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Abstract of the tone of the speaker, and rhythm characterizes how 

Speech information can be roughly decomposed 
into four components: language content, timbre, 
pitch, and rhythm. Obtaining disentangled repre-
sentations of these components is useful in many 
speech analysis and generation applications. Re-
cently, state-of-the-art voice conversion systems 
have led to speech representations that can dis-
entangle speaker-dependent and independent in-
formation. However, these systems can only dis-
entangle timbre, while information about pitch, 
rhythm and content is still mixed together. Fur-
ther disentangling the remaining speech compo-
nents is an under-determined problem in the ab-
sence of explicit annotations for each component, 
which are diffcult and expensive to obtain. In 
this paper, we propose SPEECHFLOW, which can 
blindly decompose speech into its four compo-
nents by introducing three carefully designed in-
formation bottlenecks. SPEECHFLOW is among 
the frst algorithms that can separately perform 
style transfer on timbre, pitch and rhythm with-
out text labels. Our code is publicly available 
at https://github.com/auspicious3000/ 
SpeechSplit. 

1. Introduction 
Human speech conveys a rich stream of information, which 
can be roughly decomposed into four important components: 
content, timbre, pitch and rhythm. The language content of 
speech comprises the primary information in speech, which 
can also be transcribed to text. Timbre carries information 
about the voice characteristics of a speaker, which is closely 
connected with the speaker’s identity. Pitch and rhythm are 
the two major components of prosody, which expresses the 
emotion of the speaker. Pitch variation conveys the aspects 
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fast the speaker utters each word or syllable. 

For decades, speech researchers have sought to obtain disen-
tangled representations of these speech components, which 
are useful in many speech applications. In speech analysis 
tasks, the disentanglement of speech components helps to 
remove interference introduced by irrelevant components. 
In speech generation tasks, disentanglement is the founda-
tion of many applications, such as voice conversion (Chou 
& Lee, 2019), prosody modifcation (Shechtman & Sorin, 
2019), emotional speech synthesis (Pell et al., 2011), and 
low bit-rate speech encoding (Schroeder & Atal, 1985), to 
name a few. 

Recently, state-of-the-art voice conversion systems have 
been able to obtain a speaker-invariant representation of 
speech, which disentangles the speaker-dependent informa-
tion (Qian et al., 2019; Chou et al., 2018; Chou & Lee, 
2019). However, these algorithms are only able to disen-
tangle timbre. The remaining aspects, i.e. content, pitch, 
and rhythm are still lumped together. As a result, the con-
verted speech produced by these algorithms differs from the 
source speech only in terms of timbre. The pitch contour 
and rhythm remain largely the same. 

From an information-theoretic perspective, the success in 
timbre disentanglement can be ascribed to the availability 
of a speaker identity label, which preserves almost all the 
information of timbre, such that voice conversion systems 
can ‘subtract’ such information from speech. For example, 
AUTOVC (Qian et al., 2019), a voice conversion system, 
constructs an autoencoder for speech and feeds the speaker 
identity label to the decoder. As shown in fgure 2(a), by 
constructing an information bottleneck between the encoder 
and decoder, AUTOVC can force the encoder to remove 
the timbre information, because the equivalent information 
is supplied to the decoder directly. It is worth noting that 
although the speaker identity is also correlated with the pitch 
and timbre information, the information overlap is relatively 
small, so the speaker identity cannot serve as labels for pitch 
and rhythm. If we had analogous information-preserving 
labels for timbre, rhythm or pitch, the disentanglement of 
these aspects would be straightforward, simply by utilizing 
these labels the same way voice conversion algorithms use 
the speaker identity label. 
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However, obtaining annotations for these other speech com-
ponents is challenging. First, although language content 
annotation is effectively provided by text transcriptions, ob-
taining a large number of text transcriptions is expensive, 
especially for low-resourced languages. Therefore, here, 
we will focus on unsupervised methods that do not rely on 
text transcriptions. Second, the rhythm annotation, which is 
essentially the length of each syllable, can only be obtained 
with the help of text transcriptions, which are again un-
available under our unsupervised setting. Finally, for pitch 
annotation, although the pitch information can be extracted 
as pitch contour using pitch extraction algorithms, the pitch 
contour itself is entangled with rhythm information, because 
it contains the information of how long each speech segment 
is. Without the information preserving labels, disentangling 
content, rhythm and pitch becomes an under-determined 
problem. Hence, here we ask: is it possible to decompose 
these remaining speech components without relying on text 
transcriptions and other information-preserving labels? 

