
Adversarial risk via optimal transport

and optimal couplings (Supplementary)

Proofs from Section 3

Theorem 1. Consider the binary classification setup with Y = {0, 1}, where
the input x ∈ X is drawn with equal probability from two distributions p0

(for label 0) and p1 (for label 0). We consider a set of binary classifiers
of the form 1{x ∈ A}, where A ⊆ X is a topologically closed set. That is,
the classifier corresponding to A assigns the label 1 for all x ∈ A and the
label 0 for all x /∈ A. Consider the 0 − 1 loss function `((x, y), A) = 1{x ∈
A, y = 0}+ 1{x /∈ A, y = 1}. The adversarial risk with the data perturbing
adversary is given by

R∗ε =
1

2
[1−Dε(p0, p1)] . (1)

Proof. Let A ⊆ X be a closed set such that the classifier declares 1 on A
and 0 on Ac. The robust risk over the hypothesis class of closed sets is given
by

R∗ε = min
A⊆X

1

2
(p0(Aε) + p1 ((Ac)ε))

=
1

2

(
1− sup

A closed

{
p1

(
A−ε

)
− p0(Aε)

})
,

where we define A−ε := ((Ac)ε)c.
Strassen’s theorem is a special case for the Kantorovich duality in the

case of a 0 − 1 loss. The statement provided below is as in Villani [3,
Corollary 1.28]:

Lemma 0.1. Let the input X be drawn from a Polish space X . Let Π(p0, p1)
be the set of all probability measures on X × X with marginals p0 and p1.
Then for ε ≥ 0 and A ⊆ X ,

inf
π∈Π(p0,p1)

π[d(x, x′) > ε] = sup
A closed

{p0(A)− p1(Aε)} .

For any two distributions, Strassen’s theorem states that

Dε(p0, p1) = sup
A

{
p0(A)− p1(A2ε)

}
.
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To prove the equality R∗ε = 1
2 [1 − Dε(p0, p1)], notice that it is enough to

prove that for measures µ and ν,

sup
A
µ(A−ε)− ν(Aε) = sup

A
µ(A)− ν(A2ε). (2)

We may assume that the set achieving the supremum on the right hand
side in (2) is a closed set for the following reason: For any measurable set
A ⊆ X , Aε is closed, and A ⊆ A, where A is the closure of A in X . Hence,

µ(A) − ν(A
2ε

) ≥ µ(A) − ν(A2ε). Similarly, we may assume that the set
achieving the supremum on the left hand side in (2) is also a closed set.
Hence, it suffices to prove (2) for the case when the supremum on both sides
is taken over closed sets A, instead of the larger class of measurable sets.

In the following lemma, we show that Aε and A−ε are also closed sets if
A is a closed set.

Lemma 0.2. If A is closed, then Aε is also closed. Similarly, if A is closed,
then A−ε is also closed.

Proof. Let A be a closed set and let B be the closed ball of radius ε. Let
{zi}i≥1 be a sequence of points in Aε converging to a limit z. We shall
show that z ∈ Aε as well. Note that every zi admits an expression zi =
ai + bi, where ai ∈ A and bi ∈ B. Since B is a compact set, there exists
a subsequence among the {bi} sequence that converges to b∗ ∈ B. Call the
subsequence {b̃i}i≥1 such that b̃i → b∗ and |b̃i−b∗| < δ for some small δ > 0.
Since z = ãi + b̃i = ãi + b̃i − b∗ + b∗. Thus, we see that ãi is also bounded
within a ball of radius δ around z − b∗, and so there exists a convergence
subsequence within the {ãi} sequence. Let that subsequence converge to a∗.
We must have a∗ ∈ A and b∗ ∈ B since A and B are closed. This means
z = a∗ + b∗ must lies in Aε, which shows that Aε is closed.

Recall that A−ε = ((Ac)ε)c. Since Ac is an open set, it is enough to show
that Cε is open if C is open. Let z ∈ Cε. We know that z = c+ b for some
c ∈ C and b ∈ B. Consider a small open ball of radius δ around c, called
Nδ(c) that lies entirely in C. This is possible since C is assumed to be open.
Now observe that Nδ(z) ⊆ Cε, since Nδ(z) = Nδ(c) + b. This shows that
every point z ∈ Cε admits a small ball around it that is contained in Cε, or
equivalently, Cε is open. This completes the proof.

Next, we show the order in which a set is thickened by ε and thinned by
ε affects the size of the original set in opposing ways:

Lemma 0.3. Let A be a closed set. Then (A−ε)ε ⊆ A and A ⊆ (Aε)−ε.
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Proof. Notice that a point x ∈ A−ε if and only if Nε(x) (which is the ball of
radius ε centered at x) lies entirely in A. If this were not the case, then we
could find a y ∈ Ac such that d(x, y) ≤ ε, and so x ∈ (Ac)ε, which implies
x 6∈ ((Ac)ε)c = A−ε. This observation implies that (A−ε)ε ⊆ A.

Similarly, a point x ∈ (Aε)−ε if and only if Nε(x) ∈ Aε. By definition of
Aε, every point x ∈ A satisfies Nε(x) ∈ Aε. Thus, if x ∈ A then x ∈ (Aε)−ε.
Equivalently, A ⊆ (Aε)−ε.

Figure 1: Illustration of A,Aε, A−ε, (Aε)−ε, and (A−ε)ε for a square in (R2, ‖·
‖2). Observe that (A−ε)ε ⊆ A and A ⊆ (Aε)−ε.

Figure 1 illustrates the above lemma when A is a square in R2 with the
Euclidean distance metric. Using the above lemmas, we now establish the
desired equality from (2): We have the sequence of inequalities

sup
A closed

µ(A)− ν(A2ε)
(a)

≥ sup
A closed

µ(A−ε)− ν((A−ε)2ε)

(b)

≥ sup
A closed

µ(A−ε)− ν(Aε).

