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Abstract
Initialization, normalization, and skip connections
are believed to be three indispensable techniques
for training very deep convolutional neural net-
works and obtaining state-of-the-art performance.
This paper shows that deep vanilla ConvNets with-
out normalization nor skip connections can also
be trained to achieve surprisingly good perfor-
mance on standard image recognition benchmarks.
This is achieved by enforcing the convolution ker-
nels to be near isometric during initialization and
training, as well as by using a variant of ReLU that
is shifted towards being isometric. Further exper-
iments show that if combined with skip connec-
tions, such near isometric networks can achieve
performances on par with (for ImageNet) and bet-
ter than (for COCO) the standard ResNet, even
without normalization at all. Our code is available
at https://github.com/HaozhiQi/ISONet.

1. Introduction
Convolutional Neural Networks (ConvNets) have achieved
phenomenal success in computer vision (Krizhevsky et al.,
2012; Simonyan & Zisserman, 2015; Szegedy et al., 2015;
He et al., 2015; Ioffe & Szegedy, 2015; He et al., 2016; Xie
et al., 2017b; Huang et al., 2017). While shallow ConvNets
with a few layers have existed for decades (LeCun et al.,
1989; Denker et al., 1989; LeCun et al., 1990; 1998), it
is only until recently that networks with hundreds or even
thousands of layers can be effectively trained. Such deep
ConvNets are able to learn sophisticated decision rules for
complex practical data, therefore are usually indispensable
for obtaining state-of-the-art performance.

Training deep ConvNets is inherently difficult (Pascanu
et al., 2013; Glorot & Bengio, 2010). Despite widespread
interests in this problem, it has not been made possible un-
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Figure 1. A basic block of an Isometric Network (ISONet). Each
block contains only convolution and nonlinear activation layers,
with an identity skip connections (for R-ISONet only). The convo-
lution is initialized as the (Kronecker) delta kernel and regulated
to be (near) orthogonal during training. The activation is Shifted
ReLU (SReLU) φ(·) with a learnable parameter b for obtaining
a balance between nonlinearity and isometry. The figure shows
three examples of the SReLU with b = 1,−1 and −3.

til the development of proper weight initialization (Glorot
& Bengio, 2010; He et al., 2015), feature map normaliza-
tion (Ioffe & Szegedy, 2015), and residual learning tech-
niques (He et al., 2016; Srivastava et al., 2015). Following
these initial works, a wide variety of network architectural
components including novel nonlinear activation, weight
initialization, weight regularization, and residual learning
techniques have been purposed in the literature (see Sec-
tion 4 for an overview). Such techniques are motivated
and justified from diverse perspectives, such as prevention
of dead neurons (Maas et al., 2013), promotion of self-
normalization (Klambauer et al., 2017), reduction of filter
redundancy (Wang et al., 2020), improvement of generaliza-
tion (Jia et al., 2019), to name a few.

The abundance of existing architectural components and the
diversity of their design principles posit ConvNets architec-
tural design a difficult task. After all, which combination of
components should one use for their networks? Such a chal-
lenge motivates us to pose the following question: Is there a
central guiding principle for training very deep ConvNets?

Isometric learning. We show that the isometric property,
where each layer of the network preserves the inner product
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for both forward and backward propagation, plays a central
role in training deep ConvNets. To illustrate this, we take a
minimalist approach and show that a vanilla deep network
(i.e., composed of interleaved convolution and nonlinear
layers only) can be trained as long as both the convolution
and nonlinear activation are close to an isometry.

Specifically, we design the Isometric Networks (ISONets)
where the convolution layer is simply initialized as the iden-
tity and is regularized to be near orthogonal during training,
and the nonlinear layer is the Shifted ReLU (SReLU) ob-
tained by shifting regular ReLU towards being an identity
around the origin with a learnable parameter (see Figure 1).
We perform extensive experiments with so designed sim-
ple networks on image classification using the ImageNet
dataset (Deng et al., 2009; Russakovsky et al., 2015). Our
results show that an ISONet with more than 100 layers
is trainable and can achieve surprisingly competitive per-
formance. To the best of our knowledge, this is the best
performing vanilla ConvNet for such tasks.

From a practical perspective, isometric learning provides
an important guiding principle for addressing challenges in
network architectural design. One such challenge is that the
commonly used normalization layers in modern networks
(Ioffe & Szegedy, 2015; Ba et al., 2016; Wu & He, 2018)
require certain statistical independence assumptions to hold
and large enough batch size or channel number for precise
estimation of such statistics. This drawback significantly
limits their applications to robust learning (Sun et al., 2019),
contrastive learning (Chen et al., 2020), implicit models
(Bai et al., 2020), object detection and so on.

To address such a challenge, we develop a Residual ISONet
(R-ISONet) that does not contain any normalization layer.
In particular, we introduce skip connection to ISONet as it
helps to better promote isometry of the network (Tarnowski
et al., 2019). We evaluate the performance of R-ISONet for
object detection and instance segmentation on the COCO
dataset (Lin et al., 2014). In these applications, the batch
size is very small due to the high resolution of the images,
so that batch normalization becomes ineffective. Our ex-
periment shows that R-ISONet obtains better performance
than standard ResNet. Comparing with existing techniques
for addressing the small-batch challenge (Luo et al., 2018;
Wu & He, 2018; Singh & Krishnan, 2020), R-ISONet has
the benefit that it does not suffer from a slowdown during
inference.