In this paper, we propose SPEECHFLOW, a speech gener-
ative model that can blindly decompose speech into con-
tent, timbre, pitch, and rhythm, and generate speech from 
these disentangled representations. Thus, SPEECHFLOW 
is among the frst algorithms that can enable fexible con-
version of different aspects to different styles without rely-
ing on any text transcription. To achieve unsupervised de-
composition, SPEECHFLOW introduces an encoder-decoder 
structure with three encoder channels, each with a different, 
carefully-crafted information bottleneck design. The infor-
mation bottleneck is imposed by two mechanisms: frst, a 
constraint on the physical dimension of the representation, 
which has been shown effective in AUTOVC, and second, 
the introduction of noise by randomly resampling along the 
time dimension, which has been shown effective in (Polyak 
& Wolf, 2019). We fnd that subtle differences in the in-
formation bottleneck design can force different channels to 
pass different information, such that one passes language 
content, one passes rhythm, and one passes pitch informa-
tion, thereby achieving the blind disentanglement of all 
speech components. 

Besides direct value in speech applications, SPEECHFLOW 
also provides insight into a powerful design principle that 
can be broadly applied to any disentangled representation 
learning problem: in the presence of an information bot-
tleneck, a neural network will prioritize passing through 
the information that cannot be provided elsewhere. This 
observation inspires a generic approach to disentanglement. 

2. Related Work 
The Source-Filter Model Early research on speech gen-
eration proposed the source-flter model (Quatieri, 2006), 
and many subsequent research efforts try to decompose 

speech into the source that includes pitch and the flter that 
includes content, using signal processing approaches, such 
as linear predictive coding (Atal & Schroeder, 1979), cep-
stral analysis (Mermelstein, 1976), temporally stable power 
spectral analysis (Kawahara et al., 2008) and probabilistic 
approaches (Zhang et al., 2014). However, these approaches 
do not consider the prosody aspects of speech. 

Voice Conversion Inspired by the style transfer and disen-
tanglement techniques in computer vision (Lample et al., 
2017; Kaneko & Kameoka, 2017; Choi et al., 2018), many 
approaches based on variational autoencoders (VAEs) and 
generative adversarial networks (GANs) have been proposed 
in the feld of voice conversion to disentangle the timbre 
information from the speech. VAE-VC (Hsu et al., 2016) di-
rectly applies VAE for voice conversion, where the encoder 
produces a speaker-independent content embedding. After 
that, VAE-GAN (Hsu et al., 2017) replaces the decoder of 
VAE and a GAN when generating the converted speech to 
improve the quality of the conversion results. CDVAE-VC 
(Huang et al., 2018) uses two VAEs working on different 
speech features, one on STRAIGHT spectra (Kawahara 
et al., 2008), and one on mel-cepstral coeffcients (MCCs), 
and encourages that the latent representation can reconstruct 
both features well. ACVAE-VC (Kameoka et al., 2018a) 
introduces an auxiliary classifer for the conversion outputs, 
and encourages the converted speech to be correctly clas-
sifed as the source speaker. Chou et al. (2018) introduced 
a classifer for the latent code, and discourages the latent 
code to be correctly classifed as the target speaker. In-
spired by image style transfer frameworks, Gao et al. (2018) 
and Kameoka et al. (2018b) adapted CycleGan (Kaneko & 
Kameoka, 2017) and StarGan (Choi et al., 2018) respec-
tively for voice conversion. Later, CDVAE-VC was ex-
tended by directly applying GAN (Huang et al., 2020) to 
improve the degree of disentanglement. Chou & Lee (2019) 
used instance normalization to further disentangle speaker 
from content, and thus can convert to speakers that are not 
seen during training. StarGan-VC2 (Kaneko et al., 2019) 
refned the adversarial framework by conditioning the gen-
erator and discriminator on the source speaker label, in addi-
tion to the target speaker label. Recently, Qian et al. (2019) 
proposed AUTOVC, a simple autoencoder based method 
that disentangles the timbre and content using information-
constraining bottlenecks. Later, Qian et al. (2020) fxed 
the pitch jump problem of AUTOVC by F0 conditioning. 
Besides, the time-domain deep generative model is gaining 
more research attention for voice conversion (Niwa et al., 
2018; Nachmani & Wolf, 2019; Serrà et al., 2019). How-
ever, these methods only focus on converting timbre, which 
is only one of the speech components. 

Prosody Disentanglement There are recently many text-to-
speech (TTS) systems that seek to disentangle the prosody 
information to generate expressive speech. Skerry-Ryan 
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Please            call            Stella Please            call            Stella

Please     call       Stella Please     call       Stella

Figure 1. Spectrograms (left) and pitch contours (right) of two
utterances of the same sentence ‘Please call Stella’. The left
rectangle marks highlight the formant structures of the phone ‘ea’.
The arrows mark the frequencies of the second, third and fourth
formants. The right rectangle marks highlight the pitch tones of
the word ‘Stella’.

