k.

By Bernstein’s inequality (Lemma B.6), we have for any fixed b ∈ N (E2k ∩ Sd−1, 1/2),

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≥
√

2u′

m
+
‖a‖ψ1u

′

m

)
≤ 2e−u

′
.

Taking u′ = u+ ckn log(ed) for some c > 6, we have with probability at least 1− 2 exp(−u− ckn log(ed)),∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤
√

2(u+ ckn log(ed))

m
+
‖a‖ψ1

(u+ ckn log(ed))

m
.



Robust One-Bit Recovery via ReLU Generative Networks

Taking a union bound over all b ∈ N (E2k∩Sd−1, 1/2), we have with probability at least 1−2 exp(−u−ckn log(ed))·32k ≥
1− 2 exp(−u− c1kn log(ed)) for some absolute constant c1 > 2.

sup
b∈N (E2k∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤
√

2(u+ ckn log(ed))

m
+
‖a‖ψ1

(u+ ckn log(ed))

m
. (13)

Let PN (·) be the projection of any point in E2k ∩ Sd−1 onto N (E2k ∩ Sd−1, 1/2). we have

Em ≤ sup
b∈N (E2k∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣+ sup
b∈E2k∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b− PN (b)〉

∣∣∣∣∣
≤ sup
b∈N (E2k∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣+
1

2
sup

b∈E2k∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b− PN (b)〉
‖b− PN (b)‖2

∣∣∣∣∣
≤ sup
b∈N (E2k∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣+
1

2
Em, (14)

where the second inequality follows from the homogeneity of the set E2k ∩ Sd−1 under constant scaling. Combining (13)
and (14) gives

sup
b∈E2k∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤ 2

√
2(u+ ckn log(ed))

m
+

2‖a‖ψ1(u+ ckn log(ed))

m
.

Taking a further union bound over at most (2d)kn different pair of subspaces P1, P2 finishes the proof.

B.2.2. COUNTING THE SIGN DIFFERENCES: A VC-DIMENSION BOUND

In this section, we consider all possible sign changes replacing each sign(〈ai, G(x0)〉+ξi+τi) by sign(〈ai, G(v)〉+ξi+τi),
where we recall G(v) is a nearest point to G(x0) in N (G(Rk) ∩ Bd2(R), δ).

First of all, since τi ∼ Unif[−λ,+λ], for any η > 0, defining a new random variable Xi := 〈ai, G(v)〉+ ξi which is thus
independent of τi, for all i = 1, 2, · · · ,m, we have

Pr(|〈ai, G(v)〉+ ξi + τi| ≤ η) = Pr(−η ≤ Xi + τi ≤ η) ≤ η

λ
,

by computing the integral of the probability density functions of Xi and τi in −η ≤ Xi + τi ≤ η. Using Chernoff bound
(Lemma B.8), one has with probability at least 1− exp(−ηm/3λ),

m∑
i=1

1{|〈ai,G(v)〉+ξi+τi|≥η} ≥
(

1− 2η

λ

)
m. (15)

Next, we prove the following lemma:

Lemma B.3. Let η, δ > 0 be chosen parameters. For any u ≥ 0 and fixed G(v), the following holds with probability at
least 1− 2 exp(−u),

sup
x0∈Rk,‖G(x0)−G(v)‖2≤δ

m∑
i=1

1{|〈ai,G(x0)−G(v)〉|≥η} ≤ m · Pr(|〈ai, z〉| ≥ η/δ) + L
√

(kn log(ed) + u)m,

where z is any fixed vector in Bd2(1) and L > 1 is an absolute constant.

This lemma implies that the counting process {1{|〈ai,G(x0)−G(v)〉|≥η}}mi=1 enjoys a tight sub-Gaussian uniform concentration.
The proof relies on a book-keeping VC dimension argument.
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Proof of Lemma B.3. First of all, let T = G(Rk), and it suffices to bound the following supremum:

sup
t∈(T−T )∩Bd2(δ)

m∑
i=1

1{|〈ai,t〉|≥η}.

Let T be the set of all distinctive pieces split by G(·). By the same argument as that of Lemma B.2, the cardinality of T is
at most (dk + 1)n ≤ (2d)kn, and we have

sup
t∈(T−T )∩Bd2(δ)

m∑
i=1

1{|〈ai,t〉|≥η}

≤ sup
P1, P2∈T ,t∈(P1−P2)∩Bd2(δ)

m∑
i=1

1{|〈ai,t〉|≥η}

≤ sup
P1, P2∈T , t∈affine(P1−P2)∩Bd2(δ)

m∑
i=1

1{|〈ai,t〉|≥η}

= sup
P1, P2∈T , t∈affine(P1−P2)∩Bd2(1)

m∑
i=1

1{|〈ai,t〉|≥η/δ},

where affine(P1 − P2) denotes the affine subspace spanned by P1 − P2, which is of dimension at most 2k. To this point,
define am1 := {ai}mi=1, define the set

C := {t : t ∈ affine(P1 − P2) ∩ Bd2(1),P1, P2 ∈ T }, (16)

and define an empirical process

R(am1 , t) :=
1

m

m∑
i=1

(
1{|〈ai,t〉|≥η/δ} − E

[
1{|〈ai,t〉|≥η/δ}

])
.

Our goal is to bound
sup
t∈C
|R(am1 , t)|.

By symmetrization inequality (Lemma B.7) it suffices to bound

sup
t∈C

∣∣∣∣∣ 1

m

m∑
i=1

εi1{|〈ai,t〉|≥η/δ}

∣∣∣∣∣ ,
where {ε}mi=1 are i.i.d. Rademacher random variables. Define the set of indicator functions:

F := {1{|〈·,t〉|≥η/δ} : t ∈ C}.

By Hoeffding’s inequality, the stochastic process m−1/2
∑m
i=1 εi1{|〈ai,t〉|≥η/δ} parametrized by F when fixing am1 is a

sub-Gaussian process with respect to the empirical L2 metric:

‖f − g‖L2(µm) :=

√√√√ 1

m

m∑
i=1

(f(ai)− g(ai))2, ∀f, g ∈ F .

By Lemma B.9, one can easily derive the following bound:

E
[
sup
t∈C
|R(am1 , t)|

]
≤ C0√

m

∫ 2

0

√
log |N (ε, F , ‖ · ‖L2(µm))|dε, (17)

where N (ε, F , ‖ · ‖L2(µm)) is the ε-covering net of F under the empirical L2-metric. By Haussler’s inequality (Theorem
2.6.4 of (Wellner et al., 2013)),

|N (ε, F , ‖ · ‖L2(µm))| ≤ C1V (F)(4e)V (F)

(
1

ε

)2V (F)

,
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where V (F) is the VC dimension of the class F and C1 is an absolute constant. To compute V (F), note first that for any
fixed P1, P2 ∈ T and any fixed constant c, the VC dimension of the class of half-spaces defined as

H′ := {〈·, t〉 ≥ c : t ∈ affine(P1 − P2)}

is bounded by 2k. Thus, for any p points on Rk and the number of different subsets of these points picked byH′ is bounded
by (p+ 1)2k. Next, note that any element in the class

H := {|〈·, t〉| ≥ c : t ∈ affine(P1 − P2)}

is the intersection of two halfspaces inH′. Thus, the number of different subsets of p points picked byH is bounded by(
(p+ 1)2k

2

)
≤ e2(p+ 1)4k/4 ≤ 2(p+ 1)4k.

Taking into account that the class F is the union of at most (2d)2kn different classes of the form

{1{|〈·,t〉|≥η/δ} : t ∈ affine(P1 − P2)},

we arrive at the conclusion that the number of distinctive mappings in F from any p points in Rk to {0, 1}p is bounded by
2d2kn(p+ 1)4k. To get the VC dimension of F , we try to find the smallest p such that

2d2kn(p+ 1)4k < 2p.

A sufficient condition is to have 2kn log2(d) + 4k log2(p+ 1) + 1 < p, which holds when p > c0kn log(ed)− 1 for some
absolute constant c0 large enough. Thus, V (F) ≤ c0kn log(ed). Thus, it follows

log |N (ε, F , ‖ · ‖L2(µm))| ≤ logC1 + log V (F) + V (F) log(4e) + 2V (F) log(1/ε)

≤ c1kn log(ed)(log(1/ε) + 1),

for some absolute constant c1 > 0. Substituting this bound into (17), and we obtain

E
[
sup
t∈C
|R(am1 , t)|

]
≤ c2

√
kn log(ed)

m
,

for some absolute constant c2. Finally, by bounded difference inequality, we obtain with probability at least 1− 2e−u,

sup
t∈C
|R(am1 , t)| ≤ E

[
sup
t∈C
|R(am1 , t)|

]
+

√
u

m
≤ L

√
kn log(ed) + u

m
,

finishing the proof.

Combining Lemma B.3 and (15) we have the following bound on the number of sign differences:
Lemma B.4. Let u > 0 be any constant. Suppose m ≥ c2λ2(kn log(ed) + k log(2R) + u) for some absolute constant c2
large enough and λ ≥ 1. Define the following parameters:

δ =
η

‖a‖ψ1

log(c1λ/η), (18)

η = (λ+ ‖a‖ψ1)L

√
kn log(ed) + u′

m
, (19)

and u′ > 0 satisfying

u′ = u+ kn log(ed) + k log(2R) + Ck log

(
m

k log(ed) + u′

)
. (20)

We have with probability at least 1− exp(−cu)− 2 exp(−u),

sup
1

m

m∑
i=1

1{sign(〈ai,G(v)〉+ξi+τi)6=sign(〈ai,G(x0)〉+ξi+τi)} ≤
4η

λ
,

where the supremum is taken over x0 ∈ Rk, ‖G(x0) − G(v)‖2 ≤ δ,G(v) ∈ N (G(Rk) ∩ Bd2(R), δ) and c, c1, C, L > 0
are absolute constants.
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Proof of Lemma B.4. We compute Pr(|〈ai, z〉| ≥ η/δ). By the fact that 〈ai, z〉 is a sub-exponential random variable,

Pr(|〈ai, z〉| ≥ η/δ) ≤ c1 exp

(
− η

δ‖a‖ψ1

)
,

where c1 > 0 is an absolute constant. We choose δ according to (18), which implies

Pr(|〈ai, z〉| ≥ η/δ) ≤
η

λ
.

From Lemma B.3, we readily obtain with probability at least 1− 2 exp(−u′),

sup
x0∈Rk,‖G(x0)−G(v)‖2≤δ

m∑
i=1

1{|〈ai,G(x0)−G(v)〉|≥η} ≤

(
η

λ
+ L

√
kn log(ed) + u′

m

)
m. (21)

We will then take a further supremum over all G(v) ∈ N (G(Rk) ∩ Bd2(R), δ). Note that by a simple volume argument,
N (G(Rk) ∩ Bd2(R), δ) satisfies

log |N (G(Rk) ∩ Bd2(R), δ)| ≤ kn log(ed) + k log(2R/δ).

