Robust One-Bit Recovery via ReLU Generative Networks

Supplementary Material

A. Omitted Details

The matrix M3,z in the definition of WDC (Definition 3.7) is defined as

cos Z(x,z) sinZ(z,z) 0
Moz :=U" |sinZ(x,2) —cos”(x,z) 0 U,
0 0 Op—2)x(p-2)
where the matrix U denotes a rotation matrix such that UZ = e; and UZ = cos Z(x,2) - e1 + sin Z(z, z) - ex with
e = [1,0,---,0]" and e = [0,1,0,---,0]". Moreover, if Z(x,z) = 0 or Z(z, 2) = 7, then we have M5,z = 77" or
Ms s = —z2 | respectively.

To verify Theorems 3.8 and 3.10, we illustrate the landscape of L(z) in Figure 1. The simulation is based on a large sample
number m — o0, which intends to show the expectation of the risk L(z). We are more interested in Case 1 of Theorem
3.8, where z can be potentially recovered. By letting xo = [1,1] T which is sufficiently far away from the origin, Figure 1
shows that there are no stationary points outside the neighbors of x( and its negative multiple and the directional derivatives
along any directions at the origin are negative, which matches the Case 1 of Theorem 3.8. In addition, the function values

at the neighbor of x is lower than that of its negative multiple, which therefore verifies the result in Theorem 3.10. The
landscape will further inspire us to design efficient algorithms to solve the ERM in (4).
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Figure 1. lllustration of landscape for L(z). We build a two-layer ReLU network G/(-) with input zo where zo = [1,1]", Gaussian
weights Wy € R%%2 and Wy € R'024%64 gych that k = 2 and d = 1024. The samples {(a;, y;)}iz, are generated via standard

Guassian vector a; and y; = sign({a;, G(zo)) + & + 7;) with noise & ~ N(0,0.01), dithering 7; ~ Unif[—10, 10], and a large sample
number m — oco.

B. Proof of Theorem 3.2

In this section, we provide the proofs of the two key lemmas, i.e., Lemma 4.1 and Lemma 4.2 as well as other supporting

lemmas. The proof of Theorem 3.4 is immediately obtained by following Lemma 4.1 and Lemma 4.2 as shown in Section
§4.1.

B.1. Bias of the Expected Risk

We prove Lemma 4.1 in this subsection.
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Lemma B.1 (Lemma 4.1). There exists an absolute constant ¢y > 0 such that the following holds:
1
’E[yx% G(z) = G(20))] = 1{G(20), G(2) = G(20))

< yJerlllally, R + [€llpy) (V2O + 1) + 2)e= 2l BHIED ) G (2) — Gao) 2.

Furthermore, for any € € (0,1), if \ > 4Cy ¢ g - 1og(64C, ¢ g - €~ *) where Cy ¢ g = max{ci(R||aly, + |||y, ), 1}, and
IG(z) — G(x0)l||2 > &, then, we have

G ()3 = G (zo)lI3 — 2AE[y; (as, G(2) — G(x0))] = %IIG(x) — G(ao)|I3.

Proof of Lemma 4.1. Recall that y; = sign({a;, G(x0)) +&; + 7;). For simplicity of notations, we set V; = (a;, G(z0)) +¢&;
and Z; = {a;, G(z) — G(x0)). Note first that due to the independence between V; and 7;, we have

: Vi
E[sign(V; + 7:)|Vi] le{\mg,\} +1visay — vi<c—ny

Vi Vi
=5~ 3 Lvisay T sy — Lvicoay

Thus, we have

E[Z;Vi]
A

E[Z; sign(V; + 73)] —

ZiVi
‘—E[ 3 1{|w>x}] +E[Zilisn] —E[Z1vsn)

+2[E[Zilgv,>x]]

Z;V;
= ‘E{Al{vﬁl»}}

< 1 Zillz, - [Vilgvisay Iz,
- A

+ 2] Zi|| L, Pr(|Vi| > M2, (12)

where the last line follows from Cauchy-Schwarz inequality. Now we bound these terms respectively. First of all, by the
isotropic assumption of a;, we have

1/2

1Zillz, = {E[l{ai, G(z) = G(wo))[]} " = [G(2) — G(xo0)]l2-

Next, we have
1/2 e 1/2
Vitguisayllz. = B[V 1gusn] = (/A wzdP(w)>

o 1/2 %) 1/2
= <2/ wP(|Vi| > w)dw) < (261/ we_w/l<“"’G(’”°)>+§i|w1dw>
A A

S \/261 ()\ + 1)” <a’ia G('TO)> + giH’l/11eiA/2”<ai’G(IO)>+§inl )

where the second from the last inequality follows from sub-exponential assumption of {a;, G(z¢)) + & and ¢; > 0 is an
absolute constant. Note that

@i, G(20)) + &illwy < [Kai; G(@o))lly, + [1€illwy < llally, [IG(@o)ll2 + IEllvs < lally, B+ (€]l

where we use the assumption that ||G(x)||2 < R. Substituting this bound into the previous one gives

Vit guapsay e < /26100 D(llalloy B+ (€], o>/ 20bonRHEl),

Furthermore,

Pr(Vi| > 272 < yfea(lally, R+ [l Je/ 2ol Rrlele),
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Overall, substituting the previous computations into (12), we obtain
E[Z;Vi]
A
= \/Cl(llallwlR + 1€l ) (V2O + 1) /A + 2)e 2l IO G (2) — Glao) |2,

finishing the first part of the proof.

‘E[Zi sign(V; + 7)) —

To prove the second part, we need to compute
‘QAE[yi<ai7 G(z) — G(x0))] — 2(C(x0), G(z) — G(:c(,»‘ - Q‘AE[Zi sign(V; + )] — E[Z;V;]].
Note that when ¢ < 1 and
A = dmax{cr(Rllally, + [I€]l4,), 1} log(64 max{cy (Rllally, + [[€]ly.,), 1}/€)-
One can check that
IAE[Z; sign(V; + 7i)] — E[Z;Vi]|
\/61(||a||wlR 1€ ) (V2N + 1) + 2X0) e 2l BHIEIv) || G(2) — G(0) |2
116 @) ~ Glao)ll

IN

IN

Thus, it follows
IG(@)I3 = |G(w0)lI3 — 2AE[y:(ai, G(x) — G(20))]
> [|G(@)II5 = |G(@o)lI3 — 2(G (o), G(x) — G(ao)) — %e\IG(I) — G(xo)l2
= 1G(z) = G(o)[13 ~ %EIIG(IE) = G(zo)ll2-

Thus, when ||G(x) — G(z0)l||2 > ¢ the second claim holds. O

B.2. Analysis of Variances: Uniform Bounds of An Empirical Process

Our goal in this subsection is to prove Lemma 4.2. Note that one can equivalently write the {G(x¢) : ||G(z0)||2 < R, o €
R*} as G(R*) NBY(R), where BE(R) denotes the £3-ball of radius R. The strategy of bounding this supremum is as follows:
Consider a §-covering net over the set G(R*) N BZ(R), namely N (G(R¥) N BE(R), §), and bounding the supremum over
each individual covering ball. The ¢ value will be decided later.

B.2.1. BOUNDING SUPREMUM UNDER FIXED SIGNS: A COVERING NET ARGUMENT

First of all, since for any point # € G(R*) N BY(R), there exists a v € R* such that # = G(v), we use G(v) to denote any
point in the net N'(G(R*) N B4(R), §). We replace each sign({a;, G(z0)) + & + 7i) by sign({a;, G(v)) + & + 7;) and
have the following lemma regarding the supremum for each fixed G(v):

Lemma B.2. Let ¢, c; > 0 be some absolute constants. For any u > 0 and fixed G(v), the following holds with probability
at least 1 — 2 exp(—u — coknlog ed),

LS esign({as, G(v)) + & + 7:)(ai, G(x) — G(x0))]

sup

ERE, zERK 1G(2) = G(zo) 2
< \/8(u + cknlog(ed)) n 4|\a||yp, (v + cknlog(ed))
- m m '

Proof of Lemma B.2. First of all, since v is fixed and ¢; is independent of sign({a;, G(v))+&;+7;), it follows the distribution
of €; is the same as the distribution of ¢; sign({a;, G(v)) +&; +7;). Thus, it is enough to work with the following supremum:

sup |%Zz”;1 €i<ai,G(,I) - G(l’o)>|
sernmezs 1G@ - G@olz
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To this point, we will then use the piecewise linear structure of the ReLU function. Note that the ReLU network has n layers
with each layer having at most d nodes, where each layer of the network is a linear transformation followed by at most d
pointwise nonlinearities. Consider any node in the first layer, which can be written as max{(w, ), 0} with a weight vector
w and an input vector z, splits the input space R” into two disjoint pieces, namely P; and P», where for any input in P, the
node is a linear mapping (w, =) and for any input in Ps is the other linear mapping (0, ).

Thus, each node in the first layer corresponds to a splitting hyperplane in R*. We have the following claim on the number of
possible pieces split by d hyperplanes:

Claim 1: The maximum number of pieces when splitting R* with d hyperplanes, denoted as C(d, k), is

c(d,k) = (g) ; (f) - @

The proof of this claim, which follows from, for example (Winder, 1966), is based on an induction argument on both d and
k and omitted here for brevity. Note that C(d, k) < d* + 1. For the second layer, we can consider each piece after the first
layer, which is a subset of R¥ and will then be further split into at most d* + 1 pieces. Thus, we will get at most (d* + 1)2
pieces after the second layer. Continuing this argument through all n layers and we have the input space R* is split into at

most (d* + 1) < (2d)*" pieces, where within each piece the function G(-) is simply a linear transformation from R* to
RY.

Now, we consider any two pieces, namely P;, Py C R*. from the aforementioned collection of pieces, and aim at bounding
the following quantity:

sup |% ZZHZI i <a‘ia G(tl) - G(t2)>|
t1E€P1,t2€P2 ||G(t1) — G<t2)||2

By the previous argument, we know that within 7; and Ps, the function G(-) can simply be represented by some fixed linear
maps W; and Wy, respectively. As a consequence, it suffices to bound

sup |% Zzn;l eila;, Wity — W2t2>’
t1E€P1,t2EP2 Wity — Wats]|2
< o lmZimacilen Wit — Wats)|
T ), to€RF |Wit1 — Watsal|2

< sup ’% Z?ll eilai, W0t>|
" tcR2k [[Wot|l2

where Wy := [Wy, — Wh], and the last inequality follows from concatenating ¢; and ¢ to form a vector ¢ € R?* and then
expanding the set to take supremum over ¢ € R?", Let 5, be the subspace in R? spanned by the 2k columns of Wy, then,
the above supremum can be rewritten as

m

;;Ei<aiab> .