et al. (2018) introduced a Tacotron based speech synthe-
sizer that can disentangle prosody from speech content by
having an encoder that can extract the prosody information
from the original speech. Mellotron (Valle et al., 2020) is
a speech synthesizer conditional on both explicit prosody
labels and latent prosody code to capture and disentangle
different aspects of the prosody information. CHiVE (Ken-
ter et al., 2019) introduces a hierarchical encoder-decoder
structure that is conditioned on a set of prosodic features and
linguistic features. However, these TTS systems all require
text transcriptions, which, as discussed, makes the task eas-
ier but limits their applications to high-resource language.
Besides TTS systems, Parrotron (Biadsy et al., 2019) disen-
tangles prosody by encouraging the latent codes to be the
same as the corresponding phone representation of the input
speech. However, Parrotron still requires text transcriptions
to label the phone representation, as well as to generate the
synthetic parallel dataset. Polyak & Wolf (2019) proposed,
to the best of our knowledge, the only prosody disentan-
glement algorithm that does not rely on text transcriptions,
which attempts to remove the rhythm information by ran-
domly resampling the input speech. However, the effect of
their prosody conversion is not very pronounced. In this pa-
per, we would like to achieve effective prosody conversion
without using text transcriptions, which is more flexible for
low-resource languages.

3. Background: Information in Speech
Since this paper focuses on the decomposition of speech
information into rhythm, pitch, timbre, and content, we
provide here a brief primer on each of these components.
Figure 1 shows the spectrograms (left) and pitch contours
(right) of utterances of the sentence ‘Please call Stella’.
Throughout this paper, the term ‘spectrogram’ refers to the
magnitude spectrogram.

Rhythm Rhythm characterizes how fast the speaker ut-
ters each syllable. As shown in figure 1, each spectrogram
is divided into segments, which correspond to each word,
as marked on the horizontal axis. So the lengths of these
segments reflect the rhythm information. In the top spectro-
gram, each segment is long, indicating a slow speaker; in
the bottom spectrogram, each segment is short, indicating a
fast speaker.

Pitch Pitch is an important component of intonation. One
popular representation of the pitch information is the pitch
targets (Xu & Wang, 2001), which is defined as the intended
pitch, e.g. rise or fall, high or low etc., of each syllable. The
pitch information, or pitch target information, is contained
in the pitch contour, because the pitch contour is generally
considered as the result of a constant attempt to hit the pitch
targets of each syllable, subject to the physical constraints
(Xu & Wang, 2001). However, the pitch contour also en-
tangles other information. First, the pitch contour contains
the rhythm information, because each nonzero segment of
the pitch contour represents a voiced segment, which typi-
cally corresponds to a word or a syllable. So the length of
each voiced segment indicates how fast the speaker speaks.
Second, the pitch range reflects certain speaker identity in-
formation – female speakers tend to have a high pitch range,
as shown in the upper panel of figure 1, and male speakers
tend to have a low pitch range, as shown in the lower panel
of figure 1. Here, we assume that the impact of the speaker
identity on the pitch contour is linear. In other words, if we
normalize the pitch contour to a common mean and standard
deviation, the speaker identity information will be removed.
To sum up, the pitch contour entangles the information of
speaker identity, rhythm and pitch; the normalized pitch
contour only contains the information of the latter two.

Timbre Timbre is perceived as the voice characteristics of a
speaker. It is reflected by the formant frequencies, which are
the resonant frequency components in the vocal tract. In a
spectrogram, the formants are shown as the salient frequency
components of the spectral envelope. In figure 1, the rectan-
gles and arrows on the spectrogram highlight three formants.
As can be seen, the top spectrogram has a higher formant
frequency range, indicating a bright voice; the bottom spec-
trogram has a lower formant frequency range, indicating a
deep voice.

Content In English and many other languages, the basic
unit of content is the phone. Each phone comes with a
particular formant pattern. For example, the three formants
highlighted in figure1 are the second, third and fourth lowest
formants of the phone ‘ea’ as in ‘please’. Although their
formant frequencies have different ranges, which indicates
their timbre difference, they have the same pattern – they
tend to cluster together and are far away from the lowest
formant (which is at around 100 Hz).
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4. SPEECHFLOW 

This section introduces SPEECHFLOW . For notation, upper-
cased letters, X and X, denote random scalars and vectors 
respectively; lower-cased letters, x and x, denote determin-
istic scalars and vectors respectively; H(X) denotes the 
Shannon entropy of X; H(Y |X) denotes the entropy of Y 
conditional on X; I(Y ; X) denotes the mutual information. 

4.1. Problem Formulation 

Denote S = {St} as a speech spectrogram, where t is the 
time index. Denote the speaker’s identity as U . We assume 
that S and U are generated through the following random 
generative processes 

S = gs(C, R, F , V ), U = gu(V ), (1) 

where C denotes content; R denotes rhythm; F denotes 
pitch target; V denotes timbre. gs(·) and gu(·) are assumed 
to be a one-to-one mapping. Note that here we assume 
C also accounts for the residual information that is not 
included in rhythm, pitch or timbre. 

