
Unsupervised Speech Decomposition via Triple Information Bottleneck 

A. Proof to Theorem 1 
The proof is divided into fve parts. 
Lemma 1.1. Under the assumptions in theorem 1, the 
global minimum of equation (4) is 0. 

Proof. Construct the encoders that satisfy equation (2), 
which is a feasible choice. Construct the decoder as fol-
lows: 

D(Zc, Zr , Zf , V ) 
−1 −1 −1 −1 =gs(hc (Zc), hr (Zr ), hf (Zf ), gu (V )) 

(12) 
=gs(C, R, F , U) 

=S, 

which achieves 0 reconstruction loss in equation (4). 

Lemma 1.2. Equation (8) implies 

I(R; A(S), f(R)) < H(R), ∀f(·) s.t. H(R|f(R)) > 0. 
(13) 

Proof. We will prove this by contradiction. If there exists 
an f(·) s.t. H(R|f (R)) > 0 but I(R; A(S), f(R)) = H(R), 
then there exist r1 6= r2, which f (·) cannot distinguish but 
A(S) can, i.e. 

A(gs(C1, r1, F1, V1)) 6= A(gs(C2, r2, F2, V2)), w.p. 1. 
(14) 

which contradicts with (8). 

Lemma 1.3. Under the assumptions in theorem 1, in order 
to achieve the global minimum of equation (4), Zr must 
satisfy equation (2). 

Proof. We will prove this by contradiction. If 

H(R|Zr ) > 0, (15) 

then we have 

H(R|Ŝ) ≥ H(R|Zr , Zc, Zf , V ) 

≥ H(R|Zr , Zc, Zf ) (16)
≥ H(R|Zr , A(S), A(P )) 

> 0, 

where the frst and third lines are due to the data processing 
inequality; the second line is given by equation (1) and the 
independence assumption among the aspects; the last line 
is given by equation (13). Equation (16) essentially means 
Ŝ cannot reconstruct R, and thereby cannot reconstruct S, 
which contradicts with the optimal loss being 0. 

Moreover, if 
H(Zr|R) > 0, (17) 

then 

H(R|Zr) = H(Zr |R) + H(R) − H(Zr) ≥ H(Zr |R) > 0, 
(18) 

where the ’≥’ inequality is from equation (11). This will 
again lead to a contradiction. 

Lemma 1.4. Under the assumptions in theorem 1, and 
assuming Zr satisfes equation (2), in order to achieve 
the global minimum of equation (4), Zc must satisfy equa-
tion (2). 

Proof. We will prove this by contradiction. If 

H(C|Zc) > 0, (19) 

then we have 

H(C| Ŝ) ≥ H(C|Zr , Zc, Zf ) 

= H(C|fr (R), Zc, Zf ) 

= H(C|Zc, Zf ) 

≥ H(C|Zc, F ) 

= H(C|Zc, gp(F , R)) 

= H(C|Zc) > 0, 

(20) 

where the frst line is similar to equation (16); the second 
line is given by R satisfying equation (2); the third and 
last lines are due to the independence assumption among 
the aspects; the fourth line is given by the data processing 
inequality; the ffth line is given by equation (10). Equa-
tion (20) essentially means Ŝ cannot reconstruct C, and 
thereby cannot reconstruct S, which contradicts with the 
optimal loss being 0. 

Moreover, if 
H(Zc|C) > 0, (21) 

then 

H(C|Zc) = H(Zc|C) + H(C) − H(Zc) ≥ H(Zc|C) > 0, 
(22) 

where the ’≥’ inequality is from equation (11). This will 
again lead to a contradiction. 

Lemma 1.5. Under the assumptions in theorem 1, and as-
suming Zr and Zc satisfy equation (2), in order to achieve 
the global minimum of equation (4), Zf must satisfy equa-
tion (2). 