To bound the supremum, we consider a 1/2-covering net of the set £2¥ N S¢~1, namely, N'(£2* N S?~1,1/2). A simple
volume argument shows that the cardinality [NV (2% N S?~1,1/2)| < 32k,

E, = sup
beE2kNSd—1

By Bernstein’s inequality (Lemma B.6), we have for any fixed b € N (£2F N S91,1/2),

1 2u’ HaHll)lu/ —u’
Pr El:zlgl<a“b> Z Z—i—T §26 .

Taking v’ = u + ckn log(ed) for some ¢ > 6, we have with probability at least 1 — 2 exp(—u — ckn log(ed)),

li&%w - \/2(u+ckn10g(ed)) . llally, (u + ckn log(ed))
m =1 m m
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Taking a union bound over all b € N (£2*NS?~1 1/2), we have with probability at least 1 —2 exp(—u—cknlog(ed))-32% >
1 —2exp(—u — c1knlog(ed)) for some absolute constant ¢; > 2.

sup Z& (an b \/2(u+cknlog(ed)) n la||yp, (v + clmlog(ed))' (13)
bEN(gmcnSd 1,1/2) m m
Let Py (+) be the projection of any point in £2¥ N S9! onto N (£2* N S?~1,1/2). we have
1 m
E, < sup —» gi{a;, by + gi{ai, b — Prn (D))
" beN (£2kNSa—1,1/2) mz o bes%msd 1 Z o
1 - Ei<ai,b—PN(b)>
< sup — (ai, b + = il
beN (£2FNSa—1,1/2) Z 2 pegrnsa-1|m ; b — Prr(b)]|2
1 1
< sup = stai, )|+ 5 Em, (14)
bEN (£20NSd=1,1/2) | T 2

where the second inequality follows from the homogeneity of the set £2¥ N S~! under constant scaling. Combining (13)
and (14) gives

m

sup 1 Z cilaib)| < 2\/2(u + cknlog(ed)) n 2||a||, (u + cknlog(ed)) .
beE2knsd—1 [N P m m
Taking a further union bound over at most (2d)*" different pair of subspaces Py, P, finishes the proof. O

B.2.2. COUNTING THE SIGN DIFFERENCES: A VC-DIMENSION BOUND

In this section, we consider all possible sign changes replacing each sign({a;, G(xq))+&; +7;) by sign({a;, G(v))+& +7:),
where we recall G (v) is a nearest point to G(x) in N'(G(R*) N B4(R), 6).

First of all, since 7; ~ Unif[—\, 4+ ], for any > 0, defining a new random variable X; := (a;, G(v)) + & which is thus
independent of 7;, forall: = 1,2, --- , m, we have

Pr(|(ai,G(v)) + & + 7| <) =Pr(-=n < X +7 <) <

>/\3

by computing the integral of the probability density functions of X; and 7; in —n < X; + 7; < 7. Using Chernoff bound
(Lemma B.38), one has with probability at least 1 — exp(—nm/3X),

2n
Z (e, c)) +&+mi]>n} = (1 - A) m. (15)

Next, we prove the following lemma:

Lemma B.3. Let 1,0 > 0 be chosen parameters. For any u > 0 and fixed G(v), the following holds with probability at
least 1 — 2 exp(—u),

sup Z 1{(ai,G(z0) =G ) |20} < M- Pr([{as, 2)| > n/0) + L\/(k:n log(ed) + u)m
2o ERK ||G(20)—G (v) ‘2<6’L 1

where z is any fixed vector in BY(1) and L > 1 is an absolute constant.

This lemma implies that the counting process {1{|(a,,G(z0)—G(v))|>n} } i1 €NjOYS a tight sub-Gaussian uniform concentration.
The proof relies on a book-keeping VC dimension argument.
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Proof of Lemma B.3. First of all, let T’ = G(R¥), and it suffices to bound the following supremum:
sup 1 a;i,t)|>
te(T— T)ﬂBd(é); it nlzn}

Let 7 be the set of all distinctive pieces split by G(-). By the same argument as that of Lemma B.2, the cardinality of 7 is
at most (d* + 1)" < (2d)*", and we have

sup Lgi(as,00]>
te(T—T)NBg (a); ttassizn}

< sup Zl{l (ai,t)|=n}
Pl,PQETtE(Pl PQ)O]B (5)2 1

< sup Zl{\ (@i t)|>n}
P1, P2€T, t€dfﬁne(731 PQ NB2 (6) i=1

— sup Z 1{| (a; t)|>n/d}>
P1, P2€T, teaffine(P1 —P2)NBZ (1) ;71

where affine(P; — P2) denotes the affine subspace spanned by P; — P, which is of dimension at most 2k. To this point,
define ai” := {a;}", define the set

C:={t:t € affine(P; — P2) NBI(1),P1, P2 € T}, (16)
and define an empirical process
1 m
R(al" 1) = —> " (Lj@eniznar — E[Lanizas]) -
i=1

Our goal is to bound

sup [R(ai",1)|.
teC

By symmetrization inequality (Lemma B.7) it suffices to bound

sup )\ Z&l{|<al,t>|>n/é}

where {¢}"; are i.i.d. Rademacher random variables. Define the set of indicator functions:
F=A{1q(nizn/s + tECH

By Hoeffding’s inequality, the stochastic process m /2 > €i1{|(a;,t)|>n/5} Parametrized by F when fixing a7" is a
sub-Gaussian process with respect to the empirical Lo metric:

m

17 = 0l ot = | = D (Flas) — glai))?, Vfg € F.
=1

By Lemma B.9, one can easily derive the following bound:

Co /2
E|sup |R(a}", t)|| < —= \/10 N, F, |- de, (17)
sup R 0l] < 52 [\ foe Ve 7T )
where N'(e, F, || - ||L,(p.,)) is the e-covering net of 7 under the empirical Ly-metric. By Haussler’s inequality (Theorem

2.6.4 of (Wellner et al., 2013)),

2V (F)
NG Fo - sl < CLV(F)(de)V ) (1> ,

£
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where V(F) is the VC dimension of the class F and C} is an absolute constant. To compute V' (F), note first that for any
fixed P1, P2 € T and any fixed constant ¢, the VC dimension of the class of half-spaces defined as

H = {(,t) > c: t € affine(Py — Py)}

is bounded by 2k. Thus, for any p points on R and the number of different subsets of these points picked by H’ is bounded
by (p + 1)2*. Next, note that any element in the class

H = {|(-,t)] > c: t € affine(P; — P2)}
is the intersection of two halfspaces in H’. Thus, the number of different subsets of p points picked by H is bounded by

((p+ 1)%

5 ) <ep+ 1) /4 <2(p+ 1),

Taking into account that the class F is the union of at most (2d)?*" different classes of the form
{1010y 12n/0) ¢ 1 € affine(P1 —Ps)},

we arrive at the conclusion that the number of distinctive mappings in F from any p points in R¥ to {0, 1}? is bounded by
2d2k" (p + 1)**. To get the VC dimension of F, we try to find the smallest p such that

247" (p 4+ 1)" < 27,

A sufficient condition is to have 2kn log,(d) + 4k log,(p + 1) + 1 < p, which holds when p > ¢oknlog(ed) — 1 for some
absolute constant ¢ large enough. Thus, V(F) < ¢pknlog(ed). Thus, it follows
log IN(g, F, || |25 () )| < log C1 + log VI(F) + V/(F) log(4e) + 2V (F) log(1/¢)
< c1knlog(ed)(log(1/e) + 1),

for some absolute constant ¢; > 0. Substituting this bound into (17), and we obtain

knl d
B [sup R(a )| < cag T,
teC m

for some absolute constant co. Finally, by bounded difference inequality, we obtain with probability at least 1 — 2e™“,

knl d
sup R )] < B fsup R} )| + /2 < 1y FeEed
teC teC m m

finishing the proof. O

Combining Lemma B.3 and (15) we have the following bound on the number of sign differences:

Lemma B.4. Let u > 0 be any constant. Suppose m > ca\?(knlog(ed) + klog(2R) + u) for some absolute constant co
large enough and )\ > 1. Define the following parameters:

6 = —1—log(ciA/1), (18)

lally,

knlog(ed) + v

m= (O flaly, )2y EED (19)

and v’ > 0 satisfying

v’ = u+ knlog(ed) + klog(2R) + Cklog < (20)

_m
klog(ed) +u' )"
We have with probability at least 1 — exp(—cu) — 2 exp(—u),

1 — 4n
e D Lsian((a0 Gu) +é+m)Asien (o, Glao) +tr)} N
=1

where the supremum is taken over xo € R¥ |G (2¢) — G(v)|2 < §,G(v) € N(G(RF) NBE(R), §) and ¢, c;,C, L > 0
are absolute constants.
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Proof of Lemma B.4. We compute Pr(|(a;, z)| > n/d). By the fact that {(a;, z) is a sub-exponential random variable,

mm%m>w&«mm( L )

Sllally,
where ¢; > 0 is an absolute constant. We choose § according to (18), which implies

Pr(|(ai, 2)| > n/8) < =

X .
From Lemma B.3, we readily obtain with probability at least 1 — 2 exp(—u'),

- 7 knlog(ed) + u/
Sub 1{((an.Glao) -G 5my < | = + Ly ——2P T2 | . o
wOERkv”G(wO)*G’(v)HQS(S; I (o (v))=n} 2\ m

We will then take a further supremum over all G(v) € N(G(R¥) N BE(R), §). Note that by a simple volume argument,
N(G(RF) NBZ(R), §) satisfies

log [N (G(R*) NB3(R), 6)| < knlog(ed) + klog(2R/9).
Choose 7 according to (19). Then, By the aforementioned choices of 7 and § in (19) and (18), we obtain

m
I%W®§m%gmwm+w»

where C' is an absolute constant. Thus,

log [NV(G(R*) NB4(R), 6)| < knlog(ed) + klog(2R) + Cklog <Mog(;”M) . (22)

Finally, for any u > 0, take u’ so that it satisfies (20). By (21), we obtain that, with probability at least

1— 2exp (u — knlog(ed) — klog(2R) — Cklog (kbg(:lcw» :

the following holds

knlog(ed) + u’)
—|m.

m

S n
sup 1 a;,G(xo)—G(v))|> <|<+ L
ﬂcUERk,IlG(xo)—G(v)HzﬁtS; {l{ai,G(z0)=G(v))|2n} <>\

Taking a union bound over all G(v) € N (G(R*) NBZ(R), §), we get with probability at least 1 — 2 exp(—u),

m
n knlog(ed) + v/
e D (e Gleo)-G)) 20} < (A L e R
2o ERF,||G(20)—G(v)[[2<6,G(v)EN(G(RF)NBL(R), §) ;—1