Our goal is to construct an autoencoder-based generative 
model for speech, such that the hidden code contains dis-
entangled representations of the speech components. We 
formally denote the representations as Zc, Zr and Zf , and 
these representations should satisfy 

Zc = hc(C), Zr = hr (R), Zf = hf (F ), (2) 

where hc(·), hr(·) and hf (·) are all one-to-one mappings. 

4.2. AUTOVC and Its Limitations 

Since SPEECHFLOW inherits the information bottleneck 
mechanism proposed in AUTOVC, it is necessary to frst 
review its framework and limitations. Figure 2(a) shows the 
framework of AUTOVC, which consists of an encoder and 
a decoder. The encoder has an information bottleneck at the 
end (shown as the grey tip), which is implemented as hard 
constraint on code dimensions. The input to the encoder 
is speech spectrogram S, and the output of the encoder is 
called the speech code, denoted as Z. The decoder takes Z 
and the speaker identity label U as its inputs, and produces 
a speech spectrogram Ŝ as output. We formally denote the 
encoder as E(·), and the decoder as D(·, ·). The AUTOVC 
pipeline can be expressed as 

Z = E(S), Ŝ = D(Z, U). (3) 

During training, the output of the decoder tries to reconstruct 
the input spectrogram: 

min E[kŜ − Sk22], (4)
θ 

where θ denotes all the trainable parameters. 

It can be shown that if the information bottleneck is tuned 
to the right size, this simple scheme can achieve disentan-
glement of the timbre information as 

Z = h(C, R, F ). (5) 

Figure 2(a) provides an intuitive explanation of why this 
is possible. As can be seen, speech is represented as a 
concatenation of different blocks, indicating the content, 
rhythm, pitch and timbre information. Note that speaker 
identity is represented with the same block style as timbre 
because it is assumed to preserve equivalent information to 
timbre according to equation (1). Since the speaker identity 
is separately fed to the decoder, the decoder can still have 
access to all the information to perform self-reconstruction 
even if the encoder does not preserve the timbre information 
in its output. Therefore, when the information bottleneck 
is binding, the encoder will remove the timbre information. 
However, Z still lumps content, rhythm, and pitch together. 
As a result, AUTOVC can only convert timbre. 

4.3. The SPEECHFLOW Framework 

Figure 2(b) illustrates the SPEECHFLOW framework. 
SPEECHFLOW is also an autoencoder with an information 
bottleneck. However, in order to further decompose the 
remaining speech components, SPEECHFLOW introduces 
three encoders with heterogeneous information bottleneck, 
which are a content encoder, a rhythm encoder, and a pitch 
encoder. Below are the details of the encoders and the 
decoder of SPEECHFLOW. 

The Encoders As shown in fgure 2(b), all three encoders 
are almost the same, but with two subtle differences. First, 
the input to the content encoder and rhythm encoder is 
speech S, whereas the input to the pitch encoder is the nor-
malized pitch contour, which we denote as P . As discussed 
in section 3, the normalized pitch contour P refers to the 
pitch contour that is normalized to have the same mean and 
variance across all the speakers, so the normalized pitch 
contour only contains the pitch information, F , and rhythm 
information, R, but no speaker ID information, U . 

Second, the content encoder and pitch encoder perform a 
random resampling operation along the time dimension of 
the input. Random resampling involves two steps of opera-
tions. The frst step is to divide the input into segments of 
random lengths. The second step is to randomly stretch or 
squeeze each segment along the time dimension. Therefore, 
random resampling can be regarded as an information bottle-
neck on rhythm. More details of random resampling can be 
found in appendix B.2. All the encoders have the physical 
information bottleneck at the output. The fnal outputs of 
the encoders are called content code, rhythm code and pitch 
code, which are denoted as Zc, Zr and Zf respectively. For-
mally, denote the content encoder as Ec(·), rhythm encoder 
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Figure 2. Frameworks and AUTOVC and SPEECHFLOW and il-
lustration of why they can perform disentanglement. Signals are 
represented as blocks to denote their information components. 
Er denotes the rhythm encoder; Ec denotes the content encoder; 
Ef denotes the pitch encoder. ‘RR’ denotes random resampling. 
‘Pitch Cont.’ is short for the normalized pitch contour. The grey 
block at the tip of the encoders denotes the information bottleneck. 
Some rhythm blocks have some holes in them, which represents 
that a portion of the rhythm information is lost. The bottlenecks 
force the encoders to pass only the information that other encoders 
cannot supply, hence achieving the disentanglement. 

as Er (·) and pitch encoder as Ef (·), and denote the random 
resampling operation as A(·). Then we have 

Zc = Ec(A(S)), Zr = Er (S), Zf = Ef (A(P )). (6) 

The Decoder The decoder takes all the speech code and 
the speaker identity label (or embedding) as its inputs, and 
produce a speech spectrogram as output, i.e., 

Ŝ = D(Zc, Zr , Zf , U). (7) 

During training, the output of the decoder tries to reconstruct 
the input spectrogram, which is the same as in equation (4). 