Isometry and many closely related notions have been im-
plicitly and explicitly studied and utilized in many previous
works for improving deep networks. In particular, tech-
niques to promote isometric property have been widely
practiced in the literature. However, they are often used
together with many other design techniques and none of the
previous work has clearly demonstrated that the isometry

property alone ensures surprisingly strong performance for
deep networks. At the end (Section 4), we discuss how
isometric learning offers a simple but unified framework for
understanding numerous seemingly different and diverse
ideas in the literature, supporting the hypothesis that isomet-
ric learning offers a central guiding principle for designing
and learning deep networks.

2. Isometric Networks
In this section, we introduce the isometric principle and
present the isometric network (ISONet). In Section 2.1, we
formally introduce the isometric principle in a vanilla net
as enforcing both the convolution and nonlinear activation
layers to be close to an isometry. Subsequently, Section 2.2
derives the notion of isometry for convolution, and explains
how it can be enforced at initialization and in the training
process. In Section 2.3, we discuss principles for designing
nonlinear activation functions in isometric learning and ar-
gue that one needs to strike a balance between isometry and
nonlinearity, which cannot be achieved at the same time. Fi-
nally, in Section 2.4, skip connections (or residual structure)
can be naturally introduced to ISONet to further improve
isometry, which leads to the R-ISONet.

2.1. Isometric Learning

We first develop a vanilla network that is composed of in-
terleaved convolution1 and nonlinear activation layers, i.e.,

x` = φ(y`), y` = A`x`−1, ` = 1, . . . , L, (1)

whereA` : RC`−1×H×W → RC`×H×W denotes a convolu-
tion operator, φ(·) denotes a point-wise nonlinear activation
function, and x0 ∈ RC0×H×W is the input signal. As-
suming a squared loss given by Loss= 1

2‖z − x
L‖22, the

backward propagation dynamic at x0 is given by

∂Loss
∂x0

= (A1)∗D1 · · · (AL)∗DL(z − xL), (2)

where (A`)∗ : RC`×H×W → RC`−1×H×W is the adjoint
operator of A`, and D` : RC`×H×W → RC`×H×W op-
erates point-wise by multiplying the (c, h, w)-th entry of
the input by φ′(y`

c,h,w). For the operator A` and φ(·) in
the forward dynamic and (A`)∗ and D` in the backward
dynamic, we may define the notion of isometry as follows:

Definition 1 (Isometry). A map A : RC → RM is called
an isometry if

〈Ax,Ax′〉 = 〈x,x′〉, ∀{x,x′} ⊆ RC . (3)

Our ISONet is designed to maintain that all transformations

1We consider convolution for 2D signals (e.g., images), though
our analysis trivially generalizes to arbitrary dimensional signals.
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(A,A∗, φ, and D) in the forward and the backward dynam-
ics are close to an isometry. In the following, we develop
techniques for enforcing isometry in convolution and nonlin-
ear activation layers. As we show in Section 3, combining
these components enables effective training of ISONet with
more than 100 layers on image classification tasks.

2.2. Isometry in Convolution

In this section, we show how to impose the property of
isometry for convolutional layers in ConvNets, and explain
how it can be achieved at initialization and through network
training.

Notation. For computation concerning convolution, we
treat a 2D signal ξ ∈ RH×W as a function defined on
the discrete domain [1, . . . ,H] × [1, . . . ,W ] and further
extended to the domain Z× Z by padding zeros. Similarly,
we regard any 2D kernel α ∈ Rk×k with k = 2k0 + 1 for
some integer k0 as a function defined on the discrete domain
[k0 − 1, . . . , 0, . . . , k0 + 1] × [k0 − 1, . . . , 0, . . . , k0 + 1]
and extended to Z× Z by padding zeros. ξ[i, j] represents
the value of the function ξ at the coordinate (i, j).

Given any ξ ∈ RH×W and α ∈ Rk×k, the convolution of
ξ and α is defined as

(α ∗ ξ)[i, j] =
k0∑

p=−k0

k0∑
q=−k0

ξ[i− p, j − q] ·α[p, q], (4)

and the correlation of ξ and α is defined as

(α ? ξ)[i, j] =

k0∑
p=−k0

k0∑
q=−k0

ξ[i+ p, j + q] ·α[p, q]. (5)

In contrast to the conventions in signal processing, the con-
volution layers (i.e. {A`}L`=1 in (1)) in modern deep learn-
ing frameworks actually perform multi-channel correlation
operations that map a C-channel 2D signal to anM -channel
2D signal. Let x = (ξ1, . . . , ξC) ∈ RC×H×W be the input
signal where ξc ∈ RH×W for each c ∈ {1, . . . , C}, and let

A =


α11 α12 α13 . . . α1C

α21 α22 α23 . . . α2C

...
...

...
. . .