Proof. We will prove this by contradiction. If 

H(F |Zf ) > 0, (23) 

then we have 

H(F |Ŝ) ≥ H(F |Zr , Zc, Zf ) 

= H(C|fr (R), fc(C), Zf ) (24) 
= H(C|Zf ) > 0, 

where the frst line is similar to equation (16); the second 
line is given by R and C satisfying equation (2); the third 
is due to the independence assumption among the aspects. 
Equation (24) essentially means Ŝ cannot reconstruct F , 
and thereby cannot reconstruct S, which contradicts with 
the optimal loss being 0. 
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Moreover, if 
H(Zf |F ) > 0, (25) 

then 

H(F |Zf ) = H(Zf |F ) + H(F ) − H(Zf ) ≥ H(Zf |F ) > 0. 
(26) 

where the ’≥’ inequality is from equation (11). This will 
again lead to a contradiction. 

Theorem 1 can be implied by combining lemmas 1.3, 1.4 
and 1.5. 

B. Additional Implementation Details 
B.1. Input Features 

The input and output spectrograms are 80-dimensional mel-
spectrograms computed using 64 ms frame length and 16 
ms frame hop. For each speaker, the input pitch contour is 
frst extracted using a pitch tracker (Yamamoto et al., 2019), 
and then normalized by its mean and four times its standard 
deviation. This operation roughly limits the pitch contour to 
be within the range of 0-1. After that, we quantize the range 
0-1 into 256 bins and turn it into one-hot representations. 
Finally, we add another bin to represent unvoiced frames 
producing 257 one-hot encoded feature P . 

B.2. Information Bottleneck Implementations 

As discussed, SPEECHFLOW adopts two methods to restrict 
the information fow. The frst is random resampling, and 
the second is the constraints on the physical dimensions, 
which include the downsampling operations in frequency 
and time dimensions. 

The random resampling is implemented as follows. First, 
the input signal is divided into segments, whose length is 
randomly uniformly drawn from 19 frames to 32 frames 
(Polyak & Wolf, 2019). Each segment is resampled us-
ing linear interpolation with a resampling factor randomly 
drawn from 0.5 (compression by half) to 1.5 (stretch). For 
each input utterance, the random sampling operations at the 
input layers of the content encoder and pitch encoder share 
the same random sampling factors. We fnd that by having 
the same random sampling factors, we can reduce the re-
maining rhythm information after the random sampling, and 
thus achieving better disentanglement. 

We follow the downsampling implementation in AUTOVC. 
Suppose the downsampling factor is k and we use zero-
based indexing of the frames. For the forward direction 
output of the bidirectional-LSTM, t = kn + k − 1, n ∈ 
{0, 1, 2 · · · } are sampled; for the backward direction, t = kn 
are sampled. In this way, we can ensure the frames at 
both ends are covered by at least one forward code and one 
backward code. 

B.3. Converting Pitch 

During training, the input speech to the content encoder 
and the input pitch contour to the pitch encoder are always 
aligned (due to the shared random sampling factors), i.e. 
they share the same (contaminated) rhythm information 
A(R). During pitch conversion, however, such alignment 
no longer exists, because the pitch contour is replaced with 
that of another utterance. To restore the temporal alignment, 
before we perform the pitch conversion, we frst perform a 
rhythm-only conversion to the new pitch contour, where the 
conversion target is the input speech to the content encoder. 

The rhythm-only conversion on pitch contour is essentially 
the same as the rhythm-only conversion on speech, except 
that we need to use a mini SPEECHFLOW variant that op-
erates on pitch contour, not speech. Specifcally, there are 
two major differences between the variant and the original 
SPEECHFLOW. First, the variant comes with only two en-
coders, the rhythm encoder and the pitch encoder, whose 
inputs are spectrograms and the corresponding pitch con-
tours. The content encoder is removed because there is no 
content information in pitch contour. Second, rather than re-
constructing speech, the decoder reconstructs pitch contour 
from the outputs of the encoders. The output dimension of 
the decoder at each time is the one-hot encoding dimension 
of the pitch contour (257), and the cross-entropy loss is 
applied. The hyperparameter settings are the same as in the 
original SPEECHFLOW. Following the same argument as 
in SPEECHFLOW, it can be shown that this variant can dis-
entangle the pitch and rhythm information of pitch contour, 
and thus can perform the rhythm-only conversion. 