Counter-intuitive as it may sound, we claim that when all 
the information bottlenecks are appropriately set and the 
network representation power is suffcient, a minimizer of 
equation (4) will satisfy the disentanglement condition as 
in equation (2). In what follows, we will explain why such 
decomposition is possible. 

4.4. Why Does It Force Speech Decomposition? 

Figure 2 provides an intuitive illustration of how SPEECH-
FLOW achieves speech decomposition, where a few impor-
tant assumptions are made. 

Assumption 1: The random resampling operation will con-
taminate the rhythm information R, i.e. ∀r1 6= r2 

Pr[A(gs(C, r1, F , V )) = A(gs(C, r2, F , V ))] > 0. (8) 

Assumption 2: The random resampling operation will not 
contaminate the other speech components, i.e. 

I(C; A(S)) = H(C), I(F ; A(S)) = H(F ). (9) 

Assumption 3: The pitch contour P contains all the pitch 
information and a portion of rhythm information. 

P = gp(F , R), I(F ; P ) = H(F ). (10) 

As shown in fgure 2(b), speech contains four blocks of 
information. When it passes through the random resampling 
operation, a random portion of the rhythm block is wiped 
(shown as the holes in the rhythm block at the output of 
the RR module), but the other blocks remain intact. On the 
other hand, the normalized pitch contour mainly contains 
two blocks, the pitch block, and the rhythm block. The 
rhythm block is missing a corner because the normalized 
pitch contour does not contain all the rhythm information, 
and it misses even more when it passes through the random 
resampling module. 

Similar to the AUTOVC claim, the timbre information is 
directly fed to the decoder, so all the encoders do not need 
to encode the timbre information. Therefore, this section 
focuses on explaining why SPEECHFLOW can force the 
encoders to separately encode the content, pitch, and timbre. 

First, the rhythm encoder Er(·) is the only encoder that has 
access to the complete rhythm information R. The other 
two encoders only preserve a random portion of R, and 
there is no way for Er (·) to guess which part is lost and 
thus only supply the lost part. Therefore, Er (·) must pass 
all the rhythm information. Meanwhile, the other aspects 
are available in the other two encoders. So if Er (·) is forced 
to lose some information by its information bottleneck, it 
will prioritize removing the content, pitch, and timbre. 

Second, given that Er (·) only encodes R, then the content 
encoder Ec(·) becomes the only encoder that can encode all 
the content information C, because the pitch encoder does 
not have access to C. Therefore, Ec(·) must pass all the 
content information. Meanwhile, the other aspects can be 
supplied elsewhere, so the rhythm encoder will remove the 
other aspects if the information bottleneck is binding. 

Finally, with Er(·) encoding only R and Ec(·) encoding 
only C, the pitch encoder Ef (·) must encode the pitch infor-
mation. All the other aspects are supplied in other channels, 
so Ef (·) will prioritize removing these aspects if the infor-
mation bottleneck is binding. 

Simply put, if each encoder is only allowed to pass one 
block, then the arrangement in fgure 2 is the only way to 
ensure full recovery of the speech information. 

Now we are ready to give our formal result. 
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Figure 3. The architecture of SPEECHFLOW. ‘GNorm’ denotes 
group normalization; ‘RR’ denotes random resampling; ‘Down’ 
and ‘Up’ denote downsampling and upsampling operations respec-
tively. ‘Linear’ denotes linear projection layer. ×n denotes the 
module above is repeated n times. 

Table 1. Hyperparameter settings of the encoders. 
Rhythm Content Pitch 

Conv Layers 1 3 3 
Conv Dim 128 512 256 
Norm Groups 8 32 16 
BLSTM Layers 1 2 1 
BLSTM Dim 1 8 32 
Downsample Factor 8 8 8 

Theorem 1. Assume C, R, F , U are independent, and that 
the information bottleneck is precisely set such that 

H(Zc) = H(C), H(Zr) = H(R), H(Zf ) = H(F ). 
(11) 

Assume equations (1), (8), (9) and (10) hold. Then the 
global optimum of equation (4) would produce the disentan-
gled representation as in equation (2). 

The proof is presented in the appendix. Although theorem 
1 is contingent on a set of relatively stringent conditions, 
which may not hold in practice, we will empirically verify 
the disentanglement capabilities in section 5. 

4.5. Network Architecture 

Figure 3 shows the architecture of SPEECHFLOW. The left 
module corresponds to the encoders and the right to the de-
coder. All three encoders share a similar architecture, which 
consists of a stack of 5 × 1 convolutional layers followed 
by group normalization (Wu & He, 2018). For the content 
encoder, the output of each convolutional layer is passed to 
a random resampling module to further contaminate rhythm. 
The fnal output of the convolutional layers is fed to a stack 
of bidirectional-LSTM layers to reduce the feature dimen-
sion, which is then passed through a downsampling op-
eration to reduce the temporal dimension, producing the 
hidden representations. Table 1 shows the hyperparameter 
settings of each encoder. More details of the downsampling 
operation are provided in appendix B.2. 