...
αM1 αM2 αM3 . . . αMC

 ∈ RM×C×k×k, (6)

be the convolution kernel where each αm,c is a kernel of
size k × k for c ∈ {1, . . . , C} and m ∈ {1, . . . ,M}. The
convolution operator A associated withA is given by

Ax :=

C∑
c=1

(
α1c ? ξc, . . . ,αMc ? ξc

)
∈ RM×H×W . (7)

The adjoint of A that appears in the backward dynamics (2),
denoted asA∗, is a mapping from RM×H×W to RC×H×W :

A∗y :=

M∑
m=1

(
αm1 ∗ ηm, . . . ,αmC ∗ ηm

)
∈ RC×H×W ,

(8)
where y = (η1, . . . ,ηM ) ∈ RM×H×W and ηm ∈ RH×W .

We first study under what conditions of kernelA such that
A and A∗ are isometric. Starting from Definition 1 we
arrive at the following theorem (see appendix for the proof).

Theorem 1. Given a convolution kernelA ∈ RM×C×k×k

in (6), the operator A is an isometry if and only if

M∑
m=1

αmc ?αmc′ =

{
δ if c = c′,

0 otherwise,
(9)

and the operator A∗ is an isometry if and only if

C∑
c=1

αmc ?αm′c =

{
δ if m = m′,

0 otherwise.
(10)

In above, δ is the Kronecker delta function defined on Z×Z
that takes value 1 at coordinate (0, 0) and 0 otherwise.

For the case of M = C, the isometry of A is equivalent to
the isometry of A∗2. We refer toA as an orthogonal convo-
lution kernel if M = C and either A or A∗ is isometric.

On the other hand, if M 6= C then A and A∗ cannot be
both isometric. Nonetheless, we can still enforce isometry
of A (in the case M ≥ C) or the isometry of A∗ (in the
case M ≤ C) by the conditions (9) and (10), respectively.

Example 1 (Delta kernel). We refer to a convolution kernel
A ∈ RC×M×k×k as the (Kronecker) delta kernel, denoted
as δC×M×k×k, if its entries indexed by (i, i, k0, k0) (assum-
ing k = 2k0 + 1) for all i ∈ {1, . . . ,min(C,M)} are set
to 1 and all other entries are set to zero. If M ≥ C (resp.,
M ≤ C), then the operator A (resp., A∗) associated with
a delta kernel is an isometry. Moreover, if M = C then a
delta kernel is orthogonal.

Isometry at initialization. As shown in Example 1, we
may initialize all convolution kernels to be isometric by
setting them to be the delta kernel, which we refer to as the
Delta initialization. Other orthogonal initialization, such as
the Delta Orthogonal initialization (Xiao et al., 2018), are
also plausible choices. We empirically find that Delta initial-
ization works well and often outperforms Delta Orthogonal
initialization. Such initialization is also commonly used in
initializing Recurrent Neural Networks (Le et al., 2015).

Isometry during training. Isometry at initialization does
not guarantee that isometry will be preserved through the

2When M = C, the isometry of A implies that it is surjective,
therefore unitary, hence A∗ is also an isometry.
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training process. In addition to Delta initialization, we en-
force isometry by penalizing the difference between the left
and right hand sides of (9) (or (10)). As we shown below,
this can be easily implemented via modern deep learning
packages.

In particular, given an input that contains a batch of N
multi-channel signalsX := (x1, . . . ,xN ) ∈ RN×C×H×W

where each xn ∈ RC×H×W for each n ∈ {1, . . . , N}, and
a convolution kernel A ∈ RM×C×k×k defined as in (6), a
convolution function in a typical deep learning framework,
denoted as Conv(A,X), performs correlation ofA on each
of the N signals and stack the resulting N multi-channel
signals to a tensor:

Conv(A,X) = (Ax1, . . . ,AxN ). (11)

By replacing X in (11) with the kernel A itself and using
(7), we obtain

Conv(A,A)

=
(
A(α11, . . . ,α1C), . . . ,A(αM1, . . . ,αMC)

)
=


∑C

c=1 α1c ?α1c · · ·
∑C

c=1 αMc ?α1c

...
. . .

...∑C
c=1 α1c ?αMc · · ·

∑C
c=1 αMc ?αMc

 .

(12)

Comparing (12) with the condition in (10), we see that the
operator A∗ is an isometry if and only if Conv(A,A) is a
delta kernel δM×M×k×k. Similarly,A is an isometry if and
only if Conv(A>,A>) = δC×C×k×k, whereA> denotes
a kernel with the first two dimension ofA transposed. From
these results, we can enforce isometry by adding one of the
following regularization terms to the objective function:

L(A) =
γ

2
‖Conv(A,A)− δM×M×k×k‖2F , or (13)

L(A>) =
γ

2
‖Conv(A>,A>)− δC×C×k×k‖2F , (14)

where γ is a regularization coefficient. We use L(A) when
C > M and L(A>) otherwise.

2.3. Isometry in Nonlinear Activation

The rectified linear unit (ReLU) is one of the most pop-
ular activation functions for deep learning applications
(Nair & Hinton, 2010). Defined entry-wise on the input
as φ(x) = max(0, x), ReLU is an identity map for nonneg-
ative input, but completely removes all negative component.
For an input signal that is normalized to zero mean and unit
variance, ReLU is far from being an isometry. How can we
develop an isometric nonlinear activation layer?