Choose η according to (19). Then, By the aforementioned choices of η and δ in (19) and (18), we obtain

log(1/δ) ≤ C log

(
m

k log(ed) + u′

)
,

where C is an absolute constant. Thus,

log |N (G(Rk) ∩ Bd2(R), δ)| ≤ kn log(ed) + k log(2R) + Ck log

(
m

k log(ed) + u′

)
. (22)

Finally, for any u > 0, take u′ so that it satisfies (20). By (21), we obtain that, with probability at least

1− 2 exp

(
−u− kn log(ed)− k log(2R)− Ck log

(
m

k log(ed) + u′

))
,

the following holds

sup
x0∈Rk,‖G(x0)−G(v)‖2≤δ

m∑
i=1

1{|〈ai,G(x0)−G(v)〉|≥η} ≤

(
η

λ
+ L

√
kn log(ed) + u′

m

)
m.

Taking a union bound over all G(v) ∈ N (G(Rk) ∩ Bd2(R), δ), we get with probability at least 1− 2 exp(−u),

sup
x0∈Rk,‖G(x0)−G(v)‖2≤δ,G(v)∈N (G(Rk)∩Bd2(R), δ)

m∑
i=1

1{|〈ai,G(x0)−G(v)〉|≥η} ≤

(
η

λ
+ L

√
kn log(ed) + u′

m

)
m.

Note that by definition of η in (19), L
√

(kn log(ed) + u′)/m ≤ η/λ, and this readily implies with probability at least
1− 2 exp(−u),

sup
x0∈Rk,‖G(x0)−G(v)‖2≤δ,G(v)∈N (G(Rk)∩Bd2(R), δ)

m∑
i=1

1{|〈ai,G(x0)−G(v)〉|≥η} ≤
2η

λ
m. (23)

Moreover, taking a union bound over all G(v) ∈ N (G(Rk) ∩ Bd2(R), δ) in (15), we have with probability at least

1− exp(log |N (G(Rk) ∩ Bd2(R), δ)| − ηm/3λ)

≥ 1− exp

(
kn log(ed) + k log(2R) + Ck log

(
m

k log(ed) + u′

)
− ηm/3λ

)
,
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one has

inf
G(v)∈N (G(Rk)∩Bd2(R), δ)

m∑
i=1

1{|〈ai,G(v)〉+ξi+τi|≥η} ≥ (1− 2η

λ
)m. (24)

Note that by assumption, we have m ≥ c2λ2(kn log(ed) + k log(2R) + u)/ε2 for some ε < 1 and some absolute constant
c2 large enough. Thus, it follows

ηm

3λ
=
L

3

√
(kn log(ed) + u′)m

≥L
3

√(
u+ kn log(ed) + k log(2R) + Ck log

m

kn log(ed) + u′

)
m

≥C ′
(
u+ kn log(ed) + k log(2R) +

√
km log

m

kn log(ed) + u′

)
≥C ′

(
u+ kn log(ed) + k log(2R) + k log

m

k log(ed) + u′

)
,

where C ′ is an absolute constant related to L, c2, C, and the last inequality follows from the assumption that m ≥
√
km ≥√

k logm for any m ≥ 1. Overall, when c2 is large enough so that C ′ > C, we have (24) holds with probability at least
1− exp(−C ′u). Overall, combining (23) and (24) we finish the proof.

B.2.3. PUTTING BOUNDS TOGETHER: PROOF OF LEMMA 4.2

Lemma B.5 (Lemma 4.2). Suppose Assumption 3.1 holds and

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2, (25)

for some absolute constant c2 large enough, then, with probability at least 1− c exp(−u),

sup
x0∈Rk, ‖G(x0)‖2≤R, x∈Rk

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(x0)〉+ ξi + τi)〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

≤ ε

16λ
,

where {εi}mi=1 are i.i.d. Rademacher random variables and c > 0 is an absolute constant.

Proof of Lemma 4.2. Let I be the set of indices such that sign(〈ai, G(v)〉 + ξi + τi) 6= sign(〈ai, G(x0)〉 + ξi + τi). By
Lemma B.4, we know that |I| ≤ 4η/λ. Now, we have with probability at least 1− exp(−cu)− 2 exp(−u),

sup
x0∈Rk, ‖G(x0)‖2≤R, x∈Rk

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(x0)〉+ ξi + τi)〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

≤ sup
x∈Rk, x0∈Rk,G(v)∈N (G(Rk)∩Bd2(R), δ)

∣∣ 1
m

∑m
i=1 εiy

v
i 〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

+ sup
x∈Rk,x0∈Rk,‖G(x0)−G(v)‖2≤δ,G(v)∈N (G(Rk)∩Bd2(R), δ)

∣∣ 1
m

∑m
i=1 εi(yi − yvi )〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

≤ sup
x∈Rk, x0∈Rk,G(v)∈N (G(Rk)∩Bd2(R), δ)

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(v)〉+ ξi + τi)〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2︸ ︷︷ ︸

(I)

+ sup
x∈Rk,x0∈Rk

max
|I|≤4η/λ

2

m

∑
i∈I

|〈ai, G(x)−G(x0〉|
‖G(x)−G(x0‖2︸ ︷︷ ︸

(II)

,

where, for simplicity, we let yvi := sign(〈ai, G(v)〉+ ξi + τi) be the sign function associated with G(v) in the net in the
first inequality, and the second inequality is according to Lemma B.4.
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For the rest of the proof, we will bound (I) and (II) respectively. To bound (I), take u in Lemma B.2 to be kn log(ed) +
k log(2R) + Ck logm + u, we have with probability at 1 − 2 exp(−c2kn log(ed) − k log(2R) − Ck logm − u), for a
fixed G(v), any x ∈ Rk, x0 ∈ Rk,∣∣ 1

m

∑m
i=1 εi sign(〈ai, G(v)〉+ ξi + τi)〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

≤
√

8(ckn log(ed) + k log(2R) + Ck logm+ u)

m
+

4‖a‖ψ1
(ckn log(ed) + k log(2R) + Ck logm+ u)

m
,

where c, c2, C > 0 are absolute constants. Take a further union bound over all G(v) ∈ N (G(Rk) ∩ Bd2(R), δ) with the net
size satisfying (22), we have with probability at least 1− 2 exp(−u),

(I) ≤
√

8(ckn log(ed) + k log(2R) + Ck logm+ u)

m
+

4‖a‖ψ1(ckn log(ed) + k log(2R) + Ck logm+ u)

m
. (26)

Next, we will bound the term (II). Let t = (G(x)−G(x0))/‖G(x)−G(x0)‖2 and it is enough to bound

sup
x0∈Rk,x0∈Rk

max
|I|≤4η/λ

1

m

∑
i∈I
|〈ai, t〉| − E[|〈ai, t〉|] + E[|〈ai, t〉|].

It is obvious that |〈ai, t〉| − E[|〈ai, t〉|] is also a sub-exponential random variable with sub-exponential norm bounded by
2‖a‖ψ1 , and E[|〈ai, t〉|] ≤ 1. Thus, by Bernstein’s inequality,

1

|I|
∑
i∈I
|〈ai, t〉| − E[|〈ai, t〉|] ≤

2
√
u2√
|I|

+
2‖a‖ψ1

u2
|I|

,

with probability at least 1− 2 exp(−u2). Thus,

1

m

∑
i∈I
|〈ai, t〉| − E[|〈ai, t〉|] ≤

1

m
(2
√
u2|I|+ 2‖a‖ψ1u2).

Here we take

u2 = C1 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + k log

m

kn log(ed) + u′

)1/2√
m,

where C1 is an absolute constant large enough and u′ satisfies (20). Using the fact that

|I| ≤ 4η

λ
≤ 2L

(
u+ 2kn log(ed) + k log(2R) + k log

m

kn log(ed) + u′

)1/2√
m,

we have with probability at least

1− 2 exp

(
−C1 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + k log

m

kn log(ed) + u′

)1/2√
m

)
,

the following holds:∣∣∣∣∣ 1

m

∑
i∈I
|〈ai, t〉| − E[|〈ai, t〉|]

∣∣∣∣∣
≤ C1‖a‖ψ1 log

( λm

kn log(ed) + u′

)√u+ 2kn log(ed) + k log(2R) + k log m
kn log(ed)+u′

m
.

(27)

To bound the maximum over |I| ≤ 4η/λ, we take a union bound over all
(

m
4ηm/λ

)
possibilities, where(

m

4ηm/λ

)
≤
(

em

4ηm/λ

)4ηm/λ

=

(
λ

η

)4ηm/λ

.
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Thus, it follows from the definition of η in terms of λ in Lemma B.4,

log

(
m

4ηm/λ

)
≤ 4ηm

λ
log

λ

η

≤ L
(
u+ 2kn log(ed) + k log(2R) + log

m

kn log(ed) + u′

)1/2
·
√
m log

( λm

kn log(ed) + u′

)
,

and when C1 > L, the union bound gives, with probability at least

1− 2 exp

(
−C2 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + log

m

kn log(ed) + u′

)1/2√
m

)
,

the quantity

max
|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I
|〈ai, t〉| − E[|〈ai, t〉|]

∣∣∣∣∣
is also bounded by the right hand side of (27) with a possibly different constant C1, where t = (G(x)−G(x0))/‖G(x)−
G(x0)‖2. Now, using the same trick as that of Lemma B.2, we obtain

sup
x∈Rk,x0∈Rk

max
|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I
|〈ai, t〉| − E[|〈ai, t〉|]

∣∣∣∣∣
is bounded by the right hand side of (27) with a possibly different constant C1 and with probability

1− 2 · 32k(2d)kn exp

(
−C2 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + log

m

kn log(ed) + u′

)1/2√
m

)
,

where C2 is another absolute constant. Note that by assumption in Theorem 3.2,

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

for some absolute constant c2 large enough. This implies

(II) ≤ 2C1‖a‖ψ1
log
( λm

kn log(ed) + u′

)√u+ 2kn log(ed) + k log(2R) + k log m
kn log(ed)+u′

m
,

with probability at least 1− c3 exp(−u), where c3 ≥ 1 is an absolute constant. Combining this bound with (26) and using
(25), we obtain with probability 1− c3 exp(−u)− exp(−cu)− 2 exp(−u),

sup
x0∈Rk, ‖G(x0)‖2≤R, x∈Rk

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(x0)〉+ ξi + τi)〈ai, G(x)−G(x0)〉

∣∣
‖G(x)−G(x0)‖2

≤ ε

16λ
.

This finishes the proof.

B.3. Useful Probability Bounds for Proving Theorem 3.2

We recall the following well-known concentration inequality.
Lemma B.6 (Bernstein’s inequality). Let X1, · · · , Xm be a sequence of independent centered random variables. Assume
that there exist positive constants f and D such that for all integers p ≥ 2

1

m

m∑
i=1

E[|Xi|p] ≤
p!

2
f2Dp−2,

then

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≥ f√
m

√
2u+

D

m
u

)
≤ 2 exp(−u).

In particular, ifX1, · · · , Xm are all sub-exponential random variables, then f andD can be chosen as f = 1
m

∑m
i=1 ‖Xi‖ψ1

and D = max
i=1...m

‖Xi‖ψ1 .
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The following version of Symmetrization inequality can be found, for example, in (Wellner et al., 2013).