Note that by definition of 7 in (19), L+/(knlog(ed) +u’)/m < 1/, and this readily implies with probability at least
1 — 2exp(—u),

e Z 1{(a;,G(z0)~G(v)) |20} < Tm. (23)
0 ERF,||G(20)—G(v)][2<6,G(v)EN(G(R*)NBL(R), §) ;—1

Moreover, taking a union bound over all G(v) € N(G(RF) N B4(R), §) in (15), we have with probability at least
1 — exp(log [N(G(R*) N BY(R), 6)| — nm/3))

>1—exp <kn log(ed) + klog(2R) 4+ Cklog <k:log(:3nd)—|—w) - nm/3)\> )
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one has

. m 277
o D Lo G +éatnizny = (1= S)m

(24)
G(v)EN(G(RF)MBE(R), §) =

1
Note that by assumption, we have m > ca\2(kn log(ed) + klog(2R) + ) /2 for some ¢ < 1 and some absolute constant
co large enough. Thus, it follows

nm

) —\/ (knlog(ed) + u")m

L m
¥ oom
Z3 \/(u + knlog(ed) + klog(2R) + Cklog — log(ed) + “/> "

>’ (u + knlog(ed) + klog(2R) + klog k;k)g(;TLCM) ’

where C” is an absolute constant related to L, ¢3, C, and the last inequality follows from the assumption that m > vkm >
Vklogm for any m > 1. Overall, when ¢ is large enough so that C’ > C, we have (24) holds with probability at least
1 — exp(—C"u). Overall, combining (23) and (24) we finish the proof. O

B.2.3. PUTTING BOUNDS TOGETHER: PROOF OF LEMMA 4.2
Lemma B.5 (Lemma 4.2). Suppose Assumption 3.1 holds and

m > cQ||a||12p1 A2 log? (Am)(knlog(ed) + klog(2R) + klogm + u)/e2, (25)
Sor some absolute constant co large enough, then, with probability at least 1 — cexp(—u),

sup | L5 esign((as, Gx0)) + & + 1) (ai, G(z) — G(x0))| < €
20€RF, |G (w0)|la <R, E€RF G(x) — G(z0)ll2 ~ 16N

where {&;}" | are i.i.d. Rademacher random variables and ¢ > 0 is an absolute constant.

Proof of Lemma 4.2. Let T be the set of indices such that sign({a;, G(v)) + & + ;) # sign({a;, G(z0)) + & + 7:). By
Lemma B.4, we know that |Z| < 4n/\. Now, we have with probability at least 1 — exp(—cu) — 2 exp(—u),

|50 esign((as, G(x0)) + & + 1) (ai, G(z) — G(x0))|

sup

o €RF, ||G(x0)||2< R, zERF |G(z) — G(z0)l|2
- ‘ | L5 eyl (ai, G(x) — G(mo))|
S sup
z€RF, xo€RF,G(v)EN (G(R*)NBL(R), 8) [G(z) — G(z0)|l2
N sup | S ealyi — i) (i, G(a) = G(xo))|
TE€RF 20 €RF, ||G(20)— G (v)[|2<8,G (v) EN (G(RF)NBL(R), §) 1G(x) — G(z0)|2
< | L 370 essign({as, G(v) + & + 7:)(ai, G(x) — G(xo))|
S sup
©ERF, 2o E€RF,G(v)EN (G(R*)NBL(R), 5) |G(z) — G(z0)|l2
M
[(ai, G G (o)
+ su
ceih mezh [ZISdn/A m Z |G (x xollz

an

where, for simplicity, we let y¥ := sign({a;, G(v)) + & + 7;) be the sign function associated with G(v) in the net in the
first inequality, and the second inequality is according to Lemma B.4.
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For the rest of the proof, we will bound (I) and (I) respectively. To bound (I), take u in Lemma B.2 to be kn log(ed) +
klog(2R) + Cklogm + u, we have with probability at 1 — 2 exp(—caknlog(ed) — klog(2R) — Cklogm — u), for a
fixed G(v), any z € R¥, 2y € R¥,

|L S eisign({ai, G(v)) + & + 7){ai, G(x) — G(z0))]
[G(z) — G(z0)|l2

< \/8(clm log(ed) + klog(2R) + Cklog m + u) n 4||a||y, (cknlog(ed) + klog(2R) + Cklogm + u)
o m m

)

where ¢, co, C' > 0 are absolute constants. Take a further union bound over all G(v) € N (G(RF) N BE(R), §) with the net
size satisfying (22), we have with probability at least 1 — 2 exp(—u),

(26)

M < \/8(ckn log(ed) + klog(2R) + Cklogm + u) N 4||al|y, (cknlog(ed) + klog(2R) + Cklogm + u)
- m m ’

Next, we will bound the term (II). Let ¢t = (G(z) — G(x0))/||G(z) — G(x0)||2 and it is enough to bound

i) iy E i
P mqmmZ'a (ant)] + Ef {as, B)])

xoERF, 20 ERF

It is obvious that |{a;,t)| — E[|(a;, t)|] is also a sub-exponential random variable with sub-exponential norm bounded by
2||al|y,» and E[|{a;,t)|] < 1. Thus, by Bernstein’s inequality,

2y/uz | 2||ally, us
| aw - awt)” S + ! )
I Z; 7 [

with probability at least 1 — 2 exp(—us). Thus,

1
fZI a;, t)| — Ef[{ai, t)[] < —(2v/u2l|Z| + 2||al|p, u2).

m
i€L
Here we take
Am m 1/2
:Cl—(2k1dk12R kl—) :
12 1108 (kn log(ed) + u’> ut 2knlog(ed) + klog(2R) + klog knlog(ed) + v’ vm
where C] is an absolute constant large enough and v’ satisfies (20). Using the fact that
7)< 2 <2L( + 2knlog(ed) + klog(2R) + k1 +)W\F
- A “ nicele 08 8 n log(ed) + u/ "
we have with probability at least
Am m 1/2
1—2exp (—Clog (o | (u+ 2knlog(ed) + klog(2R) + klog ;" :
P ( 1708 (lm log(ed) + u’) ut Zkn log(ed) + klog(2R) + klog knlog(ed) + u’) m)
the following holds:
‘ Z|a17 ) = E[[{ai, >|]‘
1€L

27)

A\ )\/u + 2knlog(ed) + klog(2R) + klog o ttara

< Cillally, log (knlog(ed) +u

m

To bound the maximum over |Z| < 47/, we take a union bound over all ( iy /\) possibilities, where

m - em 477m/)\_ A Anm/X\
dnm/N) — \dnm/\ “\7 '
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Thus, it follows from the definition of 7 in terms of A in Lemma B.4,

m < dnm o A
& dnm/N) — A gn
m

1/2 A
< L(u + 2knlog(ed) + klog(2R) + log m) -v/mlog (—),

knlog(ed) + u’
and when C; > L, the union bound gives, with probability at least

Am

1-— QBXP <_CQ log (lmlog(ed)—ku/

m 1/2
) (u + 2knlog(ed) + klog(2R) + log m) m) ’

the quantity

1 > ai, t)| — Ef|{as, )]

max
Z|I<4dn/A|1m
IZi<an/x | m &

is also bounded by the right hand side of (27) with a possibly different constant Cy, where t = (G(z) — G(x0))/||G(z) —
G(z0)]||2. Now, using the same trick as that of Lemma B.2, we obtain

Z| (ai,t a“t>|]‘

is bounded by the right hand side of (27) with a possibly different constant C; and with probability

sup
zERF zocRF ‘I|<477/)\

m

1—2-3%(2d)k" —(Cs1 —
37(2d) exp< C: Og(knlog(ed)+u’

m 1/2
> (u + 2knlog(ed) + klog(2R) + log m) \/E> ;

where C5 is another absolute constant. Note that by assumption in Theorem 3.2,
m > cylall}, A? log?(Am)(knlog(ed) + klog(2R) + klogm + u)/e2,

for some absolute constant co large enough. This implies

(1) < 2C1 [, log (

)

m

knlog(ed) + v’

with probability at least 1 — ¢3 exp(—u), where c3 > 1 is an absolute constant. Combining this bound with (26) and using
(25), we obtain with probability 1 — c3 exp(—u) — exp(—cu) — 2 exp(—u),

|i ZZ” 1€i sign((a;, G(wo)) + & + 71){ai, G(x) — G($0)>| < &
sup

20€RF, ||G(z0)|l2<R, Rk |G (7) — G(0)]|2 1)

This finishes the proof. O

B.3. Useful Probability Bounds for Proving Theorem 3.2

We recall the following well-known concentration inequality.

Lemma B.6 (Bernstein’s inequality). Let X1, --- , X,,, be a sequence of independent centered random variables. Assume
that there exist positive constants | and D such that for all integers p > 2

1 & !
— S E(x)7) < Zprpr2,
m P 2

then

(R

In particular, if X1, - - , X, are all sub- exponentlal random variables, then f and D can be chosenas f = L 3" || X; ||y,
and D = max |X; H%.
1=1l...m

\/ﬂ—i— u) < 2exp(—u).



Robust One-Bit Recovery via ReLLU Generative Networks

The following version of Symmetrization inequality can be found, for example, in (Wellner et al., 2013).

Lemma B.7 (Symmetrization inequality). Ler {Z;(i)}.", be i.i.d. copies of a mean 0 stochastic process {Z; : t € T}. For
every 1 < i < m, let g,(i) : T — R be an arbitrary function. Let {e;}", be a sequence of independent Rademacher

random variables. Then, for every x > 0,
x
>ax | < 2Pr | sup >—1,
teT 4

4
<1 - —n; sup var(Zt)> -Pr (sup
T teT teT
where var(Zy) = E[(Z, — E[Z])?].
The following classical bound can be found, for example in Proposition 2.4 of Angluin & Valiant (1979).
Lemma B.8 (Chernoff bound). Ler X1,..., X, be a sequence of i.i.d. copies of X such thatPr(X =1)=1-Pr(X =
0) =p € (0,1), and define S,, := > | X;. Then

m

D7)

=1

m

Z €i(Zt(i) - gt(i))

i=1

_2np
Pr(2 > (14 7)p) < inf [eomOnmes] < {7 T
n 6>0 e= 3, 0<T<1.

The following bound is the well-known Dudley’s entropy estimate which can be found, for example, in Corollary 2.2.8 of
(Wellner et al., 2013).