Unfortunately, isometry is innately at odds with nonlinearity.
By Mazur-Ulam theorem, any surjective isometry between
two normed spaces over R is linear up to a translation (Nica,

Purely isometric
Linear

a) Linear

Partially isometric
Weakly nonlinear

b) SReLU

Not isometric
Strongly nonlinear

c) ReLU

Figure 2. Illustration of isometry in nonlinear activation

2013). Therefore, isometry can never be achieved if any non-
linearity is present. On the other hand, a purely isometric
network without nonlinearity is not interesting either, since
the entire network becomes a linear transformation which
has very limited learning ability. The design of the non-
linear activation function requires striking a good trade-off
between isometry and nonlinearity.

We advocate using a Shifted ReLU (SReLU) for achieving
such a trade-off. SReLU is obtained by interpolating regular
ReLU (for obtaining nonlinearity) and the identity (for ob-
taining isometry). Given a signal y ∈ RC×H×W where C
is the number of channels, SReLU is defined point-wise as

φb(y) = max(y, b), (15)

where b is a parameter that is shared for each channel of y.
SReLU becomes the regular ReLU if b = 0 and the identity
if b → −∞, therefore can be interpreted as a trade-off
between nonlinearity and isometry (see Figure 2). In terms
of backward dynamic (see (2)), the operator D associated
with φb(·) is given as D(x) = 1y≥b · x, which is an identity
map if y is larger than b.

In our experiments, we find it beneficial to initialize b to be
negative values, which indicates the importance of such a
trade-off between ReLU and identity. For simplicity, in all
our experiments we initialize b to be −1 and optimize it in
the training process.

2.4. Isometry in Residual Structure

We may further improve the isometric property of each
layer of ISONet with a residual component (He et al., 2016),
which we call a residual ISONet (R-ISONet). The core
idea is to introduce a skip connection to ISONet, so that the
network learns a residual component that is added onto the
path of signal propagation (see Figure 1). Such a network
architecture is automatically near isometric if the residual
component is small enough relative to the identity short-
cut (Tarnowski et al., 2019). Motivated by such an ob-
servation, we add a scalar multiplier s at the end of each
residual branch and initialize s to be zero (s is shared within
each channel). Similar design ideas have previously been
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explored to improve ResNet (Szegedy et al., 2017; Goyal
et al., 2017; Zhang et al., 2019b).

Since skip connection helps to enforce isometry, R-ISONet
exhibits better performance than ISONet. For image clas-
sification on ImageNet, R-ISONet obtains almost as good
performance as regular ResNet, even though R-ISONet has
no normalization layers. Since no normalization layer is
required, R-ISONet is particularly suited for applications
where normalization layers are ineffective. As we show in
the next section, R-ISONet obtains better performance than
regular ResNet for object detection tasks on COCO dataset.

3. Experiments
3.1. Experimental Setup

Setup. We test the performance of ISONets on the ILSVRC-
2012 image classification dataset (Deng et al., 2009; Rus-
sakovsky et al., 2015). The training set contains ∼1.28
million images from 1,000 categories. Evaluation is per-
formed on the validation set which contains 50,000 images.
1-Crop, Top-1 accuracy is reported.

Network architectures. The design of network architec-
ture follows from the design of ResNet (He et al., 2016;
Goyal et al., 2017), with the only difference being that we
change the residual blocks to the block shown in Figure 1.
In particular, the number of channels and layers in each
stage remain the same as ResNet. We find that (R-)ISONet
tends to overfit since BatchNorm is removed. Therefore we
add one dropout layer right before the final classifier. The
dropout probability is 0.4 for R-ISONet and 0.1 for ISONet.

Implementation details. The hyperparameter settings fol-
low from prior works (He et al., 2016; Goyal et al., 2017).
All models are trained using SGD with weight decay 0.0001,
momentum 0.9 and mini-batch size 256. The initial learn-
ing rate is 0.1 for R-ISONet and 0.02 for ISONet. The
models are trained for 100 epochs with the learning rate
subsequently divided by a factor of 10 at the 30th, 60th and
90th epochs. To stabilize training in the early stage, we per-
form linear scheduled warmup (Goyal et al., 2017) for the
first 5 epochs for both our methods and baseline methods.
The orthogonal regularization coefficient γ in (13) (when
used) is 0.0001 except for ISONet-101 where a stronger reg-
ularization (0.0003) is needed. For other baselines without
normalization or skip connections, we choose the largest
learning rate that makes them converge.

3.2. ISONet: Isometry Enables Training Vanilla Nets

In this section, we verify through extensive experiments that
isometry is a central principle for training deep networks. In
particular, we show that more than 100-layer ISONet can be
effectively trained with neither normalization layers nor skip

Method SReLU
Delta
Init.

Ortho.
Reg.