Lemma B.7 (Symmetrization inequality). Let {Zt(i)}mi=1 be i.i.d. copies of a mean 0 stochastic process {Zt : t ∈ T}. For
every 1 ≤ i ≤ m, let gt(i) : T → R be an arbitrary function. Let {εi}mi=1 be a sequence of independent Rademacher
random variables. Then, for every x > 0,(

1− 4m

x2
sup
t∈T

var(Zt)

)
· Pr

(
sup
t∈T

∣∣∣∣∣
m∑
i=1

Zt(i)

∣∣∣∣∣ > x

)
≤ 2Pr

(
sup
t∈T

∣∣∣∣∣
m∑
i=1

εi(Zt(i)− gt(i))

∣∣∣∣∣ > x

4

)
,

where var(Zt) = E
[
(Zt − E[Zt])

2
]
.

The following classical bound can be found, for example in Proposition 2.4 of Angluin & Valiant (1979).

Lemma B.8 (Chernoff bound). Let X1, . . . , Xn be a sequence of i.i.d. copies of X such that Pr(X = 1) = 1− Pr(X =
0) = p ∈ (0, 1), and define Sn :=

∑n
i=1Xi. Then

Pr
(Sn
n
≥ (1 + τ)p

)
≤ inf
θ>0

[
e−θnp(1+τ)EeθSn

]
≤

e−
τ2np
2+τ , τ > 1,

e−
τ2np

3 , 0 < τ ≤ 1.

The following bound is the well-known Dudley’s entropy estimate which can be found, for example, in Corollary 2.2.8 of
(Wellner et al., 2013).

Lemma B.9 (Dudley’s entropy bound). Let (T, d) be an arbitrary semi-metric space, and let {Xt, t ∈ T} be a separable
sub-Gaussian stochastic process with 5

‖Xs −Xt‖ψ2
≤ Cd(s, t), ∀s, t ∈ T,

for some constant C > 0. Then, for every r > 0,

E

[
sup

d(s,t)≤r
|Xs −Xt|

]
≤ C0

∫ r

0

√
logN (ε, d)dε,

where N (ε, d) is the ε covering number of the set T and C0 is an absolute constant.

C. Proof of Theorem 3.4
We provide detailed proofs of Proposition 4.4 and Lemma 4.5 in this section. As shown in Section §4.2, Theorem 3.4 can be
proved immediately following Proposition 4.4 and Lemma 4.5.

Definition C.1. A vector v ∈ Rd is k-group sparse if, when dividing v into k blocks of sub-vectors of size d/k,6 each block
has exactly one non-zero entry.

Proposition C.2 (Proposition 4.4). Any nonnegative k-group sparse vector in Bd2(1) can be generated by a ReLU network
of the form (3) with a k + 1 dimensional input and and depth n = 3.

Proof of Proposition 4.4. Consider an k + 1 dimensional input of a network. The idea is to map each of the first k entries
of the input into a block in Rd of length d/k, respectively, and use one another input entry to construct proper offsets.

We first construct a single hidden layer ReLU network (i.e. n = 2) with offsets and k dimensional input [x1, · · · , xk]T that
can generate all positive k-group sparse signals. For each entry xi of x ∈ Rk, we consider a sequence of functions of the
form:

Γ̃r(xi) := σ(σ(xi − 2r)− 2σ(xi − 2r − 1)), r ∈
{

1, 2, · · · , d
k

}
. (28)

Graphically, it is a sequence of d/k non-overlapping triangle functions on the positive real line with width 2 and height 1.
We use outputs of Γ̃r(xi) over all r as the output of the i-th block in Rd. It then follows that for any xi ∈ R, there is only

5For a sub-Gaussian random variable X , the ψ2-norm is defined as supp≥1 p
−1/2‖X‖Lp .

6We assume WLOG that d/k is an integer.
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one of Γ̃r(xi) that can be nonzero. Furthermore, the nonzero entry can take any value in [0, 1]. Thus, lining up all k blocks
constructed in such a way, we have any positive k-group sparse vector in Bd∞(1) can be generated by this network, and so
does any vector in Bd2(1).

To represent such a network above using a ReLU network with no offset, we add another hidden layer of width (k + 2d/k)

before passing to Γ̃r(·) and make use of the additional k + 1 entries. The proposed network with a k + 1 dimensional input
of the form: [x1, · · · , xk, z]T can be constructed as follows. The first k nodes are:

σ(xi), i ∈ {1, 2, · · · , k}.

The next 2d/k nodes are used to construct the offsets:

σ(r · z), r ∈
{

1, 2, · · · , 2d

k

}
.

The second and the third hidden layers are almost the same as (28) mapping each σ(xi) into a block in Rd of length d/k,
except that we replace the offsets 2r and 2r + 1 by the output computed in the first hidden layer, i.e., σ(r · z). Then, we
construct the second layer that can output the following results for all i ∈ {1, 2, ..., k} and r ∈ {1, 2, ..., d/k}:

Υr(xi, z) = σ(σ(xi)− 2σ(r · z)) and Υ′r(xi, z) = σ(σ(xi)− 2σ(r · z)− σ(z)).

Finally, by constructing the third layer, we have for all i ∈ {1, 2, ..., k} and r ∈ {1, 2, ..., d/k}

Γr(xi, z) := σ
(
Υr(xi, z)− 2Υ′r(xi, z)

)
. (29)

Note that (28) fires only when xi ≥ 0, on which case we have σ(xi) = xi. Finally, we take z always equal to 1 and obtain
Γ̃r(xi) = Γr(xi, 1). Thus, the proposed network (29) can generate all nonnegative k-group sparse signals in Bd2(1).

Furthermore, based on the next two lemmas, we give the proof of Lemma 4.5.
Lemma C.3 (Theorem 4.2 of Plan et al. (2016)). Assume that θ0 ∈ K where K ⊆ Rd satisfies λv ∈ K for any v ∈ K and
λ ∈ [0, 1). Assume that y̌ = 〈a, θ0〉+ ξ with ξ ∼ N (0, σ2) and a ∼ N (0, Id). Let

δ∗ := inf
t>0

{
t+

σ√
m

(
1 +

√
logPt

)}
,

where Pt with t > 0 is the packing number of K ∩ Bd2(t) with balls of radius t/10. Then, there exists an absolute constant
c > 0 such that any estimator θ̂ which depends only on m observations of (a, y̌) satisfies

sup
θ0∈K

E
[
‖θ̂ − θ0‖2

]
≥ cmin{δ∗, diam(K)}.

Lemma C.4. When k ≤ d/4, for any t ≤ 1, we have Pt ≥ exp (ck log d/k), where Pt is defined as in Lemma C.3 with
letting K ⊆ Bd2(1) being a set containing all k group sparse vectors in Bd2(1). Here c > 0 is an absolute constant.

Proof of Lemma C.4. The proof of this lemma follows from the idea of randomized packing construction in Section 4.3 of
(Plan et al., 2016). For any t, since Pt is defined as the packing number with balls of radius scaling as t, which is the radius
of the set K ∩ Bd2(t), then we have Pt = P1. Thus, we only need to consider the lower bound of P1. Furthermore, since
Sd−1 ⊆ Bd2(1), where Sd−1 is the unit sphere in Rd of radius 1, the packing number of K ∩ Bd2(1) is larger K ∩ Sd−1.
Thus, we consider 1/10 packing of the set K ∩ Sd−1 to obtain the lower bound of P1. Consider a subset K ∩ Sd−1 such
that it contains all nonnegative k group sparse signals in Rd where each non-zero entry equals 1/

√
k. This is possible due

to Proposition C.2. Then, we have |C| = (d/k)k. We will show that there exists a large enough subset X ⊆ C such that
∀x, y ∈ X , ‖x− y‖2 > 1/10. Consider picking vectors x, y ∈ C uniformly at random and computing the probability of the
event ‖x− y‖22 ≤ 1/100. When the event happens, it requires x and y to have at least 0.99k matching non-zero coordinates.
Assume without loss of generality that 0.01k is an integer, this event happens with probability(

k

0.99k

)(
d− 0.99k

0.01k

)/
(d/k)k.

Using Stirling’s approximation and k ≤ d/4, we have Pr(‖x− y‖22 ≤ 1/100) ≤ exp(−c′k log(d/k)), where c′ > 0 is an
absolute constant. This implies the claim that when choosing X to have exp(ck log(d/k)) uniformly chosen vectors from C,
which satisfies ∀x, y ∈ X , ‖x− y‖2 > 1/10 with a constant probability.
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Lemma C.5 (Lemma 4.5). Assume that θ0 ∈ K ⊆ Bd2(1) where K is a set containing any k-group sparse vectors in Bd2(1),
and K satisfies that ∀v ∈ K then λv ∈ K, ∀λ ∈ [0, 1). Assume that y̌ = 〈a, θ0〉+ ξ with ξ ∼ N (0, σ2) and a ∼ N (0, Id).
Then, there exist absolute constants c1, c2 > 0 such that any estimator θ̂ which depends only on m observations of (a, y̌)
satisfies that when m ≥ c1k log(d/k), there is

sup
θ0∈K

E‖θ̂ − θ0‖2 ≥ c2

√
k log(d/k)

m
.

Proof of Lemma 4.5. Since K satisfies λv ∈ K for any v ∈ K and λ ∈ [0, 1). Thus, by Lemma C.3, we have

δ∗ = inf
t>0

{
t+

σ√
m

(
1 +

√
logPt

)}
.

Consider that for any t > 1, then we can observe that

t+
σ√
m

(
1 +

√
logPt

)
> 1.

On the other hand, for any t ≤ 1, then we have

inf
0<t≤1

{
t+

σ√
m

(
1 +

√
logPt

)}
= inf

0<t≤1

{
t+

σ√
m

(
1 +

√
logP1

)}
=

σ√
m

(
1 +

√
logP1

)
,

where the first equality is due to Lemma C.4, the second equality is by taking inf over t. If m ≥ σ2(1 +
√

logP1)2, we have

inf
0<t≤1

{t+ σ√
m

(1 +
√

logPt)} ≤ 1.

Comparing the cases t > 1 and t ≤ 1, we get that, if m ≥ σ2(1 +
√

logP1)2, then

δ0 = inf
t>0

{
t+

σ√
m

(
1 +

√
logPt

)}
= inf

0<t≤1

{
t+

σ√
m

(
1 +

√
logPt

)}
=

σ√
m

(
1 +

√
logP1

)
.

Moreover, since the diam(K) ≤ 1, then by Lemma C.3, we have

sup
θ0∈K

E‖θ̂ − θ0‖2 ≥ cmin{δ∗, diam(K)} =
cσ√
m

(
1 +

√
logP1

)
≥ cσ√

m

√
logP1,

by letting m ≥ σ2(1 +
√

logP1)2. Furthermore, according to Lemma C.4, we know logP1 ≥ c′k log(d/k) with c′ being
an absolute constant. Then, there exists a sufficient large absolute constant c1 such that when m ≥ c1k log(d/k), we have

sup
θ0∈K

E[‖θ̂ − θ0‖2] ≥ c2

√
k log(d/k)

m
.