Lemma B.9 (Dudley’s entropy bound). Let (T, d) be an arbitrary semi-metric space, and let {X;, t € T} be a separable
sub-Gaussian stochastic process with >

1 Xs — Xillw, < Cd(s,t), Vs, t €T,

for some constant C > 0. Then, for every r > 0,

E| sup [X, - X,

d(s,t)<r

SC’O/ V1og N (e, d)de,
0

where N (g, d) is the € covering number of the set T and Cy is an absolute constant.

C. Proof of Theorem 3.4

We provide detailed proofs of Proposition 4.4 and Lemma 4.5 in this section. As shown in Section §4.2, Theorem 3.4 can be
proved immediately following Proposition 4.4 and Lemma 4.5.

Definition C.1. A vector v € R% is k-group sparse if, when dividing v into k blocks of sub-vectors of size d/k,® each block
has exactly one non-zero entry.

Proposition C.2 (Proposition 4.4). Any nonnegative k-group sparse vector in B3(1) can be generated by a ReLU network
of the form (3) with a k + 1 dimensional input and and depth n = 3.

Proof of Proposition 4.4. Consider an k + 1 dimensional input of a network. The idea is to map each of the first k entries
of the input into a block in R? of length d/k, respectively, and use one another input entry to construct proper offsets.

We first construct a single hidden layer ReLU network (i.e. n = 2) with offsets and k dimensional input [z, --- , 2|7 that
can generate all positive k-group sparse signals. For each entry x; of = € R*, we consider a sequence of functions of the
form:

T, (2;) = o(o(z; — 2r) — 20(z; — 2r — 1)), r € {1, 2, -, Z} : (28)

Graphically, it is a sequence of d/k non-overlapping triangle functions on the positive real line with width 2 and height 1.
We use outputs of I',.(z;) over all 7 as the output of the i-th block in R?. It then follows that for any x; € R, there is only

°For a sub-Gaussian random variable X, the 12-norm is defined as sup,,~, p 21Xz,
SWe assume WLOG that d/k is an integer.
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one of fr(xl) that can be nonzero. Furthermore, the nonzero entry can take any value in [0, 1]. Thus, lining up all & blocks
constructed in such a way, we have any positive k-group sparse vector in BZ (1) can be generated by this network, and so
does any vector in B (1).

To represent such a network above using a ReLU network with no offset, we add another hidden layer of width (k 4 2d/k)
before passing to I',.(-) and make use of the additional k + 1 entries. The proposed network with a k& + 1 dimensional input
of the form: [zy,- - , 71, 2]T can be constructed as follows. The first k nodes are:

o(x;), i €{1,2,--- ,k}.

The next 2d/k nodes are used to construct the offsets:

2d
o(r-z), TE{LQ,---,k}.

The second and the third hidden layers are almost the same as (28) mapping each o (z;) into a block in R? of length d/k,
except that we replace the offsets 2r and 2r + 1 by the output computed in the first hidden layer, i.e., o(r - z). Then, we
construct the second layer that can output the following results for all < € {1,2,....,k} and r € {1,2,...,d/k}:

Y, (wi,2) =o(o(z;) —20(r-2)) and Y, (z;2) =oc(o(x;) — 20(r-2) — o(2)).
Finally, by constructing the third layer, we have for all ¢ € {1,2,....,k} and r € {1,2,...,d/k}
Uy (zi,2) =0 (Tr(zi,2) — 200 (24, 2)). (29)

Note that (28) fires only when x; > 0, on which case we have o(x;) = z;. Finally, we take z always equal to 1 and obtain
I',(z;) = I'r(;, 1). Thus, the proposed network (29) can generate all nonnegative k-group sparse signals in B4(1). [

Furthermore, based on the next two lemmas, we give the proof of Lemma 4.5.

Lemma C.3 (Theorem 4.2 of Plan et al. (2016)). Assume that 6y € K where K C R? satisfies \v € K for any v € K and
A € [0,1). Assume that §j = {a,8p) + & with & ~ N'(0,0%) and a ~ N(0,1,). Let

. o
Oy 1= g(f) {t—|— ﬁ (1—!— \/logPt)},

where Py witht > 0 is the packing number of K NB3(t) with balls of radius t/10. Then, there exists an absolute constant
¢ > 0 such that any estimator 6 which depends only on m observations of (a, ) satisfies

sup E[Hol 90||2] > cmin{d,, diam(K)}.

OoeK

Lemma C4. When k < d/4, for any t < 1, we have P; > exp (cklogd/k), where P; is defined as in Lemma C.3 with
letting K C B4 (1) being a set containing all k group sparse vectors in B3(1). Here c > 0 is an absolute constant.

Proof of Lemma C.4. The proof of this lemma follows from the idea of randomized packing construction in Section 4.3 of
(Plan et al., 2016). For any t, since P; is defined as the packing number with balls of radius scaling as ¢, which is the radius
of the set K N Bg(t), then we have P, = P;. Thus, we only need to consider the lower bound of P;. Furthermore, since
S4=1 C BY(1), where S is the unit sphere in R¢ of radius 1, the packing number of K N BZ(1) is larger K N S41.
Thus, we consider 1/10 packing of the set K N S?~! to obtain the lower bound of P;. Consider a subset K N S%~! such
that it contains all nonnegative k group sparse signals in R% where each non-zero entry equals 1/+/k. This is possible due
to Proposition C.2. Then, we have |C| = (d/k)*. We will show that there exists a large enough subset X C C such that
Va,y € X, || — y||2 > 1/10. Consider picking vectors x,y € C uniformly at random and computing the probability of the
event ||z — y||3 < 1/100. When the event happens, it requires « and y to have at least 0.99% matching non-zero coordinates.
Assume without loss of generality that 0.01% is an integer, this event happens with probability

(000) (“oone )/ wrm

Using Stirling’s approximation and k < d/4, we have Pr(||z — y||3 < 1/100) < exp(—c’klog(d/k)), where ¢’ > 0 is an
absolute constant. This implies the claim that when choosing X’ to have exp(ck log(d/k)) uniformly chosen vectors from C,
which satisfies Va,y € X, ||z — y||2 > 1/10 with a constant probability. O



Robust One-Bit Recovery via ReLLU Generative Networks

Lemma C.5 (Lemma 4.5). Assume that 6y € K C BY(1) where K is a set containing any k-group sparse vectors in B4(1),
and K satisfies that Vv € K then v € K,V € [0,1). Assume that ij = (a, o) + & with & ~ N(0,0?) and a ~ N(0,1,).

Then, there exist absolute constants c1,co > 0 such that any estimator 0 which depends only on m observations of (a, )
satisfies that when m > c1klog(d/k), there is

~ klog(d/k
sup E[|f — follz > czy/ FIEYE).
Ope K m

Proof of Lemma 4.5. Since K satisfies \v € K forany v € K and A € [0,1). Thus, by Lemma C.3, we have

5*:inf{t+;m(1+@)}.

Consider that for any ¢ > 1, then we can observe that

t+

(1+@)>1.

ﬂ

ag
m
On the other hand, for any ¢ < 1, then we have

inf {t+\/(%(1+\/10gipt)}

0<t<1

. o
:oi?il{”m (”Vlogpl)}

:%(H\/logipl),

where the first equality is due to Lemma C.4, the second equality is by taking inf over t. If m > o?(1 + y/log P;)?, we have

i z <1.
ogt1£1{t+\/m(1+ log P)} <1

Comparing the cases ¢t > 1 and t < 1, we get that, if m > (1 + v/log P;)?, then

50:}%{t+\/‘%(1+\/@)}:0mf {t+jm(1+\/log7Pt)}=g<1+\/log7Pl).

<t<1 m

Moreover, since the diam(K) < 1, then by Lemma C.3, we have

~ co co

sup E||f — |2 > cmin{s,, diam(K)} = <2 (1+«/10 P) > 7 flog Py,

Sup 16 = boll2 { (K)} NG eh) = = Vlog

by letting m > 02(1 + y/log P;)?. Furthermore, according to Lemma C.4, we know log P; > ¢'klog(d/k) with ¢’ being

an absolute constant. Then, there exists a sufficient large absolute constant ¢; such that when m > ¢1klog(d/k), we have
klog(d/k)

sup E[[|§ — Oo]|2] > o/ —L"2
boeK m

D. Proof of Theorem 3.8

Before presenting the proof of Theorem 3.8, we first introduce some notations and definitions used hereafter. These notations
and definitions will also be used in the proof of Theorem 3.10 in Section §E. According to the definition of W; . in the
paper, we can know that G(z) can be represented as

G(l‘) = <H Wi,+,x> T = (Wn,+,an—1,+,x ce Wl,+,x)x~

i=1
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We therefore further define a more general form H,(z) as follows,

HI(Z> = (H Wi;ﬁx) z = (Wn7+,anfl,+,w e W1,+7w)zy

i=1
by which we can see that H,(z) = G(z).

Recall that as shown in the main body of the paper, for any z such that L(z) is differentiable, we can write the gradient of
L(z) w.rt. x as follows

T T
H Jrt H Wit |z — m Zyz H Wi+t ag,
ji=1 j=1 i=1 j=1
by which we further have
2\
<VL($),Z> = 2<G(Z‘),H$(Z)> - Zyz<auHx(Z)>a
i=1

for any x and z.

We then let

L 1 1 j 177—9Z — smgz ol 7—0; )\ [lzoll2 30
v = T = o H Z H - x|, (30)

=0 i=0 j=i+1 ||JJH2

1
Seaag 1= {2 # 0 [[hoollz < 5o max([2]l2, [lzo]l2)}- 3D

(m—p) cos p+sin p
™

where 9, = Z(x,70) and 3; = g(g,_,), and g(p) := cos™* ) as defined in Lemma D.3. In the following

subsections, we provides key lemmas for the proof of Theorem 3.8, and then a proof sketch of this theorem, followed by a
detailed proof.
D.1. Lemmas for Theorem 3.8

Lemma D.1. Define H,(z) = H;.Lzl W + 2. Suppose that G(x) satisfies |G (zo)| < R. There exists an absolute constant
c1 > 0 such that for any z and any x, when

A = dmax{ci(Rllally, + [|€]ly,), 1} log(64 max{ci(Rl|ally, + [|€]ly,), 1}/),
the following holds:

[AE[yi(ai, Hy(2))] = (G(x0), He(2))] < *EIIH ()2

Proof of Lemma D.1. Recall that y; = sign({(a;, G(z0)) + & + 73). Welet Vi = (a;, G(x0)) + & and Z; = (a;, H.(x)).
Still, we assume V; and 7; are independent. Thus, there is

Vi Vi
[Slgn(v + Tz)|V] )\ 3 1{|V\>>\} + 1{\/1>,\} - 1{V< A}
Therefore, we have

E[Z;Vi]
A

‘E[ZZ— sign(V; + )] —

ZiVi
= ’E{ v }+E[Zi1{vi>x}] ~E[Z1pn]

< 1z, - Vi gvij>ay 2.
- A

+2/|Zil| . Pr(|Vi| > )2,
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where the last line follows from Cauchy-Schwarz inequality.
First, by the isotropic assumption of a;, we have

1Zil ., = {E[l{a:, Ha(2))[*] }

1/2
= || Hz(2)]2-

Next, same to Lemma 4.1, we have

Vi gviisallzs <4260+ Dllai, Gleo)) + &lly, e/ Gtz +8ilon

<y/261 0+ D) lallgy R+ [, e/l R IEls),

due to our assumption that |G(x¢)||2 < R and V; is sub-gaussian. Moreover, we also have

Pr(Vi| > 272 < yfea(lally, B+ [l Je/ 2ol el

Overall, we can obtain

[AE[Z: sign(Vi + 7:)] — E[Z:Vi]| < \/Cl(llanlR €l ) (V20 + 1) + 20)e = 2elvn Bl | 1 (2) .