The decoder frst upsamples the hidden representation to 
restore the original sampling rate. The speaker identity 

label U , which is a one-hot vector, is also repeated along 
the time dimension to match the temporal dimension of the 
other upsampled representations. All the representations are 
then concatenated along the channel dimension and fed to 
a stack of three bidirectional-LSTM layers with an output 
linear layer to produce the fnal output. The spectrogram 
is converted back to the speech waveform using the same 
wavenet-vocoder as in AUTOVC. Additional architecture 
and implementation details are provided in appendix B. 

5. Experiments 
In this section, we will empirically verify the disentangle-
ment capability of SPEECHFLOW. We will be visualizing 
our speech results using spectrogram and pitch contour. 
However, to fully appreciate the performance of SPEECH-
FLOW, we strongly encourage readers to refer to our online 
demo1. Additional experiment results can be found in ap-
pendix C. The frequency axis units of all the spectrograms 
are in kHz, and those of the pitch contour plots are in Hz. 

5.1. Confgurations 

The experiments are performed on the VCTK dataset (Veaux 
et al., 2016). The training set contains 20 speakers where 
each speaker has about 15 minutes of speech. The test set 
contains the same 20 speakers but with different utterances, 
which is the conventional voice conversion setting. SPEECH-
FLOW is trained using the ADAM optimizer (Kingma & Ba, 
2014) with a batch size of 16 for 800k steps. Since there are 
no other algorithms that can perform blind decomposition 
so far, we will be comparing our result with AUTOVC, a 
conventional voice conversion baseline. 

The model selection is performed on the training dataset. 
Specifcally, the physical bottleneck dimensions are tuned 
based on the criterion: when the input to one of the en-
coders or the speaker embedding is set to zero, the output 
reconstruction should not contain the corresponding infor-
mation. As will be shown in section 5.4, setting the inputs 
and speaker embedding to zero can measure the degree of 
disentanglement. From the models that satisfy this criterion, 
we pick the one with the lowest training error. Appendix B.4 
provides additional guidance on how to tune the bottlenecks. 

5.2. Rhythm, Pitch and Timbre Conversions 

If SPEECHFLOW can decompose the speech into different 
components, then it should be able to separately perform 
style transfer on each aspect, which is achieved by replacing 
the input to the respective encoder with that of the target 
utterance. For example, if we want to convert pitch, we feed 
the target pitch contour to the pitch encoder. To convert 

1https://auspicious3000.github.io/ 
SpeechSplit-Demo/ 

https://auspicious3000.github.io/SpeechSplit-Demo/
https://auspicious3000.github.io/SpeechSplit-Demo/
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timbre, we feed the target speaker id to the decoder.

We construct parallel speech pairs from the test set, where
both the source and target speakers read the same utterances.
Please note that we use the parallel pairs only for testing.
During training, SPEECHFLOW is trained without parallel
speech data. For each parallel pair, we set one utterance as
the source and one as the target, and perform seven differ-
ent types of conversions, including three single-aspect con-
versions (rhythm-only, pitch-only and timbre-only), three
double-aspect conversions (rhythm+pitch, rhythm+timbre,
and pitch+timbre), and one all-aspect conversion.

Conversion Visualization Figure 4 shows the single-
aspect conversion results on a speech pair uttering ‘Please
call Stella’. The source speaker is a slow female speaker,
and the target speaker is a fast male speaker. As shown in
figure 4, SPEECHFLOW can separately convert each aspect.
First, in terms of rhythm, note that the rhythm-only conver-
sion is perfectly aligned with the target utterance in time,
whereas the timbre-only and pitch-only conversions are per-
fectly aligned with the source utterance in time. Second, in
terms of pitch, notice that the timbre-only and rhythm-only
conversions have a falling tone on the word ‘Stella’, which
is the same as the source utterance, as highlighted by the
dashed rectangle. The pitch-only conversion has a rising
tone on ‘Stella’, which is the same as the target utterance,
as highlighted by the solid rectangles. Third, in terms of
timbre, as highlighted by the rectangles on the spectrograms,
the formants of pitch-only and rhythm-only conversions are
as high as those of the source speech, and the formants of
timbre-only conversions are as high as those in the target.

Subjective Evaluation We also perform a subjective eval-
uation on Amazon Mechanical Turk on whether the conver-
sion of each aspect is successful. For example, to evaluate
whether the different conversions convert pitch, we select 20
speech pairs that are perceptually distinct in pitch, and gen-
erate all the seven types of conversions, plus the AUTOVC
conversion and the source utterance as baselines. Each test
is assigned to five subjects. In the test, the subject is pre-
sented with two reference utterances, which are the source
and target utterances in a random order, and then with one
of the nine conversion results. The subject is asked to select
which reference utterance has a more similar pitch tone to
the converted utterance. We compute the pitch conversion
rate as the percentage of answers that choose the target utter-
ance. We would expect the utterances with pitch converted
to have a high pitch conversion rate; otherwise, the pitch
conversion rate should be low. The rhythm conversion rate
and timbre conversion rate are computed in a similar way.
More details of the test token generation process can found
in appendix B.5.