D. Proof of Theorem 3.8
Before presenting the proof of Theorem 3.8, we first introduce some notations and definitions used hereafter. These notations
and definitions will also be used in the proof of Theorem 3.10 in Section §E. According to the definition of Wi,+,x in the
paper, we can know that G(x) can be represented as

G(x) =

(
n∏
i=1

Wi,+,x

)
x = (Wn,+,xWn−1,+,x · · ·W1,+,x)x.
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We therefore further define a more general form Hx(z) as follows,

Hx(z) :=

(
n∏
i=1

Wi,+,x

)
z = (Wn,+,xWn−1,+,x · · ·W1,+,x)z,

by which we can see that Hx(x) = G(x).

Recall that as shown in the main body of the paper, for any x such that L(x) is differentiable, we can write the gradient of
L(x) w.r.t. x as follows

∇L(x) = 2

 n∏
j=1

Wj,+,x

> n∏
j=1

Wj,+,x

x− 2λ

m

m∑
i=1

yi

 n∏
j=1

Wj,+,x

> ai,
by which we further have

〈∇L(x), z〉 = 2〈G(x), Hx(z)〉 − 2λ

m

m∑
i=1

yi〈ai, Hx(z)〉,

for any x and z.

We then let

hx,x0
:=

1

2n
x− 1

2n

(n−1∏
i=0

π − %i
π

)
x0 +

n−1∑
i=0

sin %i
π

 d−1∏
j=i+1

π − θj
π

 ‖x0‖2
‖x‖2

x

 , (30)

Sε,x0 := {x 6= 0 : ‖hx,x0‖2 ≤
1

2n
εmax(‖x‖2, ‖x0‖2)}. (31)

where %0 = ∠(x, x0) and %i = g(%i−1), and g(%) := cos−1
(

(π−%) cos %+sin %
π

)
as defined in Lemma D.3. In the following

subsections, we provides key lemmas for the proof of Theorem 3.8, and then a proof sketch of this theorem, followed by a
detailed proof.

D.1. Lemmas for Theorem 3.8

Lemma D.1. DefineHx(z) =
∏n
j=1Wj,+,xz. Suppose thatG(x0) satisfies |G(x0)| ≤ R. There exists an absolute constant

c1 > 0 such that for any z and any x, when

λ ≥ 4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/ε),

the following holds:

|λE[yi〈ai, Hx(z)〉]− 〈G(x0), Hx(z)〉| ≤ 1

4
ε‖Hx(z)‖2.

Proof of Lemma D.1. Recall that yi = sign(〈ai, G(x0)〉 + ξi + τi). We let Vi = 〈ai, G(x0)〉 + ξi and Zi = 〈ai, Hz(x)〉.
Still, we assume Vi and τi are independent. Thus, there is

E[sign(Vi + τi)|Vi] =
Vi
λ
− Vi
λ
1{|Vi|>λ} + 1{Vi>λ} − 1{Vi<−λ}.

Therefore, we have ∣∣∣∣E[Zi sign(Vi + τi)]−
E[ZiVi]

λ

∣∣∣∣
=

∣∣∣∣−E[ZiViλ 1{|Vi|>λ}

]
+ E

[
Zi1{Vi>λ}

]
− E

[
Z1{Vi>λ}

]∣∣∣∣
≤
‖Zi‖L2

· ‖Vi1{|Vi|>λ}‖L2

λ
+ 2‖Zi‖L2Pr(|Vi| > λ)1/2,
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where the last line follows from Cauchy-Schwarz inequality.

First, by the isotropic assumption of ai, we have

‖Zi‖L2
=
{
E
[
|〈ai, Hx(z)〉|2

]}1/2
= ‖Hx(z)‖2.

Next, same to Lemma 4.1, we have

‖Vi1{|Vi|>λ}‖L2
≤
√

2c1(λ+ 1)‖〈ai, G(x0)〉+ ξi‖ψ1
e−λ/2‖〈ai,G(x0)〉+ξi‖ψ1

≤
√

2c1(λ+ 1)(‖a‖ψ1
R+ ‖ξ‖ψ1

)e−λ/2(‖a‖ψ1
R+‖ξ‖ψ1

).

due to our assumption that ‖G(x0)‖2 ≤ R and Vi is sub-gaussian. Moreover, we also have

Pr(|Vi| > λ)1/2 ≤
√
c1(‖a‖ψ1

R+ ‖ξ‖ψ1
)e−λ/2(‖a‖ψ1

R+‖ξ‖ψ1
).

Overall, we can obtain

|λE[Zi sign(Vi + τi)]− E[ZiVi]| ≤
√
c1(‖a‖ψ1

R+ ‖ξ‖ψ1
)(
√

2(λ+ 1) + 2λ)e−λ/2(‖a‖ψ1
R+‖ξ‖ψ1

)‖Hx(z)‖2.

When
λ ≥ 4 max{c1(R‖a‖ψ1 + ‖ξ‖ψ1), 1} log(64 max{c1(R‖a‖ψ1 + ‖ξ‖ψ1), 1}/ε),

it is immediate that √
c1(‖a‖ψ1

R+ ‖ξ‖ψ1
)(
√

2(λ+ 1) + 2λ)e−λ/2(‖a‖ψ1
R+‖ξ‖ψ1

) ≤ 1

4
ε.

As a consequence, we have

|λE[yi〈ai, Hx(z)〉]− 〈G(x0), Hx(z)〉| ≤ 1

4
ε‖Hx(z)‖2,

which finishes the proof.

Lemma D.2. Define Hx(z) :=
∏n
j=1Wj,+,xz. Suppose that G(x0) satisfies |G(x0)| ≤ R. Then, with probability at least

1− c4 exp(−u) where c4 > 0 is an absolute constant,

sup
x∈Rk,z∈Rk,x0∈Rk,|G(x0)|≤R

∣∣ λ
m

∑m
i=1 yi〈ai, Hx(z)〉 − λE[yi〈ai, Hx(z)〉]

∣∣
‖Hx(z)‖2

≤ ε

8
,

where the sample complexity is

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

for some absolute constant c2 large enough.

Proof of Lemma D.2. The proof of Lemma D.2 is very similar to the proofs shown in the previous subsection. Therefore, we
only outline the main proof steps here but ignore detailed calculation for some inequalities. We aim to bound the following
term

sup
x∈Rk,z∈Rk,x0∈Rk,|G(x0)|≤R

∣∣ 1
m

∑m
i=1 yi〈ai, Hx(z)〉 − E[yi〈ai, Hx(z)〉]

∣∣
‖Hx(z)‖2

.

By Symmetrization inequality in Lemma B.7, it suffices to bound

sup
x∈Rk,z∈Rk,x0∈Rk,|G(x0)|≤R

∣∣ 1
m

∑m
i=1 εiyi〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

where {εi} are i.i.d. Rademacher random variables that are independent of other random variables.
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We rewrite the set {G(x0) : ‖G(x0)‖2 ≤ R, x0 ∈ Rk} as G(Rk) ∩ Bd2(R). To bound the supremum above is based on
building a δ-covering net over the set G(Rk) ∩ Bd2(R), namely N (G(Rk) ∩ Bd2(R), δ). The δ value should be carefully
chosen. For a simply notation, we let yvi := sign(〈ai, G(v)〉+ ξi + τi) be the sign function associated with G(v) in the net.
We begin our proof by bounding the supremum term as follows, with probability at least 1− exp(−cu)− 2 exp(−u),

sup
x,z,x0∈Rk, ‖G(x0)‖2≤R

∣∣ 1
m

∑m
i=1 εiyi〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

≤ sup
x,z∈Rk,G(v)∈N (G(Rk)∩Bd2(R), δ)

∣∣ 1
m

∑m
i=1 εiy

v
i 〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

+ sup
x,z,x0∈Rk,‖G(x0)−G(v)‖2≤δ,G(v)∈N (G(Rk)∩Bd2(R), δ)

∣∣ 1
m

∑m
i=1 εi(yi − yvi )〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

≤ sup
x,z∈Rk,G(v)∈N (G(Rk)∩Bd2(R), δ)

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(v)〉+ ξi + τi)〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2︸ ︷︷ ︸

(I)

+ sup
x,z∈Rk

max
|I|≤4η/λ

2

m

∑
i∈I

|〈ai, Hx(z)〉|
‖Hx(z)‖2︸ ︷︷ ︸

(II)

,

where the first inequality is due to decomposition of the supremum term and the second inequality is by Lemma B.4, which
bounds the number of difference between {yi} and {yvi } with high probability.

Bounding Term (I): We first show the bound based on fixed G(v). Then we give a uniform bound for any G(v) in the
δ-net. For a fixed G(v), we have

sup
x,z∈Rk

∣∣ 1
m

∑m
i=1 εi sign(〈ai, G(v)〉+ ξi + τi)〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

= sup
x,z∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

.

For the function Hx(z), we can see that as x varies, Hx(z) can be different linear functions, which constructs at most
[C(d, k)]n = [

(
d
0

)
+
(
d
1

)
+ · · ·+

(
d
k

)
]n ≤ (dk + 1)n ≤ (2d)kn hyperplanes that split the whole Rk space.

Now, we consider any one piece Hx̃ where x̃ ∈ P ⊆ Rk and bound the following quantity:

sup
z∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai, Hx̃z)〉

∣∣
‖Hx̃(z)‖2

≤ sup
z∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai,Wx̃z〉

∣∣
‖Wx̃z‖2

≤ sup
b∈Ek∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ,
where we let Wx̃ =

∏n
j=1Wj,+,x̃ be the linear function at x̃ such that Hx̃(z) =

(∏n
j=1Wj,+,x̃

)
z. Ek be the subspace in

Rd spanned by the k columns of Wz̃ . We also define b = Wx̃z/‖Wx̃z‖ in the above formulation.

It suffices to bound the last term in the above formulation. We consider a 1/2-covering net of the set Ek ∩ Sd−1, namely,
N (Ek ∩ Sd−1, 1/2). A simple volume argument shows that the cardinality |N (Ek ∩ Sd−1, 1/2)| ≤ 3k.

By Bernstein’s inequality in Lemma B.6, we have for any fixed v ∈ N (Ek ∩ Sd−1, 1/2),

Pr

(∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≥
√

2u′

m
+
‖a‖ψ1

u′

m

)
≤ 2e−u

′
.

Taking u′ = u+ ckn log(ed) for some c > 6, we have with probability at least 1− 2 exp(−u− ckn log(ed)),∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, v〉

∣∣∣∣∣ ≤
√

2(u+ ckn log(ed))

m
+
‖a‖ψ1

(u+ ckn log(ed))

m
.
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Taking a union bound over all v ∈ N (Ek∩Sd−1, 1/2), we have with probability at least 1−2 exp(−u−ckn log(ed)) ·3k ≥
1− 2 exp(−u− c1kn log(ed)) for some absolute constant c1 > 2.

sup
v∈N (Ek∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ ≤
√

2(u+ ckn log(ed))

m
+
‖a‖ψ1

(u+ ckn log(ed))

m
. (32)

Therefore, we will have

sup
b∈Ek∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣
≤ sup
v∈N (Ek∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, v〉

∣∣∣∣∣+ sup
b∈Ek∩Sd−1,v∈N (Ek∩Sd−1,1/2),‖b−v‖2≤1/2

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b− v〉

∣∣∣∣∣
≤ sup
v∈N (Ek∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, v〉

∣∣∣∣∣+
1

2
sup

b∈Ek∩Sd−1,v∈N (Ek∩Sd−1,1/2),‖b−v‖2≤1/2

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b− v〉
‖b− v‖2

∣∣∣∣∣
≤ sup
v∈N (Ek∩Sd−1,1/2)

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, v〉

∣∣∣∣∣+
1

2
sup

b∈Ek∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣ .
Now we can obtain

sup
z∈Rk

∣∣ 1
m

∑m
i=1 εi〈ai, Hx̃(z)〉

∣∣
‖Hx̃(z)‖2

≤ sup
b∈Ek∩Sd−1

∣∣∣∣∣ 1

m

m∑
i=1

εi〈ai, b〉

∣∣∣∣∣
≤2

√
2(u+ ckn log(ed))

m
+

2‖a‖ψ1
(u+ ckn log(ed))

m
.