Top-1
Acc. (%)

(a) ResNet 73.29

(b) Vanilla 63.09

(c) X X 46.83

(d) X 67.35

(e) X X 68.50

(f) X X 68.55

(g) ISONet X X X 70.45

Table 1. Isometric learning (with SReLU, Delta initialization
and orthogonal regularization) enables training ISONets on
ImageNet without BatchNorm and skip connection. (a) Regu-
lar 34-layer ResNet with ReLU activation, Kaiming initialization
and no orthogonal regularization. (b) Same as ResNet but without
BatchNorm and skip connection. (g) Our ISONet with the same
backbone as Vanilla. (c-f) Ablation for (g) that shows that the com-
bination of all three isometric learning components is necessary
for effectively training ISONet.

Orthogonal coefficient γ 0 1e−5 3e−5 1e−4 3e−4

Top-1 Accuracy (%) 68.55 70.08 70.44 70.45 69.32

Table 2. Effect of orthogonal coefficients for 34-layer ISONets.
The performance is not sensitive to the coefficient in a wide range.

connections. In addition, we demonstrate through ablation
study that all of the isometric components in ISONet are
necessary for obtaining good performance.

Ablation study of ISONet components. To demonstrate
how each isometric component affects the trainability of
deep neural networks, we perform experiments with 34-
layer vanilla neural networks and report results in Table 1.
In Table 1 (a), we show the result of regular ResNet. If
the normalization layers and skip connections in ResNet
are removed, the network performance drops by more than
10 points as shown in Table 1 (b). This shows a plain
vanilla network cannot be easily optimized. In fact, 34-layer
is the deepest vanilla network we found trainable in our
experiments. In contrast, ISONet with neither normalization
layers nor skip connections can be effectively trained and
obtain competitive 70.45% Top-1 accuracy, as shown in
Table 1 (g). To our best knowledge, this is the only vanilla
network that achieves > 70% accuracy on ImageNet.

We further show that all the three isometric components (i.e.,
Delta initialization, orthogonal regularization and SReLU)
are indispensable for training deep ISONet. Firstly, enforc-
ing isometry in convolution alone produces ∼46% Top-1
Accuracy, which is far lower than ISONet (see Table 1 (c)).
The reason is that orthogonal convolution is not suitable for
vanilla networks with ReLU activation functions, since the
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Figure 3. Histogram of the parameter b in SReLU computed for each of the four stages of a 34-layer ISONet.

Activation Adaptive b? Initial b Top-1 Acc. (%)

(a) ReLU - 46.83

(b)
SReLU

-1.0 70.27

(c) X -1.0 70.45

(d) X -2.0 70.04

Table 3. Effect of parameter b in SReLU for 34-layer ISONets.

energy may decrease exponentially through multiple layers
of the network. Secondly, enforcing isometry in activation
functions alone cannot achieve good performance, as shown
in Table 1 (d). Thirdly, for convolution layers, isometry
must be enforced both at initialization as well as during
training. This can be seen in Table 1 (e) and (f), where the
performance of ISONet drops by 2 points if either Delta
initialization or orthogonal regularization is removed. This
demonstrates the critical role of isometry during the entire
training process.

Analysis for orthogonal regularization. To understand
the effect of the orthogonal regularization term in (13), we
conduct experiments with different values of the regulariza-
tion coefficient γ and report Top-1 accuracy in Table 2. It
is shown that our method is not sensitive to the choice of
γ in a wide range (from 1e−5 to 1e−4), whereas too large
(3e−4) or no regularization will hurt the performance.

Analysis for SReLU. To verify the design idea of SReLU,
we perform an ablation study on the effect of parameter b
in (15) and report the results in Table 3. Comparing (b) and
(c), a trainable threshold in SReLU is better than a fixed one.
Comparing (c) and (d), changing the initial value of b from
−1 to −2 reduces the accuracy by less than 0.5 percent. We
also plot the histogram of the learned b in SReLU computed
within each of the four stages (corresponding to spatial
resolutions {56, 28, 14, 7}) of ISONet and report the results
in Figure 3. In all cases, the histogram is bell-shaped and
concentrates near −1. This explains why a fixed b = −1
produces a good performance as shown in Table 3 (b).

Training very deep ISONets. To demonstrate the effec-
tiveness of isometric principle for training deep networks,
we report performance of ISONet with increasing number of
layers and report the results in Table 4. Firstly, we observe

Method Dropout
Top-1 Accuracy (%)

d=18 d=34 d=50 d=101

(a)
ResNet

69.67 73.29 76.60 77.37

(b) X 68.91 73.35 76.40 77.99

(c) Vanilla 65.67 63.09 N/A N/A

(d) Vanilla+BN 68.98 69.43 70.00 N/A

(e)
ISONet

67.94 70.45 70.73 70.38

(f) X 68.10 70.90 71.20 71.01

Table 4. ISONet with varying depth d ∈ {18, 34, 50, 101} can
be effectively trained on ImageNet. (a, b) Regular ResNet with
or without dropout. (c) Same as ResNet but without BatchNorm
and skip connection. (d) Same as ResNet but without skip connec-
tion. (e, f) Our ISONet with the same backbone as Vanilla. N/A
stands for not converging or obtaining an accuracy lower than 40.

that a standard vanilla network, either without (Table 4 (c))
or with (Table 4 (d)) BatchNorm, cannot converge when
networks are extremely deep. In contrast, ISONet maintains
a competitive accuracy when the depth is beyond 100 layers.
Adding dropout to ISONet further improves the performance
by ∼0.5 points. On the other hand, the performance ISONet
is not as good as ResNet. In the following, we show that
when combined with skip connection, the performance of
our R-ISONet is on par with ResNet.