When
A > dmax{ci(Rllally, + [I€][y,), 1}1og(64 max{ci(R|ally, + [[§]ly:). 1}/),

it is immediate that

1
Ver(lally, R+ 1€l ) (V20 F 1) + 20)e ™/ 2eln Reelu) < e

As a consequence, we have
1
IAE[yi{as, Ha(2))] = (G(20), Ha(2))] < 2l Ho(2)]l2,
which finishes the proof. O

Lemma D.2. Define H,(z) := H?:1 W; 4 o2. Suppose that G(xo) satisfies |G(xo)| < R. Then, with probability at least
1 — ¢y exp(—u) where ¢4 > 0 is an absolute constant,

sup |2 2oy yilai, Hy(2)) = AE[yi{ai, He(2))]]
zERF 2ERF 2o €R*,|G(x0)|<R | He (2)]]2

<

)

| ™

where the sample complexity is
m > 02||a||12¢,1 A log? (M) (knlog(ed) + klog(2R) + klogm + u)/e?,

for some absolute constant cy large enough.

Proof of Lemma D.2. The proof of Lemma D.2 is very similar to the proofs shown in the previous subsection. Therefore, we
only outline the main proof steps here but ignore detailed calculation for some inequalities. We aim to bound the following
term

. & 50 yilas, Ho(2) — Blysdas, Ha())]
zERF 2ERF 2o €RF,|G(z0)|<R | He (2)]]2

By Symmetrization inequality in Lemma B.7, it suffices to bound

| iy ciyilai, Ho(2))|
sup
TERF zeRF 20 €RF | |G(z0)|<R ||HI(Z)||2

where {¢;} are i.i.d. Rademacher random variables that are independent of other random variables.
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We rewrite the set {G(79) : ||G(20)|l2 < R, zo € R¥} as G(R*) N BY(R). To bound the supremum above is based on
building a §-covering net over the set G(R¥) N B4 (R), namely N'(G(R*) N BE(R), §). The & value should be carefully
chosen. For a simply notation, we let ¢! := sign({a;, G(v)) + & + 7;) be the sign function associated with G(v) in the net.
We begin our proof by bounding the supremum term as follows, with probability at least 1 — exp(—cu) — 2 exp(—u),

| 2oty eayilai, He(2))]

B R S T X B
< sup | 2 Eayy (@i, Ha(2))]
2,2€R¥,G(v)EN (G(RF)NBY(R), 9) [ He(2)[]2
+ sup | i €y — yp) i, Ho(2))]
,2,20€R?,||G(20) G (v) |2£8,G (v) EN (G (R*)NBY (R), 9) [ He(2)]2
< sup LS eisign({ag, G(v) + & + 7i)(as, Ho(2))]
©,2ER* G (v)EN (G(R*)NBE(R), 9) | H(2)]|2

@
2 i, H.
+ sup max izw7
S & Tl

an
where the first inequality is due to decomposition of the supremum term and the second inequality is by Lemma B.4, which

bounds the number of difference between {y;} and {y? } with high probability.

Bounding Term (I): We first show the bound based on fixed G(v). Then we give a uniform bound for any G(v) in the
d-net. For a fixed G(v), we have

sup | L5 eisign({ai, G(v) + & + 7i)(ai, He(2))| sup | LS eilai, Ho(2)))|
©,2CRF [ Hz(2) ]2 2, 2CRF [ Hz(2)|l2

For the function H,(z), we can see that as x varies, H,(z) can be different linear functions, which constructs at most
[C(d, k)" = [(g) + (‘f) + 4 (z)]” < (d* +1)™ < (2d)*™ hyperplanes that split the whole R¥ space.

Now, we consider any one piece Hz where 7 € P C R* and bound the following quantity:

sup !iZZ’;lexathz))! < su ’% Z;il€i(ai,WzZ>’
Z€RF [ Hz(2)ll2 T zeRrr [Wzzl|2

;gsxai,b)

where we let Wz = [[7_, W; 1 5 be the linear function at Z such that Hz(z) = <H?:1 Wj#@) z. &, be the subspace in

< sup
beEknSd-1

)

R spanned by the k columns of W5. We also define b = W52 /||W5z| in the above formulation.

It suffices to bound the last term in the above formulation. We consider a 1/2-covering net of the set £ kngd-1 namely,
N(EF N 8?=1,1/2). A simple volume argument shows that the cardinality [N (EF N S9~1 1/2)| < 3F.

By Bernstein’s inequality in Lemma B.6, we have for any fixed v € N (¥ N S§471,1/2),

1\ A -
Pr(‘m;&-(ai,b) Z F"‘T SQG .

Taking v’ = u + cknlog(ed) for some ¢ > 6, we have with probability at least 1 — 2 exp(—u — ckn log(ed)),

iisz«ai,w - \/2(u+cknlog(ed)) . lally, (u+ chnlog(ed))
m =1 m m
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Taking a union bound over all v € N (E¥NS9~1,1/2), we have with probability at least 1 — 2 exp(—u — ckn log(ed)) - 3% >
1 —2exp(—u — c1knlog(ed)) for some absolute constant ¢; > 2.

E gi{a;,b

\/Q(u + cknlog(ed)) n llal|y, (v + cknlog(ed)) (32)

m m

veN(skmsd 11/2)

Therefore, we will have

l Zm: E; (ai, b>
i=1

sup
begknsd—1 | <=
1 m
< sup —_ Zsi<aiav> + sup Zgz aza - 'U
veEN(EFNSI-1,1/2) | T T bEEFNSI—1 veEN (EFNSI=1,1/2),||b—v|s<1/2 | T
m
1 1 gila;,b—wv
< sup - Z gi{a;,v)| + = sup — M
vEN(EFNSI=1,1/2) | T 2 begrnsi-1 weN (EFNSI—1,1/2),|[b—v]2<1/2 | T =1 16— ||z
1 1 1
< sup — Z&‘(% v)| + 5 sup Z&‘(% b)
vEN(EFNSI—1,1/2) | TV T beEkNSd—1 _

Now we can obtain

| 2oy eifai, Hz(2))|
sup Z& ai,b
2ERK | Hz(2)|l2 bes‘»msd 1

<2\/2(u + cknlog(ed)) N 2||al|y, (u + cknlog(ed))
< - — :

Taking a further union bound over at most (2d)*" linear functions, we have

(I)S2\/2(u+cknlog(ed)) . 2lally, (u+ cknlog(cd))
m m

with probability at least 1 — 2 exp(—u — c1knlog(ed)) - (2d)*™ > 1 — 2 exp(—u — coknlog(ed)) where ¢y > 1.
Bounding Term (II): Now we bound the term

{ai, H.
D) = sup
z,2ERF \I|<4mn/)\ m Z ||H H2

Lett = H,(z)/||Hx(2)||2 and it is enough to bound

(Kas, 6)| = E[[{as, )[] + E[[{as, t)]]) -

sup max —
teghngd=1 |Z|<4mn/A M ==
1

Note that |(a;, )| — E[|{a;, t}|] is also a sub-exponential random variable with sub-exponential norm bounded by 2||a/|,,
and E[|(a;,t)|] < 1. Given x, H,(2) is a linear function and there are at most (2d)*" different linear function for different
x.

For the extra expectation term, we have

1 1]
sup max E[|{a;,t)]] < max
tegknsd—1 |Z|<dmn/X M s |Z|<dmn/X M
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Next, we bound the term sup, ¢ gk ga—1 MaxX|z|<4mn/x 5 > ser ([(ai, t)| — E[|(a;, )]]). We have

LS (a9 — Ell{as £)])

sup
teEkNSd—1 \I|<4mn/)\ m s

= 1 -
o II\<4mn/AmZ tiery ([{ai, O} = El|{as, )]])

teEkNSd—1

<

Zl{zel} {ai )] = E[I(%ﬁl])’

sup
tegknSd—1 |I\<4m77/A
By Symmetrization inequality, it suffices to bound

1
= sup —Z€i|<ai,t>|

te€RNSI=1|Z|<an/x | TV 57

25l1{261}| Ay, >|

sup
teEkNSd—1 |I\<4mn/)

We consider a 1/2-covering net of the set £ N S?~1, namely, N (¥ N S471,1/2). A simple volume argument shows that
the cardinality [NV (€ N S9=1,1/2)| < 3%. Therefore, we will have

1
sup —Z€i|<ai,t>|

te€FNSI=1 |Z|<an/X | 527

1
< sup —Z€i|(ai,v)| + sup ZEJ a;,t
VEN(EFNSI=1,1/2),|T|<dn/X | T s =5 te€FnSiweN(EFnst1,1/2), | T et
lt—vll2a<1/2,Z|<4n/A
1 1 1 eilla;, t —
< sup — Z€i|<ai,v>| + 5 sup il M
VEN(EFNSI=1,1/2),T|<dn/X | T {7 teetnsi=1 wen(ernsi=11)2), | g It —vll2
lt—v[l2<1/2,|Z|<4n/X
1 1 1
< sup —Zei|<ai,v>| + = sup Z€Z|<a“t>| ;
VEN (EFNSI=1,1/2),[T|<4n/x | T 5 2 tegrnsa-1,|zi<an/x |
which implies
1 1
sup LS cilan | <2 sup LS cil(ar ol
te€kNSI=1|Z|<an/X |V 57 vEN(EFNSI=1,1/2),|Z|<dn/X | F