Taking a further union bound over at most (2d)kn linear functions, we have

(I) ≤ 2

√
2(u+ ckn log(ed))

m
+

2‖a‖ψ1
(u+ ckn log(ed))

m

with probability at least 1− 2 exp(−u− c1kn log(ed)) · (2d)kn ≥ 1− 2 exp(−u− c2kn log(ed)) where c2 > 1.

Bounding Term (II): Now we bound the term

(II) = sup
x,z∈Rk

max
|I|≤4mη/λ

2

m

∑
i∈I

|〈ai, Hx(z)〉|
‖Hx(z)‖2

Let t = Hx(z)/‖Hx(z)‖2 and it is enough to bound

sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

1

m

∑
i∈I

(|〈ai, t〉| − E[|〈ai, t〉|] + E[|〈ai, t〉|]) .

Note that |〈ai, t〉| − E[|〈ai, t〉|] is also a sub-exponential random variable with sub-exponential norm bounded by 2‖a‖ψ1
,

and E[|〈ai, t〉|] ≤ 1. Given x, Hx(z) is a linear function and there are at most (2d)kn different linear function for different
x.

For the extra expectation term, we have

sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

1

m

∑
i∈I

E[|〈ai, t〉|] ≤ max
|I|≤4mη/λ

|I|
m
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Next, we bound the term supt∈Ek∩Sd−1 max|I|≤4mη/λ
1
m

∑
i∈I (|〈ai, t〉| − E[|〈ai, t〉|]). We have

sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

1

m

∑
i∈I

(|〈ai, t〉| − E[|〈ai, t〉|])

= sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

1

m

m∑
i=1

1{i∈I} (|〈ai, t〉| − E[|〈ai, t〉|])

≤ sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

∣∣∣∣∣ 1

m

m∑
i=1

1{i∈I} (|〈ai, t〉| − E[|〈ai, t〉|])

∣∣∣∣∣
By Symmetrization inequality, it suffices to bound

sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

∣∣∣∣∣ 1

m

m∑
i=1

εi1{i∈I}|〈ai, t〉|

∣∣∣∣∣ = sup
t∈Ek∩Sd−1,|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, t〉|

∣∣∣∣∣
We consider a 1/2-covering net of the set Ek ∩ Sd−1, namely, N (Ek ∩ Sd−1, 1/2). A simple volume argument shows that
the cardinality |N (Ek ∩ Sd−1, 1/2)| ≤ 3k. Therefore, we will have

sup
t∈Ek∩Sd−1,|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, t〉|

∣∣∣∣∣
≤ sup
v∈N (Ek∩Sd−1,1/2),|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, v〉|

∣∣∣∣∣+ sup
t∈Ek∩Sd−1,v∈N (Ek∩Sd−1,1/2),

‖t−v‖2≤1/2,|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, t− v〉|

∣∣∣∣∣
≤ sup
v∈N (Ek∩Sd−1,1/2),|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, v〉|

∣∣∣∣∣+
1

2
sup

t∈Ek∩Sd−1,v∈N (Ek∩Sd−1,1/2),
‖t−v‖2≤1/2,|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, t− v〉|
‖t− v‖2

∣∣∣∣∣
≤ sup
v∈N (Ek∩Sd−1,1/2),|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, v〉|

∣∣∣∣∣+
1

2
sup

t∈Ek∩Sd−1,|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, t〉|

∣∣∣∣∣ ,
which implies

sup
t∈Ek∩Sd−1,|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, t〉|

∣∣∣∣∣ ≤ 2 sup
v∈N (Ek∩Sd−1,1/2),|I|≤4η/λ

∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, v〉|

∣∣∣∣∣ .
For any fixed v in the 1/2-net and a fixed I, by Bernstein’s inequality, we have∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, v〉|

∣∣∣∣∣ =
|I|
m

∣∣∣∣∣ 1

|I|
∑
i∈I

εi〈ai, v〉

∣∣∣∣∣ ≤ 1

m
(2
√
u2|I|+ 2‖a‖ψ1u2).

We take

u2 = C1 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + k log

m

kn log(ed) + u′

)1/2√
m,

where C1 is an absolute constant large enough and u′ satisfies (20). Using the fact that

|I| ≤ 4η

λ
m ≤ 2L

(
u+ 2kn log(ed) + k log(2R) + k log

m

kn log(ed) + u′

)1/2√
m,

we have with probability at least

1− 2 exp

(
−C1 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + k log

m

kn log(ed) + u′

)1/2√
m

)
,
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the following holds:∣∣∣∣∣ 1

m

∑
i∈I

εi|〈ai, v〉|

∣∣∣∣∣ ≤ C1‖a‖ψ1
log
( λm

kn log(ed) + u′

)√u+ 2kn log(ed) + k log(2R) + k log m
kn log(ed)+u′

m
.

To bound the maximum over |I| ≤ 4η/λ, we take a union bound over all
(

m
4ηm/λ

)
possibilities,

(
m

4ηm/λ

)
≤
(

em

4ηm/λ

)4ηm/λ

=

(
λ

η

)4ηm/λ

.

Thus, it follows

log

(
m

4ηm/λ

)
≤ 4ηm

λ
log

λ

η

≤ L
(
u+ 2kn log(ed) + k log(2R) + log

m

kn log(ed) + u′

)1/2√
m log

( λm

kn log(ed) + u′

)
,

and when C1 > L, taking the union bound gives, with probability at least

1− 2 exp

(
−C2 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + log

m

kn log(ed) + u′

)1/2√
m

)
,

we have

max
|I|≤4mη/λ

∣∣∣∣∣ 1

m

∑
i∈I
|〈ai, v〉|

∣∣∣∣∣
≤ C1‖a‖ψ1

log
( λm

kn log(ed) + u′

)√u+ 2kn log(ed) + k log(2R) + k log m
kn log(ed)+u′

m
.

Furthermore, taking the union bound on all the 1/2-net, we obtain

sup
t∈Ek∩Sd−1

max
|I|≤4mη/λ

∣∣∣∣∣ 1

m

∑
i∈I
|〈ai, t〉|

∣∣∣∣∣
≤ 2 sup

v∈N (Ek∩Sd−1,1/2)

max
|I|≤4mη/λ

∣∣∣∣∣ 1

m

∑
i∈I
|〈ai, v〉|

∣∣∣∣∣
≤ 2C1‖a‖ψ1 log

( λm

kn log(ed) + u′

)√u+ 2kn log(ed) + k log(2R) + k log m
kn log(ed)+u′

m
.

with probability

1− 2 · 3k · (2d)kn exp

(
−C2 log

(
λm

kn log(ed) + u′

)(
u+ 2kn log(ed) + k log(2R) + log

m

kn log(ed) + u′

)1/2√
m

)
,

where C2 is an absolute constant. Particularly, if we set

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

for some absolute constant c2 large enough, we have

(II) ≤ 2C1‖a‖ψ1
log
( λm

kn log(ed) + u′

)√u+ 2kn log(ed) + k log(2R) + k log m
kn log(ed)+u′

m
,
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with probability at least 1− c3 exp(−u), where c3 ≥ 1 is an absolute constant.

Combining (I) and (II): Combining all the results above, we obtain with probability 1 − c3 exp(−u) − exp(−cu) −
2 exp(−u),

sup
x∈Rk,z∈Rk,x0∈Rk,|G(x0)|≤R

∣∣ 1
m

∑m
i=1 εiyi〈ai, Hx(z)〉

∣∣
‖Hx(z)‖2

≤ ε

16λ
.

which thus means, for any x, z, x0, by Symmetrization, we have∣∣∣∣∣ λm
m∑
i=1

yi〈ai, Hx(z)〉 − λE[yi〈ai, Hx(z)〉]

∣∣∣∣∣ ≤ ε

8
‖Hx(z)‖2.

with probability at least 1− c4 exp(−u).

The following lemmas are some useful lemmas from previous papers. We rewrite them here for integrity.

Lemma D.3 ((Hand & Voroninski, 2018)). Suppose 8πn6
√
ε ≤ 1. Let

Sε,x0 := {x 6= 0 ∈ Rk|‖hx,x0‖2 ≤
1

2n
εmax(‖x‖2, ‖x0‖2)},

where n is an integer greater than 1 and let hx,x0 be defined by

hx,x0
:=

1

2n
x− 1

2n

(n−1∏
i=0

π − %i
π

)
x0 +

n−1∑
i=0

sin %i
π

 d−1∏
j=i+1

π − %j
π

 ‖x0‖2
‖x‖2

x


where %0 = ∠(x, x0) and %i = g(%i−1). Particularly, we define

g(%) := cos−1
(

(π − %) cos %+ sin %

π

)
.

If x ∈ Sε,x0
, then we have

Sε,x0
⊂ B(x0, 56n

√
ε‖x0‖2) ∪ B(−ρnx0, 500n11

√
ε‖x0‖2),

where ρn is defined as

ρn :=

n−1∑
i=0

sin %̌i
π

 n−1∏
j=i+1

π − %̌j
π

 ≤ 1,

and %̌0 = π and %̌i = g(%̌i−1).

Lemma D.4 ((Hand & Voroninski, 2018)). Fix 0 < 16πn2
√
εwdc < 1 and n ≥ 2. Suppose that Wi satisfies the WDC with

constant εwdc for i = 1, . . . , n. Define

h̃x,z =
1

2n

(n−1∏
i=0

π − %i
π

)
z +

n−1∑
i=0

sin %i
π

 n−1∏
j=i+1

π − %̄j
π

 ‖z‖2
‖x‖2

x

 ,
where %i = g(%i−1) for g in Lemma D.3 and %0 = ∠(x, z). For all x 6= 0 and y 6= 0,∥∥∥∥∥∥

(
n∏
i=1

Wi,+,x

)>
G(z)− h̃x,z

∥∥∥∥∥∥
2

≤ 24
n3
√
εwdc

2n
‖z‖2, (33)

〈G(x), G(z)〉 ≥ 1

4π

1

2n
‖x‖2‖z‖2, (34)

‖Wi,+,x‖2 ≤
(

1

2
+ εwdc

)1/2

. (35)
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D.2. Proof Sketch of Theorem 3.8

Under the conditions of Theorem 3.8, our proof is sketched as follows:

• The key to proving Theorem 3.8 lies in understanding the concentration of L(x) and ∇L(x). Here we prove two
critical lemmas, Lemmas D.1 and D.2 in this section, combining which we can show that for any x, z and |G(x0)| ≤ R,
when λ and m are sufficiently large, the following holds with high probability∣∣∣ λ

m

m∑
i=1

yi〈ai, Hx(z)〉 − 〈G(x0), Hx(z)〉
∣∣∣ ≤ ε‖Hx(z)‖2.

which further implies

λ

m

m∑
i=1

yi〈ai, Hx(z)〉 ≈ 〈G(x0), Hx(z)〉,

for any x, z.