3.3. R-ISONet: a Practical Network without
Normalization Layers

In this section, we evaluate the performance of R-ISONet
for ImageNet classification and show that it is comparable
to regular ResNet, despite the fact that R-ISONet does not
contain BatchNorm. The results are reported in Table 5.

From Table 5 (c), ResNet without BatchNorm cannot con-
verge for d ≥ 34. In contrast, our R-ISONet (Table 5 (f))
can be effectively trained for varying network depth. In
addition, R-ISONet is better than previous methods without
BatchNorm such as Fixup (Zhang et al., 2019b) (Table 5
(d)).

Since R-ISONet is prone to overfitting due to the lack of
BatchNorm, we add dropout layer right before the final
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Method Dropout
Top-1 Accuracy (%)

d=18 d=34 d=50 d=101

(a)
ResNet

69.67 73.29 76.60 77.37

(b) X 68.91 73.35 76.40 77.99

(c) R-Vanilla 65.66 N/A N/A N/A

(d) Fixup 68.63 71.28 72.40 73.18

(e) Fixup++ 67.37 72.56 76.00 76.17

(f)
R-ISONet

69.06 72.17 74.20 75.44

(g) X 69.17 73.43 76.18 77.08

Table 5. Performance of R-ISONet with varying depth d ∈
{18, 34, 50, 101} on ImageNet. All networks do not have Batch-
Norm except (a, b). (c) ResNet with all BatchNorm removed. (d, e)
Same as (c), but with Fixup initialization (Zhang et al., 2019b). (f,
g) Our R-ISONet performs comparable to ResNet in (a, b) and bet-
ter than all networks in (c, d, e). N/A stands for not converging or
obtaining an accuracy lower than 40. Fixup results are reproduced
from running the code in (Zhang et al., 2019b) with 100 training
epochs. Fixup++ denotes Fixup with Mixup data augmentation.

classifier and report the results in Table 5 (g). The results
show that R-ISONet is comparable to ResNet with dropout
(Table 5 (b)) and is better than Fixup with Mixup regular-
ization (Zhang et al., 2018).

The superior performance that R-ISONet obtains even with-
out any normalization layers makes it a favorable choice
for tasks where statistics in BatchNorm cannot be precisely
estimated. In Section 3.4, we demonstrate such advantage
of R-ISONet for object detection and instance segmentation
tasks.

3.4. Transfer Learning on Object Detection

We further evaluate our method for object detection and
instance segmentation tasks on COCO dataset (Lin et al.,
2014). The dataset contains 115k training images and 5k
validation images. We use the mAP (over different IoU
threshold) metric to evaluate the performance of the model,
and the “dilated conv5” variant of Faster RCNN (Ren et al.,
2015) as our detector. The backbone of the network includes
all the convolution layers in R-ISONet. The RoIAlign opera-
tor is added on top of the last convolution with the last stage
having convolution with stride 1 and dilation 2. Two fully-
connected layers are then used to predict the bounding box
scores and regression output using this feature. This design
follows prior works (Wu et al., 2019; Dai et al., 2017; He
et al., 2020). The hyper-parameter settings of both ResNet
and R-ISONet follows detectron2 (Wu et al., 2019). We
train our model for 90k iterations. The learning rate is ini-
tialized to be 0.01 and divide by 10 at 60k and 80k iterations.
The training is performed on 8 GPUs, each of which holds 2
images. To keep a fair comparison with standard protocols

Methods mAPbbox mAPmask

34 layer
ResNet 35.0 32.2

R-ISONet 36.2 33.0

50 layer
ResNet 37.0 33.9

R-ISONet 37.3 34.4

Table 6. Performance of R-ISONet with varying depth for ob-
ject detection on COCO dataset. R-ISONet outperforms stan-
dard ResNet, indicating that our model has better transfer ability.

in object detection, dropout is not added.

The results are reported in Table 6. Although the classifica-
tion accuracy of our R-ISONet is lower than that of ResNet
with the same depth, the detection and instance segmenta-
tion performance of R-ISONet is better. This demonstrates
that our model has better feature transfer abilities and can
mitigate the disadvantages introduced by BatchNorm.

4. Related Work and Discussion
In this paper, we contend that isometry is a central design
principle that enables effective training and learning of deep
neural networks. In the literature, numerous instantiations
of this principle have been explicitly or implicitly suggested,
studied, and exploited, often as an additional heuristic or
regularization, for improving existing network training or
performance. Now supported by the strong empirical evi-
dence presented earlier about isometric learning, we reexam-
ine these ideas in the literature from the unified perspective
of isometry.

Arguably, the notion of isometry was first explored in the
context of weight initialization (Section 4.1) and then in
diverse contexts such as weight regularization (Section 4.2),
design of nonlinear activation (Section 4.3), and training
techniques for residual networks (Section 4.4).

