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Appendices
A. Proof to Theorem 1
Proof. From Definition 1, A is an isometry if and only if

〈Ax,Ax′〉 = 〈x,x′〉, ∀{x,x′} ⊆ RC×H×W . (19)

By the property of the adjoint operator, (19) is equivalent to

〈A∗Ax, x′〉 = 〈x,x′〉, ∀{x,x′} ⊆ RC×H×W , (20)

which holds if and only if

A∗Ax = x, ∀x = (ξ1, . . . , ξC) ∈ RC×H×W . (21)

By using (7) and (8), we rewrite A∗Ax as

M∑
m=1

C∑
c=1

(
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(
αmc ? ξc

)
, . . . ,αmC ∗

(
αmc ? ξc

))
=

M∑
m=1

C∑
c=1

((
αmc?αm1

)
∗ξc, . . . ,

(
αmc?αmC

)
∗ξc
)
.

(22)

In (22), we have used the fact that for arbitrary 2D signals
α,α′ and ξ,

α ∗ (α′ ? ξ) = (α′ ? ξ) ∗α
= α′ ? (α ∗ ξ) = α′ ? (α ∗ ξ) = (α′ ?α) ∗ ξ, (23)

which follows from the commutative property of convolu-
tion (i.e., α ∗ ξ = ξ ∗ α) and the associative property of
convolution and correlation (i.e.,α?(α′∗ξ) = (α?α′)∗ξ).
By equating the last line of (22) with x = (ξ1, . . . , ξC), we
get that A is an isometry if and only if

M∑
m=1

C∑
c=1

(
αmc?αmc′

)
∗ξc = ξc′ ∀c′ ∈ {1, . . . , C} (24)

holds for all x = (ξ1, . . . , ξC), which is equivalent to (9).
Analogously, we can show that A∗ is an isometry if and
only if (10) holds.

B. Additional Experiments
Isometric Components on ResNet. The isometric com-
ponents are not heuristic engineering components but are
specifically designed to promote neural network’s isometric
property. To validate this hypothesis, we show that naively
adding those components to a standard ResNet34 will only
have marginal or even negative impact on its performance
(see Table 7). Standard ResNet, which has the BatchNorm
layers, is not so sensitive to Delta initialization, as shown in

Method SReLU
Delta
Init.

Ortho.
Reg.

Top-1
Accuracy (%)

(a)

ResNet

73.29

(b) X 72.92

(c) X 71.80

(d) X 73.60

(e) X X X 71.53

Table 7. ImageNet Top-1 accuracy for standard ResNet34 with
additional isometric components. The results show that these
components are specifically designed for imposing isometry of the
network, instead of heuristic engineering components.

Table 7 (b). Applying SReLU will however even decrease
the performance since the nonlinearity effect is compro-
mised by BatchNorm due to its effect of forcing output to
have zero mean. In addition, imposing orthogonal regular-
ization improves the performance by only a small margin.