Therefore, we have ∀z and ∀x such that L(x) is differentiable, we can approximate∇L(x) as follows:

〈∇L(x), z〉 ≈ 2〈G(x), Hx(z)〉 − 2〈G(x0), Hx(z)〉.

• On the other hand, we can show that ∀x, z,

〈G(x), Hx(z)〉 − 〈G(x0), Hx(z)〉 ≈ 〈hx,x0
, z〉,

which therefore leads to

〈∇L(x), z〉 ≈ 2〈hx,x0
, z〉.

• Following the previous step, with vx being defined in Theorem 3.8, the directional derivative is approximated as

D−vxL(x) · ‖vx‖2 ≈ −4‖hx,x0‖22.

• We consider the error of approximating D−vxL(x) · ‖vx‖2 by −4‖hx,x0
‖22 in the following two cases:

Case 1: When ‖x0‖2 is not small and x 6= 0, one can show the error is negligible compared to −4‖hx,x0
‖22, so that

D−vxL(x) < 0 as −4‖hx,x0
‖22.

Case 2: When ‖x0‖2 approaches 0, such an error is decaying slower than −4‖hx,x0
‖22 itself and eventually dominates

it. As a consequence, one can only conclude that x̂m is around the origin.

• To characterize the directional derivative at 0 in Case 1, one can show

DwL(0) · ‖w‖2 ≤

∣∣∣∣∣〈G(x0), HxN (w)〉 − λ

m

m∑
i=1

yi〈ai, HxN (w)〉

∣∣∣∣∣− 〈G(x0), HxN (w)〉

with xN → 0. By showing that the second term dominates according to (9) and Lemma D.4, we obtain

DwL(0) < 0,∀w 6= 0.

D.3. Detailed Proof of Theorem 3.8

Proof of Theorem 3.8. According to Theorem 3.8, we define a non-zero direction as follows:

vx :=

{
∇L(x), if L(x) is differentiable at x,
limN→+∞∇L(xN ), otherwise,
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where {xN} is a sequence such that ∇L(x) is differentiable at all point xN in the sequence because of the piecewise
linearity of G(x).

On the other hand, by our definition of directional derivative, we have

D−vxL(x) =

{〈
∇L(x),− vx

‖vx‖2

〉
, if L(x) is differentiable at x,

limN→+∞
〈
∇L(x̃N ),−vx/‖vx‖2

〉
, otherwise,

where {x̃N} is also a sequence with ∇L(x̃N ) existing for all x̃N . Here we use x̃N only in order to distinguish from the
sequence of xN in the definition of vx above. We give the proof as follows:

Approximation of 〈∇L(x), z〉: The proof is mainly based on the two critical lemmas, i.e., Lemma D.1 and Lemma D.2.

First by (35) in Lemma D.4, we can have

‖G(x)‖2 = (

n∏
i=1

Wi,+,x)x ≤ (1/2 + εwdc)
n/2‖x‖2, (36)

for any x. Thus, due to the assumption ‖x0‖2 ≤ R(1/2+εwdc)
−n/2 in Theorem 3.8 and ‖G(x0)‖2 ≤ (1/2+εwdc)

n/2‖x0‖2,
we further have

‖G(x0)‖2 ≤ R.

By Lemma D.1 and ‖G(x0)‖2 ≤ R, setting

λ ≥ 4 max{c1(R‖a‖ψ1 + ‖ξ‖ψ1), 1} log(64 max{c1(R‖a‖ψ1 + ‖ξ‖ψ1), 1}/ε),

the following holds for any x:

|λE[yi〈ai, G(x)〉]− 〈G(x0), G(x)〉| ≤ 1

4
ε‖G(x)‖2, (37)

if we let z = x in Lemma D.1 such that Hx(x) = G(x).

On the other hand, according to Lemma D.2 and |G(x0)| ≤ R, we have that with probability at least 1− c4 exp(−u), for
any x, the following holds: ∣∣∣∣∣ λm

m∑
i=1

yi〈ai, G(x)〉 − λE[yi〈ai, G(x)〉]

∣∣∣∣∣ ≤ ε

8
‖G(x)‖2, (38)

with sample complexity being

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

where we set z = x in Lemma D.2 with Hx(x) = G(x).

Combining (37) and (38), we will have that with probability at least 1− c4 exp(−u), for any x, setting

λ ≥4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/ε), and

m ≥c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

the following holds ∣∣∣∣∣ λm
m∑
i=1

yi〈ai, G(x)〉 − 〈G(x0), G(x)〉

∣∣∣∣∣ ≤ ε‖G(x)‖2, (39)

which leads to ∣∣∣∣12 〈∇L(x), z〉 − (〈G(x), Hx(z)〉 − 〈G(x0), Hx(z)〉)
∣∣∣∣ ≤ ε‖G(x)‖2. (40)
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Approximating D−vxL(x) · ‖vx‖2 and Bounding Errors: Without loss of generality, we directly prove the case where
L(x) is not differentiable at x. Then there exists a sequence x̃N → x such that∇L(x̃N ) exists for all x̃N . The proof is the
same when x is the point such that L(x) is differentiable. Therefore, we consider

D−vxL(x)‖vx‖2 = lim
x̃N→x

〈
∇L(x̃N ),−vx

〉
. (41)

When L(x) is not differentiable, vx is defined as limxM→x∇L(xM ), where {xM} could be another sequence such that
∇L(xM ) exists for all xM . We decompose D−vxL(x)‖vx‖2 as follows

D−vxL(x)‖vx‖2 = lim
x̃N→x

〈
∇L(x̃N ),−vx

〉
= lim
x̃N→x

lim
xM→x

−
〈
∇L(x̃N ), L(xM )

〉
= lim
x̃N→x

lim
xM→x

−
[
4〈hx̃N ,x0

, hxM ,x0
〉+ 〈∇L(x̃N )− 2hx̃N ,x0

, 2hxM ,x0
〉

+ 〈2hx̃N ,x0
,∇L(x̃N )− 2hxM ,x0

〉+ 〈∇L(x̃N )− 2hx̃N ,x0
,∇L(x̃N )− 2hxM ,x0

〉
]

=− 4‖hx,x0
‖22 − lim

x̃N→x
lim

xM→x

[
〈∇L(x̃N )− 2hx̃N ,x0

, 2hxM ,x0
〉

+ 〈2hx̃N ,x0
,∇L(x̃N )− 2hxM ,x0

〉+ 〈∇L(x̃N )− 2hx̃N ,x0
,∇L(x̃N )− 2hxM ,x0

〉
]
,

where we regard the last term inside the limitation as approximation error term. It is equivalent to analyze

1

4
D−vxL(x)‖vx‖2 =− ‖hx,x0

‖22 − lim
x̃N→x

lim
xM→x

[
〈1
2
∇L(x̃N )− hx̃N ,x0

, hxM ,x0
〉

+ 〈hx̃N ,x0
,

1

2
∇L(xM )− hxM ,x0〉

+ 〈1
2
∇L(x̃N )− hx̃N ,x0

,
1

2
∇L(xM )− hxM ,x0〉

]
. (42)

For simply notation, we let

vx,x0 =

(
n∏
i=1

Wi,+,x

)>( n∏
i=1

Wi,+,x

)
x−

(
n∏
i=1

Wi,+,x

)>( n∏
i=1

Wi,+,x0

)
x0.

Thus we have

〈vx,x0
, z〉 = 〈G(x), Hx(z)〉 − 〈G(x0), Hx(z)〉.

For the term 〈 12∇L(x̃N )− hx̃N ,x0
, hxM ,x0

〉 in (42), we have that , setting λ and m sufficiently large as shown above, with
probability at least 1− c4 exp(−u),〈

1

2
∇L(x̃N )− hx̃N ,x0

, hxM ,x0

〉
=

〈
1

2
∇L(x̃N )− vx̃N ,x0

, hxM ,x0

〉
+ 〈vx̃N ,x0

− hx̃N ,x0
, hxM ,x0

〉

≥ −ε‖Hx̃N (hxM ,x0)‖2 − ‖vx̃N ,x0
− hx̃N ,x0

‖2‖hxM ,x0‖2

≥ −ε‖Hx̃N (hxM ,x0)‖2 − 48
n3
√
εwdc

2n
max(‖x̃N‖2, ‖x0‖2)‖hxM ,x0‖2

≥ −ε
(

1

2
+ εwdc

)n/2
‖hxM ,x0

‖2 − 48
n3
√
εwdc

2n
max(‖x̃N‖2, ‖x0‖2)‖hxM ,x0

‖2,

where the first inequality is by (40) and Cauchy-Schwarz inequality,and the third inequality is by (33) in Lemma D.4. The



Robust One-Bit Recovery via ReLU Generative Networks

second inequality above is due to

‖vx̃N ,x0
− hx̃N ,x0

‖2

≤

∥∥∥∥∥∥
(

n∏
i=1

Wi,+,x̃N

)>( n∏
i=1

Wi,+,x̃N

)
x̃N −

1

2n
x̃N

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
(

n∏
i=1

Wi,+,x̃N

)>( n∏
i=1

Wi,+,x0

)
x0 −

1

2n

(n−1∏
i=0

π − %i
π

)
x0 +

n−1∑
i=0

sin %i
π

 d−1∏
j=i+1

π − %j
π

 ‖x0‖2
‖x̃N‖2

x̃N

∥∥∥∥∥∥
2

≤ 24
n3
√
εwdc

2n
‖x̃N‖2 + 24

n3
√
εwdc

2n
‖x0‖2

≤ 48
n3
√
εwdc

2n
max(‖x̃N‖2, ‖x0‖2),

where the second inequality is by (33) in Lemma D.4.

Similarly, for the terms 〈hx̃N ,x0
, 12∇L(xM )− hxM ,x0

〉 in (42), we have that, setting m and λ sufficiently large as above,
with probability at least 1− c4 exp(−u), the following holds:

〈
hx̃N ,x0

,
1

2
∇L(xM )− hxM ,x0

〉
≥− ε

(
1

2
+ εwdc

)n/2
‖hx̃N ,x0

‖2 − 48
n3
√
εwdc

2n
max(‖xM‖2, ‖x0‖2)‖hx̃N ,x0

‖2.

For the terms 〈 12∇L(x̃N )− hx̃N ,x0
, 12∇L(xM )− hxM ,x0

〉 in (42), we have that, setting m and λ sufficiently large as above,
with probability at least 1− 2c4 exp(−u), the following holds:

〈
1

2
∇L(x̃N )− hx̃N ,x0

,
1

2
∇L(xM )− hxM ,x0

〉
≥ −

[
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖xM‖2, ‖x0‖2)

]

·

[
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x̃N‖2, ‖x0‖2)

]
.