4.1. In Context of Weight Initialization

Early works on weight initialization are based on the prin-
ciple that the variance of the signal maintains a constant
level as it propagates forward or backward through multiple
layers (LeCun et al., 2012; Glorot & Bengio, 2010). A pop-
ular method that provides such a guarantee is the Kaiming
Initialization (He et al., 2015) which derives a proper scaled
Gaussian initialization for weights in vanilla convolutional
networks with ReLU activation functions. Derivations for
general activation functions beyond ReLU is more difficult,
but nonetheless can be achieved by working in the regime
where the network is infinitely wide using mean-field theory
(Poole et al., 2016; Schoenholz et al., 2016). From the per-
spective of isometry, the aforementioned works guarantee
that the average of the squared singular values of the input-
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output Jacobian matrix is close to 1. However, this does not
mean that the Jacobian is an isometry, which requires that
all the singular values concentrate at 1. In fact, with the
common practice of Gaussian weight initialization, isometry
can never be achieved regardless of the choice of activation
functions (Pennington et al., 2018).

To address such an issue, orthogonal weight initialization
has been extensively studied in the past few years. For
linear networks with arbitrary depth, orthogonality of each
composing layers trivially leads to an isometry of the input-
output Jacobian, and the benefit over Gaussian initialization
in terms of training efficiency has been empirically observed
(Saxe et al., 2013) and theoretically justified (Hu et al.,
2020). For deep nonlinear networks, isometry may also
be achieved if the network works in a local regime that
the nonlinearity becomes approximately linear (Pennington
et al., 2018), and empirical good performance of orthogonal
initialization is also observed (Mishkin & Matas, 2016)
particularly when combined with proper scaling. This line
of work culminates at a recent work (Xiao et al., 2018)
which shows that orthogonal initialization enables effective
training of ConvNets with 10,000 layers. Nonetheless, the
performance of the network in Xiao et al. (2018) is far below
the state-of-the-art networks, perhaps due to the fact that
isometry beyond the initialization point is not guaranteed.

The Delta initialization adopted in our method is a particular
case of orthogonal initialization for convolution kernels.
Despite the existence of other orthogonal initialization (Xiao
et al., 2018), we advocate the Delta initialization due to its
simplicity and good empirical performance in our evaluation
for visual recognition tasks.

4.2. In Context of Weight Regularization

A plethora of works has explored the idea of regulating the
convolution operators in a ConvNet to be orthogonal in the
training process (Harandi & Fernando, 2016; Jia et al., 2017;
Cisse et al., 2017; Bansal et al., 2018; Zhang et al., 2019a; Li
et al., 2019a; Huang et al., 2020). It is also found that orthog-
onal regularization helps with training GANs (Brock et al.,
2019; Liu et al., 2020) and RNNs (Arjovsky et al., 2016;
Lezcano-Casado & Martı́nez-Rubio, 2019). Despite widely
observed performance improvement, the explanation for the
effectiveness of orthogonal regularization is rather diverse:
it has been justified from the perspective of alleviating gra-
dient vanishing or exploding (Xie et al., 2017a), stabilizing
distribution of activation over layers (Huang et al., 2018),
improving generalization (Jia et al., 2019), and so on.

In our framework, the benefit of orthogonal regularization
lies in that it enforces the network to be close to an isom-
etry. To make our argument precise, we first distinguish
between the two related concepts of orthogonal weights and
orthogonal convolution. When enforcing orthogonality of

convolution kernels in convolutional neural networks, all
of the works mentioned above are based on flattening a 4D
kernel into a 2D matrix and imposing orthogonality on the
matrix. We refer to such a method as imposing weight or-
thogonality, which is not the same as the orthogonality of
convolution as discussed in Section 2.2. For example, in
Bansal et al. (2018) a kernelA ∈ RM×C×k×k is reshaped
into a matrix of shape M × (C × k × k) and is enforced to
be row-orthogonal. That is,

C∑
c=1

〈vec(αmc), vec(αm′c)〉 =

{
1 if m = m′,

0 otherwise,
(16)

where vec(αmc) denotes a vector of length k × k obtained
from flattening αmc. Comparing (16) with (10), it is clear
that such a regularization is necessary, but not sufficient, for
the operator A∗ to be isometric. Therefore imposing weight
orthogonality as in previous works can be interpreted as
partially enforcing network isometry as well.

To the best of our knowledge, the only works that have de-
rived orthogonality for convolution kernels are Xiao et al.
(2018) and Wang et al. (2020). Xiao et al. (2018) provides a
means of constructing orthogonal convolution kernels, but
it can only represent a subset of all orthogonal convolutions
(Li et al., 2019b). In addition, while the method in Xiao
et al. (2018) can be used to generate a random orthogonal
convolution, it does not provide a means of enforcing or-
thogonality in the training process. We become aware of a
very recent work (Wang et al., 2020) during the preparation
of this paper, which derives the notion of orthogonal con-
volution that is equivalent to ours. However, the objective
of our work is different from theirs. Instead of improving
an existing network by adding an additional regularization,
our work aims to show that isometry is the most central
principle to design effective deep vanilla networks. And as
shown in Table 1, using orthogonal regularization alone is
not enough for training deep vanilla networks. Meanwhile,
the derivation in (Wang et al., 2020) is based on expressing
convolution as matrix-vector multiplication using a doubly
block-Toeplitz matrix and using the notion of orthogonality
for matrices. Such a derivation is limited to 2D convolu-
tion while generalization to higher dimensional convolution
may become very cumbersome. Moreover, the definition
is restricted to discrete time signals and does not adapt to
continuous time signals. In contrast, our definition of orthog-
onal convolution can be extended for higher-dimensional
convolution and for continuous times signals by properly re-
defining the operator “*” in (4), therefore may bear broader
interests.