B.4. General Guide on Tuning the Bottlenecks 

Although tuning the information bottleneck dimensions is 
the most diffcult part of getting SPEECHFLOW to work 
properly, there are some straightforward guidelines on how 
to choose the correct physical dimension of each code. The 
basic idea is that removing one of the four codes should 
reproduce the results in fgure 8. 

Specifcally, when the rhythm code is set to zero, the output 
should be almost blank, as shown in the top-left spectrogram 
in fgure 8. If the output still preserves signifcant speech 
energy, it means that the rhythm code dimension is too small. 
Consider increasing the dimension. Throughout this section, 
by increasing the dimension, we refer to two operations. 
The frst operation is to increase the channel dimension of 
the encoder output. The second operation is to increase 
the sampling rate of the down-sampled code. Accordingly, 
by decreasing the dimension, we refer to the two opposite 
operations. 

When the content code is set to zero, the output should 
become a set of slots with uninformative spectral shapes, 
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as shown in the top-right spectrogram in fgure 8. If the 
output preserves the same formant structure as the input 
speech, it means that the content code dimension is too 
small, and that the rhythm code dimension is too large (the 
case where the rhythm bottleneck is too wide has been 
discussed in section 5.5). In this case, consider increasing 
the content code dimension, and decreasing the rhythm 
code dimension. Please note that the key is to compare the 
formant structure with that of the input speech. In some 
cases, removing the content would produce a speech-like 
spectrogram with clear harmonic and formant structures, 
instead of the aforementioned empty slots of uninformative 
spectral shapes. However, as long as the formant structure 
is drastically different from the input speech, the bottleneck 
setting is appropriate. 

When the pitch code is set to zero, the output should be-
come either a voiced spectrogram with a constant pitch and 
harmonic structure, as shown is the bottom-left spectrogram 
in fgure 8, or an unvoiced spectrogram with no harmonic 
structure at all. If the output does not fall in either case, 
i.e. the output preserves the same pitch or voiced/unvoiced 
states as the input speech, it means that either the rhythm 
code or the content code is too wide (both cases have been 
discussed in section 5.5). If this happens, determine which 
case it is by setting the content code to zero, and then make 
adjustments accordingly. It is also worth mentioning that it 
does not harm to set a relatively large bottleneck dimension 
for pitch, because the information conveyed by the pitch 
contour is already very limited. 

Finally, if the speaker identity is changed to another speaker, 
the output should sound like the target speaker. If it does not 
sound like the target speaker, it means either the rhythm code 
or the content code is too wide. Follow the aforementioned 
procedures to identify the problem. However, if there are 
no anomalies in the aforementioned diagnosis, they may 
be both too wide. Try decreasing them simultaneously. 
Conversely, if the converted speech is of very poor quality, 
it implies that both the rhythm code and the content code 
are too narrow. Try increasing them simultaneously. 

B.5. Test Token Selection 

The samples for subjective evaluations on pitch are hand-
picked by authors. Authors listen to all the pairs in the test 
set and fnd the parallel pairs that are perceptibly different in 
pitch, e.g. rise vs fall tones, or high vs low tones, in at least 
one word. We then sub-select 20 pairs that maintain speaker 
diversity. For rhythm, we identify top 40 parallel pairs with 
greatest differences in time length, and then sub-select 20 
pairs that maintain speaker diversity. For timbre, we simply 
randomly pick pairs from different speakers. Please note 
that the selection is based on the original speech only. They 
are not based on any conversion results. 

And  we will   go  meet   her   Wednesday And  we will   go  meet   her   Wednesday

Figure 9. Reconstructed speech produced by AUTOVC with a ran-
dom resampling module. The ground truth speech for the left 
column is in fgure 7. The word boundaries and labels are copied 
from that of the ground truth. 

C. Additional Experiment Results 
C.1. Does Random Resampling Remove All Rhythm? 

In fgure 2 and section 4.4, we assume that the random 
resampling only contaminates rhythm information, but does 
not completely remove it. To verify this assumption, we 
train a single autoencoder for speech, where the encoder 
and decoder are the SPEECHFLOW content encoder and 
decoder respectively. If random resampling only removes a 
portion of the rhythm information, the output reconstruction 
can still roughly temporally aligned with the ground truth 
speech. Otherwise, the reconstruction will be completely 
misaligned. 