Figure 5 shows the conversion rates of different types of
conversions. As expected, the conversion rate is high when
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Please    call       Stella

Please         call            Stella Please         call            Stella

Please    call       Stella

Figure 4. Spectrogram (left) and pitch contours (right) of single-
aspect conversion results of the utterance ‘Please call Stella’. The
left rectangle marks highlight the formant structures of the phone

‘ea’. The arrows mark the frequencies of the second, third and
fourth formants. The right rectangle marks highlight the pitch
tones of the word ‘Stella’.

Table 2. MOS of different conversion types/algorithms.
Rhythm Only Pitch Only Timbre Only

3.21 3.79 3.40
Rhythm+Pitch Rhythm+Timbre Pitch+Timbre

3.04 2.73 3.35
All Three AUTOVC Source

2.79 3.24 4.65

the corresponding aspect is converted, and low otherwise.
For example, the pitch-only conversion has a high pitch
conversion rate but low rhythm and timbre conversion rates;
whereas the rhythm+timbre conversion has a high rhythm
and timbre conversion rates but a low pitch conversion rate.
It is worth noting that AUTOVC has a high timbre con-
version rate, but low in the other, indicating that it only
converts timbre. In short, both the visualization results and
our subjective evaluation verifies that each conversion can
successfully convert the intended aspects, without altering
the other aspects, whereas AUTOVC only converts timbre.

We also evaluate the MOS (mean opinion score), ranging
from one to five, on the quality of the conversion, as shown
in table 5.2. There are a few interesting observations. First,
the MOS of pitch conversion is higher than that of timbre
and rhythm conversions, which implies that timbre and
rhythm conversions are the more challenging tasks. Second,
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Rhythm Only Pitch Only Timbre Only

Rhythm+Pitch Rhythm+Timbre Pitch+Timbre

All Three Aspects AUTOVC Source Speech

Rhythm Conv. Rate
Pitch Conv. Rate
Timbre Conv. Rate

Figure 5. Subjective conversion rates of different conversion types. 
Each bar group corresponds to a conversion type/algorithm. The 
three bars within each group represent the rhythm, pitch and timbre 
conversion rates respectively. 

as the number of converted aspects increases, the MOS gets 
lower, because the conversion task gets more challenging. 

Objective Evaluation Due to the lack of explicit labels of 
the speech components, it is diffcult to fully evaluate the 
disentanglement results using objective metrics. However, 
we can still objectively evaluate the pitch-only conversion 
performance by comparing the pitch contour of the con-
verted speech and the target pitch contour. Following Valle 
et al. (2020), we use three metrics for the comparison: Gross 
Pitch Error (GPE) (Nakatani et al., 2008), Voice Decision 
Error (VDE) (Nakatani et al., 2008), and F0 Frame Error 
(FFE) (Chu & Alwan, 2009). SPEECHFLOW achieves a 
GPE of 1.04%, a VDE of 8.14%, and an FFE of 8.86%. As 
a reference, these results are comparable with the results 
reported in Valle et al. (2020), with a slightly higher GPE 
and lower VDE and FFE. Note that these two sets of results 
cannot be directly compared, because the datasets are differ-
ent, but they show the effectiveness of the SPEECHFLOW in 
disentangling pitch. 

5.3. Mismatched Conversion Target 

Since utterances with mismatched contents have different 
numbers of syllables and lengths, we would like to fnd out 
how SPEECHFLOW converts rhythm when the source and 
target utterances read different content. Figure 7 shows the 
rhythm-only conversion between a long utterance, ‘And we 
will go meet her Wednesday’ (top left panel), and a short 

Rhythm Only Pitch Only Timbre Only
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R
hy

th
m

En
co

de
r

To
o

W
id

e
C

on
te

nt
 E

nc
od

er
To

o
W

id
e

Rhythm Conv. Rate
Pitch Conv. Rate
Timbre Conv. Rate

Figure 6. Subjective conversion rates of single-aspect conversions 
of SPEECHFLOW when the information bottleneck of the rhythm 
encoder (top panel) or the content encoder (bottom panel) is too 
wide. Each bar group corresponds to a conversion type/algorithm. 
The three bars within each group represent the rhythm, pitch and 
timbre conversion rates respectively. 

utterance, ‘Please call Stella’ (top right panel). 