For any fixed v in the 1/2-net and a fixed Z, by Bernstein’s inequality, we have

1 7z 1
EZ&;I(%U) = | | @ Zez ai,v)| < —(2v/u2|Z] + 2l|ally, u2)-
€T i€l
We take
Am m 1/2
— 1 —( 2%knlog(ed) + klog(2R) + k1 —) :
2 1708 (lm log(ed) + u’> u+ 2knlog(ed) + klog(2R) + klog knlog(ed) + u' Vim
where (' is an absolute constant large enough and v’ satisfies (20). Using the fact that
7/ < My < oL (u + 2knlog(ed) + klog(2R) + klog ———)"* /m
2= P (u n log(ed) 0g(2F) & Tn log(ed) + u’) m7

we have with probability at least

Am

m 1/2
1—2exp (—C1 log (k‘nlog(ed)—l—u’) (u + 2knlog(ed) + klog(2R) + klog m) \/ﬁ) ,
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the following holds:

Zgz| a“

A\ ) \/u + 2knlog(ed) + klog(2R) + klog m
zEI

knlog(ed) + w

< Cillally, log ( =

To bound the maximum over |Z| < 47/, we take a union bound over all ( Anm) /\) possibilities,

m - em 417m/)\_ A Anm/X\
dnm/N) = \dnm/\ “\7 '

Thus, it follows

lo mn < dnm 0 é
& dnm/X) — A gn
m 1/2 Am
<L 2kn 1 d) + klog(2R) + log ———— vm —_—
- (u—l— nlog(ed) + klog(2R) + log knlog(ed) + ) log (knlog(ed) Jru’)’

and when C > L, taking the union bound gives, with probability at least

Am

1-2 -Cylog | —————
P ( 2708 (kn log(ed) + v/

m 1/2
) (u + 2knlog(ed) + klog(2R) + log m) \/E) J

we have

=3 as,0)

i€l

max
|Z|<4mn/ A

A\ )\/u + 2knlog(ed) + klog(2R) + klog o ttara

< Cillally, log (k;nlog(ed) +u

m

Furthermore, taking the union bound on all the 1/2-net, we obtain

ZI

sup
teEkNSd— 1|I|<4m77/)\

<2 sup
VEN(EFNSI—1,1/2) II\<4m77/A

=3l

i€l

u + 2knlog(ed) + klog(2R) + klog pqstoarw
<201 [allu, log( Am )\/ ( kn log(ed) tu”

knlog(ed) + v’ m
with probability
172~3k.(2d)knex —(Cslo )\—m (u+2knlo (6d)+k10 (2R>+10 #)1/2@
P 228 kn log(ed) + u’ & & & n log(ed) + u’ ’

where C'y is an absolute constant. Particularly, if we set
m > cylall}, A? log?(Am)(knlog(ed) + klog(2R) + klogm + u)/e?,

for some absolute constant co large enough, we have

)

A )\/u + 2knlog(ed) + klog(2R) + klog ryoteayrar

(In) < 2C |lally, log (lm log(ed) +

m
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with probability at least 1 — ¢3 exp(—u), where ¢3 > 1 is an absolute constant.
Combining (I) and (IT): Combining all the results above, we obtain with probability 1 — c¢3exp(—u) — exp(—cu) —
2 exp(—u),

| o eilas Ho(2))| e
sup T < TN
zERF 2€RF x0€R*,|G(20)|<R || ﬂ?(z)HQ 16

which thus means, for any z, z, x¢, by Symmetrization, we have

Zyz ai, Hy (2)) = AElyi{ai, Hy (2))]| < 2 [|Ho(2)[]2-

ool m

with probability at least 1 — ¢4 exp(—u). O

The following lemmas are some useful lemmas from previous papers. We rewrite them here for integrity.
Lemma D.3 ((Hand & Voroninski, 2018)). Suppose 87n®./e < 1. Let

1
Sezo = {0 # 0 € R¥[[[hs i [l2 < e max(flal2, [lzo]l2)},

where n is an integer greater than 1 and let h, 4, be defined by

1 1| (S r-3 sing, [ o 05\ |lzoll
. Y i J 012
ez = 50 = gu (H . > o+ = — ) e

i=0 i=0 j=i+1

where 9y = Z(x,x0) and 0; = g(0;_1)- Particularly, we define

g(0) :=cos™" ((” —0)cos o+ sin 9) .

™

If x € S¢ z,, then we have

Se 2o C Blxo, 56nv/2||x0||2) U B(—pno, 500 Vel |20 ||2),

where p,, is defined as

ity sin g; fmt s 0
i — Y
= — | <1
Pn Z . H — | <1,
=0 J=i+1

and og = wand 9; = g(0i—1)-
Lemma D.4 ((Hand & Voroninski, 2018)). Fix 0 < 167n°,/ewac < 1 and n > 2. Suppose that W; satisfies the WDC with
constant €yqc fort =1,...,n. Define

RN TL ) BTN o o i s i) NELH
DE T om v ™ T [l]|2

i=0 i=0 j=i+1

where 9, = g(0;_1) for g in Lemma D.3 and 0, = Z(x, z). Forall x # 0 and y # 0,

n T
(HWi,+,x> G(2) — | < 24" y ‘”““H 2, (33)
=1

2

11
(G@),6() = -l (34)

. 1/2
Wl < (5 +2ac) 65)



Robust One-Bit Recovery via ReLLU Generative Networks

D.2. Proof Sketch of Theorem 3.8

Under the conditions of Theorem 3.8, our proof is sketched as follows:

¢ The key to proving Theorem 3.8 lies in understanding the concentration of L(z) and V L(x). Here we prove two
critical lemmas, Lemmas D.1 and D.2 in this section, combining which we can show that for any z, z and |G(x)| < R,
when A and m are sufficiently large, the following holds with high probability

25 il Ha(2) = (Glao), Hale)| < L ]
i=1

which further implies

m

A
25 il Ha(2)) = (Glao), Ha(2),
i=1
for any z, z.
Therefore, we have ¥z and Vx such that L(x) is differentiable, we can approximate V L(x) as follows:

(VL(z), 2) = 2(G(x), Hy(2)) — 2(G(x0), He(2))-

¢ On the other hand, we can show that Vz, z,
(G(2), Hy(2)) — (G(20), Hu(2)) = (ha,z0, 2),
which therefore leads to

(VL(x), z) = 2(hg 5., 2)-

» Following the previous step, with v, being defined in Theorem 3.8, the directional derivative is approximated as

D_y, L(x) - ||vz]|2 = _4||hw,a:o||§~

* We consider the error of approximating D_,,_L(x) - ||vz||2 by —4||hz 4, ||3 in the following two cases:

Case 1: When ||z¢]|2 is not small and = # 0, one can show the error is negligible compared to —4||h 4, [|3, so that
D_,, L(z) < 0as —4|hy. |3

Case 2: When ||zo||2 approaches 0, such an error is decaying slower than —4||h, || itself and eventually dominates
it. As a consequence, one can only conclude that Z,, is around the origin.

* To characterize the directional derivative at 0 in Case 1, one can show
A m
D L(0) - [lwll2 < |{G(@0), Hay (w)) — — > yilai, Hoy ()| = (Gl0), Hyy (w))
i=1
with zy — 0. By showing that the second term dominates according to (9) and Lemma D.4, we obtain
D,,L(0) < 0,YVw # 0.

D.3. Detailed Proof of Theorem 3.8

Proof of Theorem 3.8. According to Theorem 3.8, we define a non-zero direction as follows:

VL(z), if L(x) is differentiable at x,
Vg 1= .
limy_ 100 VL(zy), otherwise,
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where {xy} is a sequence such that VL(z) is differentiable at all point x in the sequence because of the piecewise
linearity of G(x).

On the other hand, by our definition of directional derivative, we have

Dy L(x) (VL(z), — 125 ) if L(z) is differentiable at x,
—v, L\T) =4 .. M .
limpy - 400 <VL(9:N)7 fvx/||vz||2>, otherwise,

where {Z } is also a sequence with VL(Z ) existing for all Z . Here we use Z only in order to distinguish from the
sequence of = in the definition of v, above. We give the proof as follows:

Approximation of (VL(x), z): The proof is mainly based on the two critical lemmas, i.e., Lemma D.1 and Lemma D.2.

First by (35) in Lemma D.4, we can have

n

IG@)ll2 = (T Wita)z < (1/2 + wac) "2z, (36)

i=1

for any 2. Thus, due to the assumption ||z||2 < R(1/2+¢&wac) /2 in Theorem 3.8 and ||G () ||2 < (1/2+ewde)™ ?||zo]|2,
we further have

1G(zo)]]2 < R
By Lemma D.1 and ||G(x0)||2 < R, setting
A= 4maX{cl(R||aH¢1 + ||€||'¢)1)’ 1} log(64max{cl(R||aH¢1 + ||€||'¢)1)’ 1}/6)5

the following holds for any z:
1
[AE[yi(as, G(2))] = (G(2o), G(a))] < 1ellG(@)]2, 37

if we let z = = in Lemma D.1 such that H,(z) = G(x).

On the other hand, according to Lemma D.2 and |G(x0)| < R, we have that with probability at least 1 — ¢4 exp(—u), for
any z, the following holds:

23 wi(an G@) — ABlys s, G| < ZIG(@) 39)

with sample complexity being

m > 02||a||,2¢,1/\2 log?(Am)(knlog(ed) + klog(2R) + klogm + u) /<2,
where we set z = x in Lemma D.2 with H,(z) = G(x).
Combining (37) and (38), we will have that with probability at least 1 — ¢4 exp(—u), for any z, setting

A Zdmax{ci (Rl|ally, + [|€]ly,), 1} log(64 max{c: (Rl|ally, + [|€]ly,), 1}/¢), and
m ZCQHG/H?pl)\Q log?(Am)(knlog(ed) 4 klog(2R) + klogm + u)/e?,

2

the following holds
2 ijy< G()) — (G(x0), G(@))| < ]| G (@)l (39)
which leads to i
\1<VL<x>,z> — (Gla), Ho(2)) - <G<xo>,Hx<z>>>\ < ellG(@)l.. (40)
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Approximating D_,,_L(z) - ||v;||2 and Bounding Errors: Without loss of generality, we directly prove the case where
L(z) is not differentiable at . Then there exists a sequence Zy — « such that VL(Z ) exists for all Z . The proof is the
same when z is the point such that L(z) is differentiable. Therefore, we consider

Dy, L@)|oalla = Jim (VL(@n), —2), (1)

When L(z) is not differentiable, v, is defined as lim,,,,,» VL(zr), where {xs} could be another sequence such that
V L(xpr) exists for all 25, We decompose D_,, L(x)||v,||2 as follows

D_y, L(z)||vg |2 = lim (VL(ZTn),—vz) = lim lim —(VL(Zn),L(znm))
IN—T

IN—T TM T

= lim lim — [4<h5N,zo, hangwo) + (VL(ZN) — 2hzy 205 2Ra s m0)

IN—TTM—T
+ <2h5N,£07 VL(%N) - 2h$M,w0> + <VL<§§N) - QhENJCo’VL(%N) - QhIMJ?o)]
= 4”}7’96@0 ”g - ~hm lim [<VL(§N) - 2h51\7,9307 2h$M,IO>
TN—TTM—T

+ <2h51v,wo’ VL(‘%N) - 2h1'M7-'50> + <VL(%N) - 2h§N,woa VL(EN) - 2h33]\/17-7?0>:|7

where we regard the last term inside the limitation as approximation error term. It is equivalent to analyze
1 9 . . 1 ~
D=0 L@l == oy} = T lim |(SVLGN) = by s o )
STLE) = )
FVLEN) ~ By 5

+ <h51\7,107

VL(J?M) — th,:c0>:| . (42)

For simply notation, we let

n T n n T n
Ew,zo = <H Wi,+,w> (H Wi,+,w> T — (H Wi,+,w> <H Wi,+,a:0> xo-
=1 =1 =1 =1

Thus we have
(Va,20,2) = (G(2), Ho(2)) — (G(20), Ha(2)).