Figure 9 shows two reconstruction results with different 
randomly drawn resampling factors, whose ground truth 
utterances are both the top-left panel of fgure 7. To assist 
our judgment of the alignment, we directly copy the word 
boundaries and labels from the ground truth. As can be ob-
served, the two reconstructions are very alike, even though 
their random resampling factors are different. Furthermore, 
both reconstructions can recover the ground truth speech 
decently, only with some minor blurring, which verifes 
that random resampling performs an incomplete disentan-
glement of rhythm. In other words, SPEECHFLOW shows 
that we can build a complete disentanglement mechanism 
even if we only have a partial disentanglement technique. 

C.2. Do Rhythm Labels Exist? 

In section 1, we have discussed that one motivation for de-
signing SPEECHFLOW is that rhythm labels are not directly 
available. If they were, the rhythm aspect could be disentan-
gled in much simpler ways. In this section, we would like 
to explore if there exist any rhythm labels. 

We have identifed two promising candidate rhythm labels, 
short-time energy and unvoiced-voiced (UV) label. The 
short-time energy is computed by taking the moving aver-
age of the squared waveform. The UV labels are derived 
from pitch contour, which equals one if the correspond-
ing frame is voiced, and zero otherwise. Both candidates 
are informative of the syllable boundaries, and neither con-
tains other information such as content and pitch. To test if 
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Figure 10. Rhythm-only conversion using the rhythm feature in 
SPEECHFLOW (second row) compared with that using candidate 
rhythm features, including short-time energy (third row) and UV 
label (fourth row). 

these candidates are equally effective as the SPEECHFLOW 
rhythm encoder, we train two variants of SPEECHFLOW, one 
replacing the rhythm code with the short-time energy, and 
the other with the UV label. We then perform the rhythm-
only conversion using SPEECHFLOW and the two variants, 
by replacing the rhythm code/label with that of the target 
speech. If the candidates are effective, the corresponding 
rhythm-only conversions should be successful. 

Figure 10 shows the rhythm-only conversion results on two 
utterances, ‘Please call Stella’ and ‘And we will go meet her 
Wednesday’, produced by these three algorithms. At frst 
glance, all the conversion results are temporally aligned with 
the target speech, which seems to suggest that the rhythm 
aspect has been successfully converted. However, a close 
inspection into the formant structure of the candidate con-
version results reveals that the content within each syllable 
is completely incorrect. 

With the ‘fll in the blank’ perspective discussed in sec-
tion 5.4, we can better understand why the candidate rhythm 
labels fail. Both candidates can accurately provide the tem-
poral information of the syllable boundaries, and thus the 
blanks are correctly located in time. However, the candi-
dates fail to provide the anchor information of what to fll in 
each blank, and that is why the conversion algorithms put 
the wrong content in the blanks. In summary, obtaining a 
rhythm label is a nontrivial task, because the rhythm label 
should contain some anchor information to associate each 

syllable with the correct content, while excluding excessive 
content to ensure content disentanglement. SPEECHFLOW, 
with a triple information bottleneck design, manages to ob-
tain such an effective rhythm code, which contributes to a 
successful rhythm conversion. 

C.3. Additional Conversion Spectrograms 

In fgure 11, we augment the spectrogram visualization re-
sults in section 5.2 (fgure 4) with two additional utterances, 

‘One showing mainly red and yellow’ and ‘Six spoons of 
fresh snow peas’, and with all the conversion types (not 
just the single-aspect conversions) displayed. Consistent 
with the results shown in section 5.2, these additional re-
sults show that SPEECHFLOW can successfully convert the 
intended aspects to match those of the target speech, while 
keeping the remaining aspects matching the source speech. 
Remarkably, when all three aspects are converted, the con-
verted speech becomes very similar to the target speech. 
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Figure 11. Spectorgrams of aspect-specifc conversion results on two utterances, ‘One showing mainly red and yellow’ (left) and ‘Six 
spoons of fresh snow peas’ (right). R+P denotes rhythm+pitch conversion; R+T denotes rhythm+timbre conversion; P+T denotes 
pitch+timbre conversion. 