Combining the above together, plugging in (42) and taking limit on both sides, we have

−1

4
D−vxL(x)‖vx‖2 ≥

1

2
‖hx,x0

‖2

[
‖hx,x0

‖2 − 2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)]

+
1

2

‖hx,x0
‖22 − 2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)2
 ,

with probability at least 1− 4c4 exp(−u) by setting m and λ sufficiently large as above.

Discussion of Two Cases: We take our discussion from two aspects: ‖x0‖2 > 2n/2ε
1/2
wdc and ‖x0‖2 ≤ 2n/2ε

1/2
wdc.

Case 1: ‖x0‖2 > 2n/2ε
1/2
wdc, or equivalently εwdc < 2−n‖x0‖22. This means ‖x‖0 is not close to 0. If we let ε = εwdc,
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4πnεwdc ≤ 1, then we have

ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

≤
‖x0‖

√
εwdc

2n
(1 + 2εwdc)

n/2 + 48
n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

≤
‖x0‖

√
εwdc

2n
(1 + 2nεwdc) + 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

≤
3n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2) + 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

≤ 51
n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2),

where the second inequality is due to (1 + 2εwdc)
n/2 ≤ enεwdc ≤ 1 + 2nεwdc when εwdc is sufficiently small satisfying the

conditions of Theorem 3.8.

Recall the definition of S121n4
√
εwdc,x0

in (31). We assume x 6= 0 and x /∈ S121n4
√
εwdc,x0

, namely

‖hx,x0‖2 > 121n4/2n
√
εwdc max(‖x‖2, ‖x0‖2). By Lemma D.3, if x ∈ Bc(x0, 616n3ε

−1/4
wdc ‖x0‖2) ∩

Bc(−ρnx0, 5500n14ε
−1/4
wdc ‖x0‖2), it is guaranteed that x /∈ S121n3

√
εwdc,x0

under the condition that 88πn6ε
1/4
wdc < 1.

Then we obtain

−1

4
D−vxL(x)‖vx‖2 ≥

9

2
‖hx,x0

‖2
n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2) +

9439

2

n6εwdc

22n
[max(‖x‖2, ‖x0‖2)]2 > 0,

or equivalently,

D−vxL(x)‖vx‖2 < 0,

with probability at least 1− 4c4 exp(−u) when we set

λ ≥4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/εwdc), (43)

m ≥c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2wdc. (44)

Next, we need to prove that ∀w 6= 0, DwL(0) < 0. We compute the directional derivative as

1

2
DwL(0) · ‖w‖2 =− lim

xN→0

λ

m

m∑
i=1

yi〈ai, HxN (w)〉

= lim
xN→0

〈G(x0), HxN (w)〉 − λ

m

m∑
i=1

yi〈ai, HxN (w)〉 − 〈G(x0), HxN (w)〉

≤ lim
xN→0

∣∣∣∣∣〈G(x0), HxN (w)〉 − λ

m

m∑
i=1

yi〈ai, HxN (w)〉

∣∣∣∣∣− 〈G(x0), HxN (w)〉

≤ε
(

1

2
+ εwdc

)n/2
‖w‖2 −

1

4π

1

2n
‖w‖2‖x0‖2

≤ 1

2n/2
ε(1 + 2nεwdc)‖w‖2 −

1

4π

1

2n
‖w‖2‖x0‖2,

where the first inequality is due to (40), and the second inequality is due to (34) in Lemma D.4. Now we still let ε = εwdc,
then 576π2n6εwdc ≤ 1 (which is guaranteed by the condition 88πn6ε

1/4
wdc < 1). If w 6= 0, setting λ and m satisfying (43)
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and (44), the following holds with probability at least 1− c4 exp(−u),

1

2
DwL(0) · ‖w‖2 ≤

1

2n/2
εwdc(1 + 2nεwdc)‖w‖2 −

1

4π

1

2n
‖w‖2‖x0‖2

≤ 1

2n
√
εwdc(1 + 2nεwdc)‖w‖2‖x0‖2 −

1

4π

1

2n
‖w‖2‖x0‖2

≤ 1

2n
3n3
√
εwdc‖w‖2‖x0‖2 −

1

4π

1

2n
‖w‖2‖x0‖2

≤− 1

8π

1

2n
‖w‖2‖x0‖2 < 0,

where the first inequality is due to the condition that εwdc < 2−n‖x0‖22. This implies that

DwL(0) < 0,∀w 6= 0.

Summarizing the results in Case 1, we have that, if we let λ and m satisfying (43) and (44), the following holds with
probability at least 1− 5c4 exp(−u),

D−vxL(x) < 0,∀x /∈ B(x0, 616n3ε
1/4
wdc‖x0‖2) ∪ B(−ρnx0, 5500n14ε

1/4
wdc‖x0‖2) ∪ {0},

DwL(0) < 0,∀w 6= 0.

Case 2: ‖x0‖2 ≤ 2n/2ε
1/2
wdc, or equivalently εwdc ≥ 2−n‖x0‖22. This condition means ‖x0‖ is very small and close to 0.

Then, for any z, we would similarly have

−1

4
D−vxL(x)‖vx‖22 ≥

1

2
‖hx,x0

‖2

[
‖hx,x0

‖2 − 2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)]

+
1

2

‖hx,x0
‖22 − 2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)2
 .

For any non-zero x satisfying x /∈ S121n4
√
εwdc,x0

, which can further imply that ‖hx,x0‖2 >

121n42−nεwdc max(‖x‖2, ‖x0‖2), we have

−1

4
D−vxL(x)‖vx‖22 ≥

1

2
‖hx,x0

‖2

[
25
n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)− 2ε

(
1

2
+ εwdc

)n/2]

+
1

2

[
53
n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)−

√
2ε

(
1

2
+ εwdc

)n/2]

·

[
‖hx,x0

‖2 +
√

2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)]
.

Furthermore, for any x satisfying ‖x‖2 ≥ 2n/2
√
εwdc, we have

‖x‖2 ≥ 2n/2
√
εwdc ≥ ‖x0‖, namely x /∈ B(0, 2n/2ε

1/2
wdc),
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which leads to

−1

4
D−vxL(x)‖vx‖22 ≥

1

2
‖hx,x0

‖2

[
25
n3
√
εwdc

2n
2n/2
√
εwdc − 2ε

(
1

2
+ εwdc

)n/2]

+
1

2

[
53
n3
√
εwdc

2n
2n/2
√
εwdc −

√
2ε

(
1

2
+ εwdc

)n/2]

·

[
‖hx,x0‖2 +

√
2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)]

=
1

2
‖hx,x0

‖2

[
25
n3εwdc

2n/2
− 2ε

(
1

2
+ εwdc

)n/2]

+
1

2

[
53
n3εwdc

2n/2
−
√

2ε

(
1

2
+ εwdc

)n/2]

·

[
‖hx,x0‖2 +

√
2

(
ε

(
1

2
+ εwdc

)n/2
+ 48

n3
√
εwdc

2n
max(‖x‖2, ‖x0‖2)

)]
.

We let ε = εwdc. Then we have ε(1/2 + εwdc)
n/2 ≤ 3nεwdc2

−n/2, which consequently results in

−1

4
D−vxL(x)‖vx‖22 > 0,

or equivalently,

D−vxL(x)‖vx‖22 < 0.

Note that in the above results, we also apply (40) in deriving the inequalities. Therefore, summarizing the above results in
Case 2, we have that, if we let λ andm satisfying (43) and (44), the following holds with probability at least 1−4c4 exp(−u),

D−vxL(x) < 0, ∀x /∈ B(x0, 616n3ε
1/4
wdc‖x0‖2) ∪ B(−ρnx0, 5500n14ε

1/4
wdc‖x0‖2) ∪ B(0, 2n/2ε

1/2
wdc),

which completes the proof.

E. Proof of Theorem 3.10
The proof of Theorem 3.10 is mainly based on Lemmas D.1 and D.2 proved in the last section and two additional lemmas in
the previous literature (Huang et al., 2018) given as below.

E.1. Lemmas for Theorem 3.10

Lemma E.1 ((Huang et al., 2018)). Fix 0 < ψ ≤ 1
4π . For any ϕ, ζ ∈ [ρn, 1], it holds that

〈x, hx,x0
〉 − 1

2n+1
‖x‖22 ≤

1

2n+1

(
ϕ2 − 2ϕ+

10π2n

K3
0

ψ

)
‖x0‖22,∀x ∈ B(ϕx0, ψ‖x0‖2)

〈z, hz,x0
〉 − 1

2n+1
‖z‖22 ≥

1

2n+1
(ζ2 − 2ζρn − 10π2n3ψ)‖x0‖22,∀z ∈ B(−ζx0, ψ‖x0‖2)

where K0 = minn≥2 ρn, and ρn is defined in Lemma D.3.

Lemma E.2 ((Huang et al., 2018)). For all n ≥ 2, there exists a constant K1 such that

1

K1(n+ 2)2
≤ 1− ρn.
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E.2. Proof Sketches of Theorem 3.10

Our proof of Theorem 3.10 is sketched as follows:

• We first show that L(x) can be approximated as 2〈hx,x0
, x〉 − ‖G(x)‖22 by the two critical lemmas, Lemma D.1 and

Lemma D.2.

• Then we bound the approximation error |L(x)− 2〈(hx,x0
, x〉 − ‖G(x)‖22)|, where hx,x0

is defined in (30).

• By Lemmas E.1, E.2, we have that if x and z are around x0 and −ρnx0 respectively, by considering the approximation
errors, the upper bound of L(x) is smaller than the lower bound of L(z), which further leads to L(x) < L(z) with
high probability.

E.3. Detailed Proof of Theorem 3.10

Proof of Theorem 3.10. By (35) in Lemma D.4, we have have

‖G(x)‖2 ≤ (1/2 + εwdc)
n/2‖x‖2, (45)

combining which and the assumption ‖x0‖2 ≤ R(1/2 + εwdc)
−n/2 in Theorem 3.10, we further have

‖G(x0)‖2 ≤ R.

By Lemma D.1 and ‖G(x0)‖2 ≤ R, we set

λ ≥ 4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/ε),

and z = x in Lemma D.1 such that Hx(x) = G(x), and the following holds for any x,

|λE[yi〈ai, G(x)〉]− 〈G(x0), G(x)〉| ≤ 1

4
ε‖G(x)‖2. (46)

According to Lemma D.2 and |G(x0)| ≤ R, we have that with probability at least 1− c4 exp(−u), for any x, the following
holds: ∣∣∣∣∣ λm

m∑
i=1

yi〈ai, G(x)〉 − λE[yi〈ai, G(x)〉]

∣∣∣∣∣ ≤ ε

8
‖G(x)‖2, (47)

with sample complexity being

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

where we also set z = x in Lemma D.2 such that Hx(x) = G(x).