For the term (3VL(Zn) — Ry zo» Pars ) in (42), we have that , setting A and m sufficiently large as shown above, with
probability at least 1 — ¢4 exp(—u),

1
<2VL(5N) - hiN,xo ) h:CMJ’U>

1 - _ _
= <QVL(1'N> - UfNymovthﬂJ0> + <UEN11'O - hEN,ibo’ th,wo>

2 _€||H5N (th,ﬂCo)”? - ||EEN710 - hEN7530||2Hh$1\4710||2
713 Ewdc ~
> el Hy (o )l — 8™ ([ o, ola) iy o
1 n/2 n3\/Ewd .
> e (5 +ewac) Il = 48" ([T la, ol e o

where the first inequality is by (40) and Cauchy-Schwarz inequality,and the third inequality is by (33) in Lemma D.4. The
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second inequality above is due to

vaN,Io - hEN,Io HQ

n T n
< (H Wi,+,5N> (H Wi,+@N> IN — 2%%
=1

=1 9

n T n 1 n—1 . E n—1 sin@ d—1 T @ ||.’,E ||
= . R ~ & S G & 0ll2 ~
: (HWZMN) (HWH’%)IO 7 (H : )x”Z W S N
=1 =1 1=0 1=0 J=i+1 9

n3\/5wdc - ngs/gwdc
< 24T||$N”2 + 24T||330||2

< 48"V Fwde V;Wdc

max(||Zn||2, [|zo]|2),

where the second inequality is by (33) in Lemma D.4.

Similarly, for the terms (hz 4, 5 VL(%01) — Ray zo) in (42), we have that, setting m and X sufficiently large as above,
with probability at least 1 — ¢4 exp(—u), the following holds:

n/2 3
n
) Vg o — 487 e

1 1 €
(s 5T L00) = by ) = = (5 + v S (a2 [y o -

For the terms (VL(ZN) — Ry 00 s VL(201) — Bayy ) in (42), we have that, setting m and A sufficiently large as above,
with probability at least 1 — 2¢4 exp(—u), the following holds:

1 1
<2VL(EN) - th,xoa 7VL(:CM) - h’vaxU>

2
n/2 3
1 n c
(5 +ewe) o+ 48" wmax( ||$0||2)]

Z_

Ew
2”

n/2 3
5 ) +48n7 V Ewd

= -
2nw ¢ max(||Zx ||z, 930|2)] :

<1
€| = + Ewde

Combining the above together, plugging in (42) and taking limit on both sides, we have

n/2 3
1 1 1 n Ewdc
1D L@ allz > 3zl [nhx,zonz -2 ( (3+ewa)  +88" % man(lal, ||xo||2>>]

n/2 3 2
1 1 N°\/Ewdc
+3 [P o 15 — 2 (5 (2 + €wdc) + 48— max(lz[2, ||~”C0||2)> ,

with probability at least 1 — 4c4 exp(—u) by setting m and A sufficiently large as above.

1/2

. . . . 1/2
Discussion of Two Cases: We take our discussion from two aspects: ||zo[|2 > 2"/2¢ /5. and ||zol]2 < 27/ QEW/dC.

1/2
wdc?

Case 1: ||zg|lo > 27/%¢ or equivalently eyq. < 27"||z0||3. This means ||z is not close to 0. If we let € = yqc,
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4mnewae < 1, then we have

1 n/2 3
(3 o)+ 48" (e )
< ||$0||2\n/5wdc(1
||$0||\/5wdc(
211

3n3 Ewdc

IV (oo o) + 45
3

< 51@

27l

3
+ 28Wdc)n/2 + 4877/275\&“;&

3\ /Ewd

@max(”x”% [2ol[2)
n3\/Ewde
oo

max([|z]|2, [|zo||2)
1+ 2n€wdc) + 48

max(||z||2, [|zoll2)

max({|z[|2, [[zo]l2),

where the second inequality is due to (1 + 25Wdc)”/ 2 < enewde < 1 + 2neyqe When eyqc 18 sufficiently small satisfying the
conditions of Theorem 3.8.

Recall the definition of Sioint zrize, in (31). We assume z # 0 and =z ¢ S121n4 Jewas.wo» Namely

lhe zollz > 121n% /27 /Ewae max(||z||2, ||zo]|2)- By Lemma D.3, if z € B¢(xp,616n EV_V;C4HCC/0|| 2) N
6 _1/4
< 1.

€wde

B¢(—=pnzo, 550004 v_véé4||x0||2), it is guaranteed that © ¢ Si21n3,/z5q.,2, Under the condition that 887n°s
Then we obtain

9439 nSe4e

n3 vV Ewdc
2 2277,

2n

9
*Hhx,xo”2

1
_ZvazL(x)HU:rHQ > B

max(||z||2, [[zoll2) + [max([|z]|2, [|zol2)]* > 0,

or equivalently,
D_y, L(z)||vzl2 <0,
with probability at least 1 — 4¢4 exp(—u) when we set

A Zdmax{ci (Bl|ally, + [|€]ly,), 1} log(64 max{er (Rl|ally, + [1€]ly.), 1}/ €wde), (43)
m >coall}, A? log?(Am)(knlog(ed) + klog(2R) + klogm + u)/e2 (44)

wdc*

Next, we need to prove that Vw # 0, D, L(0) < 0. We compute the directional derivative as

1
5 DwL(0) - [|w]> =~ lim —Zyl i, Hay (w))

:IRQO<G(JZO) - — Zyl a;, H. :LN > - <G(.’130),H1N(w)>
<x%\i7130 <G(CL’0) _*Zyz a;, H IN > —<G($0),HIN(’LU)>
(L Wn e — - L jasfaflol
=€ 2 Ewdc w2 dx on wi|2(|To |2

1 11
gme(l + 2neyace) |wl|2 — Eﬁl\wllzlll’d\zv

where the first inequality is due to (40), and the second inequality is due to (34) in Lemma D.4. Now we still let € = ey,qc,
then 57672n% wqe < 1 (which is guaranteed by the condition 887n°e/F < 1). If w # 0, setting A and m satisfying (43)

— €wdc
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and (44), the following holds with probability at least 1 — ¢4 exp(—u),

1 11
5 DwL(0) - [[wll2 fzn/gswdc(l +2newa) [wllz = — oo lwllallzollz
1 1
_2 5 V/Ewde(1 +2n€wdc)|\w||2||930|\2 = 1 gn lwlizlloll
1
§273n Vewdel[wll2[[zoll2 — TQ” [wll2llzoll2
1
< - 8*27\\111” 2[|lzoll2 < O,

where the first inequality is due to the condition that £yq. < 27"||7o]||2. This implies that
Dy, L(0) < 0,Yw # 0.

Summarizing the results in Case 1, we have that, if we let A and m satisfying (43) and (44), the following holds with
probability at least 1 — 5¢4 exp(—u),

D_,, L(z) < 0,Yx ¢ B(xo, 61602/ ||20]12) U B(—pno, 55000 e/ 2 ||l20]|2) U {0},
Dy, L(0) < 0,Yw # 0.

Case 2: ||z]|y < 27/2 iv/dc, or equivalently £yqc > 27"||20/|2. This condition means ||2¢|| is very small and close to 0.

Then, for any 2z, we would similarly have

1 1 1 n/2 n? Ewdc
_Zvaz ()Hvx”z 2” ha zoll2 | |haollz —2 | € §+5wdc +487max(||$\|2,Hon)

n/2 n3 2
1 1 vV Ewdc
+ 5 ||hw,wo||§ -2 (5 (2 + 5wdc) + 487 max(||z |2, ||$0||2)>

For any non-zero x satisfying & ¢  Sigina VEwie.we»  Which can  further imply that |hezollz >
121042 "¢y 9. max(||x[|2, [|zo[|2), we have

1 1 % \/Ede 1 "/
3D Ll 2 P [25Wmax(||f||2,|$o|| ) =2 (5 + 6w
n/2
1 \/5wdc
+3 537max(||x||2,Hx0H) \[E( —|—5Wdc> ]

n/2
lnhmnﬁf ( (5+em)  +asim max(xng,uxong))].

Furthermore, for any x satisfying ||z||2 > 2"/2,/Ewdc, We have

|z]l2 > 272\ /Ewac > ||zol, namely x ¢ B(0,2"/2}/2),
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which leads to
n/2
1 1 Fwde o, 1
_ZD*sz(x)HUI”g Z2” zzo”2 [25 2 /2\/5wdc 2e < +5wdc> ‘|
]. 53 Ewdc 277,/2 \/7 n/2
5 T VEwde — 2e + Ewdc

n/2 TLS Ewdc
Whnle + V2 (& (5 +ewac) 448" (e ol

1 ney 1 n/2
=5 Mol [25 ey, (2 +swdc>

1 n3€WdC \/‘ n/2
+§ 53 271/2 2e +€Wdc
n/2 wdc
gl + VB (= (G4 wae) o+ 8L (e ) ) |

We let &€ = £yqc. Then we have £(1/2 + £yae)™? < 3newae2~"/2, which consequently results in
1 2
D L) o} > 0,
or equivalently,

D_,, L(@)|lv, 3 < .

Note that in the above results, we also apply (40) in deriving the inequalities. Therefore, summarizing the above results in
Case 2, we have that, if we let A and m satisfying (43) and (44), the following holds with probability at least 1 —4cy exp(—u),

D_,, L(z) <0, Yz ¢ B(xo,616n°.! [lz0]|2) U B(—pnwo, 5500n el |l20]12) U B(0,27/212 ),

wdc Exwde

which completes the proof. ]

E. Proof of Theorem 3.10

The proof of Theorem 3.10 is mainly based on Lemmas D.1 and D.2 proved in the last section and two additional lemmas in
the previous literature (Huang et al., 2018) given as below.