The short to long conversion is shown in the bottom left 
panel. It can be observed that the conversion tries to match 
the syllable structure of the long utterance by stretching 
its limited words. In particular, ‘please’ is stretched to 
cover ‘and we will’, ‘call’ to cover ‘go meet’, and ‘Stella’ 
to cover ‘her Wednesday’. On the contrary, the long to 
short conversion, as shown in the bottom right panel, tries to 
squeeze everything to the limited syllable slots in the short 
utterance. Intriguingly still, the word mapping between the 
long utterance and the short utterance is exactly the same 
as in the short to long conversion. In both cases, the word 
boundaries between the converted speech and the target 
speech are surprisingly aligned. 

These observations suggest that SPEECHFLOW has an in-
tricate ‘fll in the blank’ mechanism when combining the 
rhythm information with content and pitch. The rhythm 
code provides a number of blanks, and the decoder flls the 
blanks with the content information and pitch information 
provided by the respective encoders. Furthermore, there 
seems to be an anchoring mechanism that associates the 
content and pitch with the right blank, which functions sta-
bly even if the blanks and the content are mismatched. 

5.4. Removing Speech Components 

To further understand the disentanglement mechanism of 
SPEECHFLOW, we generate spectrograms with one of the 
four components removed. To remove rhythm, content or 
pitch, we respectively set the input to the rhythm encoder, 
content encoder or pitch encoder to zero. To remove tim-
bre, we set the speaker embedding to zero. Figure 8 shows 
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And  we will   go  meet   her   Wednesday Please       call         Stella

Long Speech Short Speech

And   will   go  meet her WednesdayPlease           call                Stella

Short to Long Long to Short

Figure 7. Rhythm-only conversion when the source and target 
speech have mismatched content. 

Remove Rhythm Remove Content

Remove Pitch Remove Timbre

Figure 8. Reconstructed speech when one speech component is 
removed. The ground truth speech is in fgure 7 top left panel. 

the output spectrograms with one component removed. As 
can be observed, when the rhythm is removed, the output 
becomes zero, and when the content is removed, the output 
becomes a set of slots with no informative spectral shape. 
These fndings are consistent with our ‘fll in the blank’ 
hypothesis in section 5.4. When rhythm code is removed, 
there is no slot to fll, and hence the output spectrogram is 
blank. When content is removed, there is nothing to fll in 
the blanks, resulting in a spectrogram with uninformative 
blanks. When the pitch is removed, the pitch of the out-
put becomes completely fat, as can be seen from the fat 
harmonics. Finally, when timbre is removed, the formant 
positions of the output spectrogram shift, which indicates 
that the timbre has changed, possibly to an average speaker. 
These results further verify that SPEECHFLOW can sepa-
rately model different speech components. 

5.5. Varying the Information Bottleneck 

In this section, we would like to verify our theoretical expla-
nation in section 4.4 by varying the information bottleneck 
and see if SPEECHFLOW will still act as our theory predicts. 

According to fgure 2, if the physical information bottleneck 

of the rhythm encoder is too wide, then the rhythm encoder 
will pass all the information through, and the content en-
coder, pitch encoder and speaker identity will be useless. 
As a result, the rhythm-only conversion will convert all the 
aspects. On the other hand, the pitch-only and timbre-only 
conversions will alter nothing. Similarly, if the physical 
information bottleneck of the content encoder is too wide, 
but random sampling is still present, then the content en-
coder will pass almost all the information through, except 
for the rhythm information, because the random resampling 
operations still contaminate the rhythm information and 
SPEECHFLOW would still rely on the rhythm encoder to re-
cover the rhythm information. As a result, the rhythm-only 
conversion would still convert rhythm, but the pitch-only 
and timbre-only conversions would barely alter anything. 

Figure 6 shows the subjective conversion rates of single-
aspect conversions when the physical bottleneck of rhythm 
encoder or the content encoder is too wide. These results 
agree with our theoretical predictions. When the rhythm 
encoder physical bottleneck is too wide, the rhythm-only 
conversion converts all the aspects, while other conversions 
convert nothing. When the content encoder physical bottle-
neck is too wide, the rhythm-only conversion still converts 
rhythm. Notably, the timbre-only conversion still converts 
timbre to some degree, possibly due to the random resam-
pling operation of the content encoder. These results verify 
our theoretical explanation of SPEECHFLOW. 

6. Conclusion 
We have demonstrated that SPEECHFLOW has powerful 
disentanglement capabilities by having multiple intricately 
designed information bottlenecks. There are three take-
aways. First, we have shown that the physical dimension of 
the hidden representations can effectively limit the informa-
tion fow. Second, we have verifed that when information 
bottleneck is binding, neural autoencoder will only pass 
the information that other channels cannot provide. Third, 
even if we only have a partial disentanglement algorithm, 
e.g. the random resampling, we can still design a com-
plete disentanglement algorithm by having multiple chan-
nels with different information bottleneck. These intriguing 
observations inspire a generic approach to disentanglement. 
As future directions, we will seek to refne the bottleneck 
design of SPEECHFLOW using more information-theory-
guided approaches, as well as explore the application of 
SPEECHFLOW to low-resource speech processing systems. 
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