Combining (46) and (47), we will have that with probability at least 1− c4 exp(−u), for any x, setting

λ ≥ 4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/ε),

and

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2,

the following holds: ∣∣∣∣∣ λm
m∑
i=1

yi〈ai, G(x)〉 − 〈G(x0), G(x)〉

∣∣∣∣∣ ≤ ε‖G(x)‖2. (48)
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Bounding the error term: We next bound the term |L(x) + ‖G(x)‖22 − 2〈hx,x0
, x〉| as follows. With λ, m satisfying the

same conditions above, then with probability at least 1− c4 exp(−u) , the following holds:∣∣L(x) + ‖G(x)‖22 − 2〈hx,x0 , x〉
∣∣

=

∣∣∣∣∣2‖G(x)‖22 −
2λ

m

m∑
i=1

yi〈ai, G(x)〉 − 2〈hx,x0
, x〉

∣∣∣∣∣
=

∣∣∣∣∣2〈G(x0), G(x)〉 − 2λ

m

m∑
i=1

yi〈ai, G(x)〉+ 2‖G(x)‖22 − 2〈G(x0), G(x)〉 − 2〈hx,x0 , x〉

∣∣∣∣∣ .
Furthermore, we bound the above terms as follows∣∣∣∣∣2〈G(x0), G(x)〉 − 2λ

m

m∑
i=1

yi〈ai, G(x)〉

∣∣∣∣∣+
∣∣2‖G(x)‖22 − 2〈G(x0), G(x)〉 − 2〈hx,x0

, x〉
∣∣

≤ 2ε‖G(x)‖2 + 48
n3
√
εwdc

2n
‖x‖22 + 48

n3
√
εwdc

2n
‖x0‖2‖x‖2

≤ 2ε

(
1

2
+ εwdc

)n/2
‖x‖2 + 48

n3
√
εwdc

2n
‖x‖22 + 48

n3
√
εwdc

2n
‖x0‖2‖x‖2

≤ 2ε
1 + 2nεwdc

2n/2
‖x‖2 + 48

n3
√
εwdc

2n
‖x‖22 + 48

n3
√
εwdc

2n
‖x0‖2‖x‖2,

where the second inequality is due to (48) and (33) in Lemma D.4, the third inequality is due to (45), and the last inequality
is due to (1 + 2εwdc)

n/2 ≤ enεwdc ≤ 1 + 2nεwdc if εwdc is sufficiently small satisfying the condition of Theorem 3.10.
This result implies

∣∣L(x) + ‖G(x)‖22 − 2〈hx,x0
, x〉
∣∣ ≤ 2ε

1 + 2nεwdc

2n/2
‖x‖2 + 48

n3
√
εwdc

2n
‖x‖22 + 48

n3
√
εwdc

2n
‖x0‖2‖x‖2.

Since we only consider the case that εwdc ≤ 2−n‖x0‖22. Letting ε = εwdc, we have∣∣L(x) + ‖G(x)‖22 − 2〈hx,x0
, x〉
∣∣

≤ 2εwdc
1 + 2nεwdc

2n/2
‖x‖2 + 48

n3
√
εwdc

2n
‖x‖22 + 48

n3
√
εwdc

2n
‖x0‖2‖x‖2

≤ 2
√
εwdc

1 + 2nεwdc

2n
‖x0‖2‖x‖2 + 48

n3
√
εwdc

2n
‖x‖22 + 48

n3
√
εwdc

2n
‖x0‖2‖x‖2 (49)

with probability 1− c4 exp(−u) if we set

λ ≥ 4 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1} log(64 max{c1(R‖a‖ψ1
+ ‖ξ‖ψ1

), 1}/εwdc), and (50)

m ≥ c2‖a‖2ψ1
λ2 log2(λm)(kn log(ed) + k log(2R) + k logm+ u)/ε2wdc. (51)

Upper bound of L(x): For any x ∈ B(ϕx0, ψ‖x0‖2) with 0 < ψ ≤ 1/(4π) and any ϕ ∈ [ρn, 1], we have

L(x) =2〈x, hx,x0
〉 − ‖G(x)‖22 +

(
L(x)− 2〈x, hx,x0

〉+ ‖G(x)‖22
)

=2〈x, hx,x0〉 −
1

2n
‖x‖22 −

(
‖G(x)‖22 −

1

2n
‖x‖22

)
+
(
L(x)− 2〈x, hx,x0

〉+ ‖G(x)‖22
)

≤2〈x, hx,x0
〉 − 1

2n
‖x‖22 +

∣∣∣∣‖G(x)‖22 −
1

2n
‖x‖22

∣∣∣∣+
∣∣L(x)− 2〈x, hx,x0

〉+ ‖G(x)‖22
∣∣

≤ 1

2n
(ϕ2 − 2ϕ+

10π2n

K3
0

ψ)‖x0‖22 +

∣∣∣∣‖G(x)‖22 −
1

2n
‖x‖22

∣∣∣∣+
∣∣L(x)− 2〈x, hx,x0

〉+ ‖G(x)‖22
∣∣ ,
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where the last inequality is due to Lemma E.1 and (45). In addition, we can also obtain∣∣L(x)− 2〈x, hx,x0〉+ ‖G(x)‖22
∣∣

≤
√
εwdc

1 + 2nεwdc

2n
‖x0‖2‖x‖2 + 24

n3
√
εwdc

2n
‖x‖22 + 24

n3
√
εwdc

2n
‖x0‖2‖x‖2

≤ 2
√
εwdc

1 + 2nεwdc

2n
(ϕ+ ψ)‖x0‖22 + 48

n3
√
εwdc

2n
(ϕ+ ψ)2‖x0‖22 + 48

n3
√
εwdc

2n
(ϕ+ ψ)‖x0‖22

≤ 122
n3
√
εwdc

2n
‖x0‖22,

and ∣∣∣∣‖G(x)‖22 −
1

2n
‖x‖22

∣∣∣∣ ≤ 24
n3
√
εwdc

2n
‖x‖22 ≤ 30

n3
√
εwdc

2n
‖x0‖2,

due to ‖x‖2 ≤ (ϕ+ ψ)‖x0‖2 when x ∈ B(ϕx0, ψ‖x0‖2) and ϕ+ ψ ≤ 1 + 1/(4π) < 1.1 , and (33) in Lemma D.4.

Combining the above results and letting λ and m satisfy (50) and (51), the following holds with probability at least
1− c4 exp(−u),

L(x) ≤ 1

2n
(ϕ2 − 2ϕ+

10π2n

K3
0

ψ + 152n3
√
εwdc)‖x0‖22,

for any x ∈ B(ϕx0, ψ‖x0‖2).

Lower bound of L(z): Next, we should the lower bound of L(z) when z is around −ρnx0. Consider the situation for any
z ∈ B(−ζx0, ψ‖x0‖2) with 0 < ψ ≤ 1/(4π) and any ζ ∈ [ρn, 1]. We can obtain

L(z) =2〈z, hz,x0
〉 − ‖G(z)‖22 +

(
L(z)− 2〈z, hz,x0

〉+ ‖G(z)‖22
)

≥2〈z, hz,x0〉 − ‖G(z)‖22 −
∣∣L(z)− 2〈z, hz,x0〉+ ‖G(z)‖22

∣∣
=2〈z, hz,x0

〉 − 1

2n
‖z‖22 −

(
‖G(z)‖22 −

1

2n
‖z‖22

)
−
∣∣L(z)− 2〈z, hz,x0

〉+ ‖G(z)‖22
∣∣

≥2〈z, hz,x0
〉 − 1

2n
‖z‖22 −

∣∣∣∣‖G(z)‖22 −
1

2n
‖z‖22

∣∣∣∣− ∣∣L(z)− 2〈z, hz,x0
〉+ ‖G(z)‖22

∣∣
≥ 1

2n
(ζ2 − 2ζρn − 10π2n3ψ)‖x0‖22 −

∣∣∣∣‖G(x)‖22 −
1

2n
‖x‖22

∣∣∣∣− ∣∣L(x)− 2〈x, hx,x0〉+ ‖G(x)‖22
∣∣ ,

where the last inequality is due to Lemma E.1. Furthermore, similar to the previous steps in the upper bound of L(x), we
have ∣∣L(z)− 2〈z, hz,x0〉+ ‖G(z)‖22

∣∣ ≤ 122
n3
√
εwdc

2n
‖x0‖22,

and ∣∣∣∣‖G(z)‖22 −
1

2n
‖z‖22

∣∣∣∣ ≤ 30
n3
√
εwdc

2n
‖x0‖2,

due to ‖z‖2 ≤ (ζ + ψ)‖x0‖2 when z ∈ B(−ζx0, ψ‖x0‖2) and ζ + ψ ≤ 1 + 1/(4π) < 1.1.

Combining the above results, letting λ and m satisfy (50) and (51), the following holds with probability at least 1 −
c4 exp(−u),

L(z) ≥ 1

2n
(ζ2 − 2ζρn − 10π2n3ψ − 152n3

√
εwdc)‖x0‖22,

for any z ∈ B(−ζx0, ψ‖x0‖2).
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Proving L(x) < L(z): In order to have L(x) < L(z), it is enough to ensure that

min
ζ∈[ρn,1]

1

2n
(ζ2 − 2ζρn − 10π2n3ψ − 152n3

√
εwdc)‖x0‖22

> max
ϕ∈[ρn,1]

1

2n
(ϕ2 − 2ϕ+

10π2n

K3
0

ψ + 152n3
√
εwdc)‖x0‖22.

The minimizer for the left side of the above inequality is ϕ = ρn while the maximizer for the right side is also ζ = ρn.
Then, to achieve the above inequality, we plug in the minimizer and maximizer for both sides and obtain

ρ2n − 2ρ2n − 10π2n3ψ − 152n3
√
εwdc > ρ2n − 2ρn +

10π2n

K3
0

ψ + 152n3
√
εwdc.

Rearranging the terms, we would obtain

2ρn − 2ρ2n >

(
10π2n3 +

10π2n

K3
0

)
ψ + 304n3

√
εwdc.

To make the above inequality hold for all ρn, by computing the minimal value of the left-hand side according to Lemma E.2,
we require εwdc to satisfy

2K0

K1(n+ 2)2
>

(
10π2n3 +

10π2n

K3
0

)
ψ + 304n3

√
εwdc.

Due to n+ 2 ≤ 2n and n ≤ n3 (since we assume n > 1), it suffices to ensure

K0

4K1n2
>

(
10π2n3 +

10π2n3

K3
0

)
ψ + 304n3

√
εwdc,

which can be, therefore, guaranteed by the condition

35
√
K1/K0n

3ε
1/4
wdc ≤ 1 and ψ ≤ K0

50π2K1(1 + 1/K3
0 )
n−5.

Thus, under the condition of Theorem 3.10, for any x ∈ B(ϕx0, ψ‖x0‖2) and z ∈ B(−ζx0, ψ‖x0‖2), letting λ and m
satisfy (50) and (51), with probability at least 1− 2c4 exp(−u), we have

L(x) < L(z).

Note that the radius ψ satisfies ψ < K0 := ρn, which means there are no overlap between B(ϕx0, ψ‖x0‖2) and
B(−ζx0, ψ‖x0‖2). This is because by Lemma E.2, we know that 1/K1 ≤ (n + 2)2 ≤ 4n2. Therefore, ψ ≤
K0n

−5/(50π2K1(1 + 1/K3
0 )) ≤ K0n

−3 < K0 when n ≥ 2. This completes the proof.