E.1. Lemmas for Theorem 3.10
Lemma E.1 ((Huang et al., 2018)). Fix 0 < ¢ < ﬁ. For any ¢, € [pn, 1], it holds that

1 1072n
(#:hn00) = g 121 < g (7 =20+ S ) ol ¥ € Blgao, wloole)

1 1
(22 0) = g 1213 = 57 (€ = 2Cpn — 10707 Y) |03, ¥ € B(—Co, ¥ lwo]l2)

where Ko = min, >s pp, and py, is defined in Lemma D.3.

Lemma E.2 ((Huang et al., 2018)). For all n > 2, there exists a constant K such that

. <1,
Ki(n+2)2 — P
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E.2. Proof Sketches of Theorem 3.10

Our proof of Theorem 3.10 is sketched as follows:

* We first show that L(x) can be approximated as 2(h; ..., z) — ||G(z)||3 by the two critical lemmas, Lemma D.1 and
Lemma D.2.

* Then we bound the approximation error |L(z) — 2((hs .z, z) — ||G(2)||3)

, where h; 4, is defined in (30).
e By Lemmas E.1, E.2, we have that if « and z are around x( and —p,, zo respectively, by considering the approximation

errors, the upper bound of L(x) is smaller than the lower bound of L(z), which further leads to L(x) < L(z) with
high probability.

E.3. Detailed Proof of Theorem 3.10
Proof of Theorem 3.10. By (35) in Lemma D.4, we have have
1G(@)l2 < (1/2+ ewac)™ 2 ]l2, (45)

—1/2 in Theorem 3.10, we further have

combining which and the assumption ||zg||2 < R(1/2 + ewdc)
|G (zo)l2 < R.
By Lemma D.1 and ||G(zo)||2 < R, we set
A= dmax{en (Rllally, + €]l ): 1} log(64 max{er (Rllallu, + [€lls.): 1}/2),

and z = x in Lemma D.1 such that H,(x) = G(z), and the following holds for any =,
1
[AE[yi(as, G(2))] = (G(@o), G(a))| < 7| G(@)ll2- (46)

According to Lemma D.2 and |G (z¢)| < R, we have that with probability at least 1 — ¢4 exp(—u), for any x, the following
holds:

23 i, G(@) — AElysas, G| < 1G] @)
=1

with sample complexity being
m > 02”‘1”%&1 A log? (M) (knlog(ed) + klog(2R) + klogm + u)/e?,

where we also set z = x in Lemma D.2 such that H,(x) = G(z).

Combining (46) and (47), we will have that with probability at least 1 — ¢4 exp(—u), for any z, setting

A = dmax{cr(Rl|ally, + [I€]l4,), 1} log(64 max{cy (Rllally, + €]y ), 1}/¢),

and
m > 62||a||,2p1)\2 log®(Am)(knlog(ed) + klog(2R) + klogm + u) /<2,

the following holds:

%ZM%G@D — {G(x0), G(2))| < el|G(2)]|2- (48)
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Bounding the error term: We next bound the term |L(z) + ||G(2)||3 — 2(hs .z, x)| as follows. With A, m satisfying the
same conditions above, then with probability at least 1 — ¢4 exp(—u) , the following holds:

|L(x) + |G ()3 — 2<hw 20, D)

QHG ||2 Zyl alv 2<hx,w0;x>

2(G(20), G Zyz (a;, G(2)) + 2| G(2)lI5 = 2(G(20), G(2)) = 2(ha,z,, 7)| -

Furthermore, we bound the above terms as follows

2(G(x9), G Zyz ai, G(2))| + |2 G(2)]3 — 2(G(x0), G(2)) — 2(ha 2o, )]

Ewdc Ewdc
< 2| G(@)]» + 48~ V BvEwde )12 4 g9y wde V <

[zoll2]|z[l2

n/2
1 Ewdc Ewdc
<2 (3 emac)  lela 4870 g a8 o,

1+ 2ngwdc n \/ Ewde n \/ Ewdc
SQEwH |2 4+ 48—L x| + 48— |mo |2 [z |2,

where the second inequality is due to (48) and (33) in Lemma D 4, the third inequality is due to (45), and the last inequality
is due to (1 + 25Wdc)”/ 2 < enewde < 1 4 2negqe if Ewde 18 sufficiently small satisfying the condition of Theorem 3.10.
This result implies

L)+ 1@ — 2bi )| < 22520000 g2 oz g B,
Since we only consider the case that £yq. < 27"||zg][3. Letting € = £yqc, We have
|L(z) + |G(@)|3 = 2(ha,z0, 7))
< 22, g, 2 ), g™ By g VR
< 2yt e ||zu2+4s” Bl 34 4TI )
with probability 1 — ¢4 exp(—u) if we set
Az dmax{c (Rl|ally, + (€], ), 1} log(64 max{ci (Rl|ally, + €]y, ), 1}/ewac), and (50)
m > 02||a||w1 A2 log (Am)(knlog(ed) + klog(2R) + klogm + u)/swdC (51

Upper bound of L(x): For any x € B(pxg,||zoll2) with 0 < ¢p < 1/(4n) and any ¢ € [py, 1], we have

L(z) =22, ha,ae) = 1G(@)|3 + (L(z) = 2(@, hoay) + |G(2)][3)

~2aiha) ~ gelloll = (G - g 1el) + (£) ~ 2asha) + [GIR)

1
§2<x,hx,xo>n||x||§+‘|G(I)II§ EHL(I)*?( hay) + G ()|3]

1 1072
e = 2o+ Sl + |||G 3

o I1l3| + [L(2) = 22, ha ) + 1G ()13
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where the last inequality is due to Lemma E.1 and (45). In addition, we can also obtain

|L(z) = 2(@, hawo) + ||G(2)|3]
1+ 2neywqce

Ewdc Ewdc
< VB2 o + 24 3 4 24T YR

1+ 277/<€wd vV Ewd n VEwd
< 2\/5wdcTC(s0 + ) ||zoll + 48TC(<P + ¢)2||$0||§ + 48TC(<P + 1) o3
’I’L \/Ewd
<122—L 13,
and
1 n \/ﬁ n \/ﬁ
1G(2)]15 — 27||$|| < 24— al|5 < 30—5 " [|woll2,

due to ||z|2 < (¢ + ¥)||@o|l2 when & € B(pxo, | zo]l2) and ¢ + ¢ < 1+ 1/(47w) < 1.1, and (33) in Lemma D.4.

Combining the above results and letting A and m satisfy (50) and (51), the following holds with probability at least
1 —eqexp(—u),

| —

107r n
L(z) < —(0* = 20 + ——— + 152n° \/ewac) |1 zo 3,

N}

for any x € B(pxq, Y| zol|2)-

Lower bound of L(z): Next, we should the lower bound of L(z) when z is around —p,,xo. Consider the situation for any
z € B(—=Cxg, ¥||xol|2) with 0 < ¢ < 1/(4n) and any ¢ € [pn, 1]. We can obtain

L(2) =2(2, hamy) = IG5 + (L(2) = 2z, haao) + 1G(2)]3)
>2(2, haae) = IG(2)II3 — [L(2) = 2(2, haay) + G (2) 3]

1
=2sihen) ~ 3218 = (IGEIE = 1418 = |26~ 2 b + GG

22<z7hz,xo>—nllZlI%-’llG(Z)IIS = [L(2) = 22, by} + G (2) 3]

1
> (¢ = 200, = 10520 o} - ]nc 03— o el

= [L(2) = 2(@, howo) + [G(@)]3],

where the last inequality is due to Lemma E.1. Furthermore, similar to the previous steps in the upper bound of L(z), we
have

7’L \/Ewi
|L(2) = 2(2, hz o) + |G (2) |13 < 1225|203,
and

llzoll2,

1 n Ewdc
|G = llzI3| < S04

due to ||z]|2 < (¢ + ¥)||zo|l2 when z € B(—Cxg, ¥||zoll2) and ( + ¢ < 1+ 1/(47) < 1.1.

Combining the above results, letting A and m satisfy (50) and (51), the following holds with probability at least 1 —
cq exp(—u),

1
L(2) > 5;(¢* = 20pn — 1070’ — 1520° \ Evac) o 13,

for any z € B(—Cxo, ¢||zo||2)-
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Proving L(z) < L(z): In order to have L(z) < L(z), it is enough to ensure that

1 . .
min  — (¢? — 2¢p, — 10m%n3y — 152n\/Eqac) ||zol|3
CElpn,1] 27

1, ., 1072n 3 2
> max —(p° — 2¢ + ———1 + 152n° \/ewac) || zol[2-
©€lpn,1] 2 Ky

The minimizer for the left side of the above inequality is ¢ = p,, while the maximizer for the right side is also ( = p,.
Then, to achieve the above inequality, we plug in the minimizer and maximizer for both sides and obtain

107%n
pTQL — pr1 — 1O7r2n31/) — 15203\ /Ewae > pi — 2pn + sz + 15203\ /Ewdc.
0

Rearranging the terms, we would obtain

9 9 3 107%n 3
2pn —2p;, > ( 107m°n° + 3 ¥ + 304n° \/Ewde-
0

To make the above inequality hold for all p,,, by computing the minimal value of the left-hand side according to Lemma E.2,
We require €yq. to satisfy

2Ky 5 5 107%n 3
— 10 — 304n°\/Ewdc-
ez > (107 g ) v a0 B

Due ton + 2 < 2n and n < n? (since we assume n > 1), it suffices to ensure

KO 2 3 107‘(’2”3 3
1K, 2 > (1071' n’ 4+ K3 ¥ + 304n° /ewde,

which can be, therefore, guaranteed by the condition

Ko s
5072 K, (1 + 1/K3)

35v/K1/Konel/l < 1and ¢ <

Thus, under the condition of Theorem 3.10, for any = € B(pxzg, Y| zo||2) and z € B(—(xo, ||xol|2), letting A and m
satisfy (50) and (51), with probability at least 1 — 2¢4 exp(—u), we have

L(z) < L(2).

Note that the radius ¢ satisfies v < Ky := p,, which means there are no overlap between B(px, | zo|l2) and
B(—Cxg,%]|7oll2). This is because by Lemma E.2, we know that 1/K; < (n + 2)? < 4n2. Therefore, ¢ <
Kon=?/(50m2K1(1 + 1/K3)) < Kon=3 < Ko when n > 2. This completes the proof. O