4.3. In Context of Nonlinear Activation

Many of the important variants of nonlinear activation func-
tions developed over the past few years can be interpreted



Deep Isometric Learning for Visual Recognition

as obtaining closer proximity to isometry. Early works on
improving ReLU such as Leaky ReLU (Maas et al., 2013),
Parametric ReLU (He et al., 2015) and Randomized ReLU
(Xu et al., 2015), which are generically defined as

f(x) =

{
x if x ≥ 0,

αx otherwise,
(17)

with the parameter α > 0 being fixed, learned and randomly
chosen, respectively. Motivation for this family of activation
functions comes from the dead neuron issue of ReLU, which
states that negative input values give rise to zero gradients
that prevents effective training of the network.

The Exponential Linear Unit (ELU) (Clevert et al., 2016)
and its variants (Trottier et al., 2017; Klambauer et al., 2017),
defined as

f(x) =

{
γx if x ≥ 0,

α(exp(x/β)− 1) otherwise,
(18)

with α, β and γ being trainable or fixed parameters, is an-
other family of activation functions that may solve the dead
neuron issue. Another important motivation for ELU is that
it pushes the mean of the activation closer to zero, therefore
alleviates the issue with regular ReLU that the bias of the
input signal is always shifted towards positivity. Such bene-
fit is further confirmed by a theoretical study (Klambauer
et al., 2017) which shows that a zero mean and unit variance
signal converges towards being zero mean and unit variance
after propagating over multiple layers. Empirically, a very
recent work (Huang et al., 2019) demonstrates that a 50-
layer neural network without batch normalization and skip
connection may be effectively trained for speech recognition
tasks by using ELU instead of ReLU.

The SReLU that we adopt in the isometric network is closely
related to the ELU family. To the best of our knowledge,
a variant of SReLU (in which the parameter is fixed and
not optimizable) first appears in Clevert et al. (2016), the
paper that proposes ELU, where it is shown to outperform
ReLU and Leaky ReLU by a large margin and has similar
performance as ELU. Besides, SReLU is also adopted in
(Qiu et al., 2018) as an important baseline. Recently, SReLU
is rediscovered in (Xiang & Li, 2017; Singh & Krishnan,
2020) for alleviating the bias shifting issue.

We argue that aside from the benefits claimed by the original
papers, the activation function families (17), (18) as well
as the SReLU are advantageous over the regular ReLU as
they bring the network closer to an isometry. At an intuitive
level, both (17) (with 0 < α < 1), (18) (with γ = 1 and
0 < α < 1 and β = 1) and SReLU lie between ReLU and
identity, therefore may be considered as a tradeoff between
obtaining nonlinearity and isometry. From a theoretical per-
spective, the analysis from (Pennington et al., 2018) reveals

that SReLU combined with random orthogonal initialization
can achieve dynamic isometry, while regular ReLU cannot.

4.4. In Context of Residual Learning

Ever since the inception of residual learning (He et al.,
2016), there has been no lack of effort in further enhancing
its performance. In particular, there is a line of work that
demonstrates the benefit of reducing the energy on the resid-
ual branch of a ResNet. This is studied from different per-
spectives such as dynamic isometry (Tarnowski et al., 2019;
Qiu et al., 2018), training failure modes (Taki, 2017; Hanin
& Rolnick, 2018; Balduzzi et al., 2017). Such design is also
empirically applied in different ways such as BatchNorm ini-
tialization (Goyal et al., 2017), adding a small scalar in the
residual branch (Zagoruyko & Komodakis, 2017; Szegedy
et al., 2017), and 0-initialized convolution (Zhang et al.,
2019b), all of which brings the network closer to an isom-
etry. With a careful design along this line of study (Zhang
et al., 2019b), deep ResNet can be effectively trained to
obtain competitive performance on visual recognition tasks,
even without the help of BatchNorm layers. This line of
research as well as our simple R-ISONet verifies the effec-
tiveness of isometry in the design the network structures of
residual learning.

5. Conclusion
In this paper, we have demonstrated through a principle-
guided design and strong empirical evidence why isometry
is likely to be the main key property that enables effective
learning of deep networks and ensures high performance
on real visual recognition tasks. With this design princi-
ple, one may achieve competitive performance with much
simplified networks and eased training. We also argue that
isometric learning provides a unified principle that helps
explain numerous ideas, heuristics and regularizations scat-
tered in the literature that exploit this property and are found
effective. We believe that the isometry principle may help
people design or discover new simple network operators
and architectures with much-improved performance in the
future.
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