Here, (a) follows because A−ε is contained in the set of all closed sets by
Lemma 0.2. Inequality (b) follows using Lemma 0.3, since

(A−ε)2ε = [(A−ε)ε]ε ⊆ Aε,

and so ν((A−ε)2ε) ≤ ν(Aε).

3



For the other direction, notice that

sup
A closed

µ(A−ε)− ν(Aε)
(a)

≥ sup
A closed

µ((Aε)−ε)− ν((Aε)ε)

(b)

≥ sup
A closed

µ(A)− ν(A2ε).

Here, (a) follows because Aε is a closed set according to Lemma 0.2. To
see (b), first note that (Aε)ε = A2ε, and so ν((Aε)ε) = ν(A2ε). Moreover,
Lemma 0.3 states that

A ⊆ (Aε)−ε,

and so µ(A) ≤ µ((Aε)−ε). This completes the proof.

Comparison with Bhagoji et al.[1]: We note that a similar result was
obtained recently in Bhagoji et al.[1]. While the duality in their proof was
established for a larger hypothesis class of measurable sets A, our proof
relies on Strassen’s duality theorem and properties of closed sets. Using
closed sets and directly using Strassen’s theorem allows us to considerably
simplify the technical details as compared with Bhagoji et al.[1].

Corollary 0.1. Under the setup considered in Theorem 1, we have the fol-
lowing bound for p ≥ 1:

R∗ε ≥
1

2

[
1−

(
Wp(p0, p1)

2ε

)p]
. (3)

Proof. From Theorem 1, we have

R∗ε =
1

2

[
1− inf

π∈Π(µ,ν)
E(x,x′)∼π[1{d(x, x′) > 2ε}]

]
.

For p ≥ 1 and any π ∈ Π(µ, ν), we have the following:

E(x,x′)∼π[1{d(x, x′) > 2ε}] = E(x,x′)∼π[1{d(x, x′)p > (2ε)p}]

≤ E(x,x′)∼π

[(
d(x, x′)

2ε

)p]
,

where the last inequality follows from Markov’s inequality. Therefore,

R∗ε =
1

2

[
1− inf

π∈Π(µ,ν)
E(x,x′)∼π

[(
d(x, x′)

2ε

)p]]
=

1

2

[
1−

(
Wp(p0, p1)

2ε

)p]
.
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Proofs from Section 4

Theorem 2. Let µ and ν be finite positive measures on Rd that are abso-
lutely continuous with respect to the Lebesgue measure and have bounded sup-
ports. Then Dε(µ, ν) = 0 if and only if W∞(µ, ν) ≤ 2ε. Here, W∞(µ, ν) =
limp→∞Wp(µ, ν).

Proof. An alternate description of W∞(µ, ν) as per Givens and Shortt [2] is

W∞(µ, ν) = inf{δ > 0 : µ(A) ≤ ν(Aδ) for all measurable A}.

Naturally, if W∞(µ, ν) ≤ 2ε, then µ(A) ≤ ν(A2ε) for all closed sets A. Hence,

Dε(µ, ν) = sup
A closed

µ(A)− ν(A2ε) ≤ 0.

Since Dε(µ, ν) ≥ 0, we conclude that Dε(µ, ν) = 0.
For the reverse direction, suppose that Dε(µ, ν) = 0. This means there

exists a sequence of couplings {π}i≥1 such that Eπicε(x, x′)→ 0 where πi ∈
Π(µ, ν). Equivalently, the probability αi := Pπi(‖x − x′‖ > 2ε) → 0 as
i→∞. For any fixed p ≥ 1, we have the inequality

Wp(µ, ν) ≤
(
Eπi‖x− x′‖p

)1/p

≤ ((2ε)p(1− αi) + Cpαi)
1/p ,

where C = sup ‖x − x′‖ which is a constant since µ and ν are assumed to
have bounded supports. Pick i0 large enough so that (2ε)p(1−αi0) > Cpαi0 .
Now letting p→∞ and calculating the limits, we conclude that W∞(µ, ν) ≤
2ε.

Theorem 3. Let µ and ν be finite positive measures on R that are abso-
lutely continuous with respect to the Lebesgue measure with Radon-Nikodyn
derivatives f(·) and g(·), respectively. The cumulative distribution function
(cdf) of µ is defined as F (x) = µ((−∞, x]), and for t ∈ [0, 1], the inverse
cdf (or quantile function) is defined as F−1(t) = inf{x ∈ R : F (x) ≥ t}.
The cdf G(·) and inverse cdf G−1(·) are defined analogously. Suppose that
µ(R) = ν(R) = U . Then Dε(µ, ν) = 0 if and only if ‖F−1 −G−1‖∞ ≤ 2ε.

Proof. Consider the monotone transport map from µ to ν given by T (x) =
G−1(F (x)) for x ∈ R [3]. We shall show that this map satisfies |T (x)−x| ≤ 2ε
for all x ∈ R, and so the optimal transport cost Dε must be 0. To see this,
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note that

T (x)− x = G−1(F (x))− x
≤ F−1(F (x)) + 2ε− x
= 2ε,

where the last equality is in the µ-almost sure sense. A similar argument
shows x− T (x) ≤ 2ε, and thus |T (x)− x| ≤ 2ε.

For the converse, suppose that there exists a t0 ∈ (0, 1) such that
G−1(t0) − F−1(t0) > 2ε. Equivalently, G−1(t0) > F−1(t0) + 2ε. Applying
the G function on both sides,

t0 > G(F−1(t0) + 2ε).

Consider the set Ã = (−∞, F−1(t0)]. For this set, notice that

ν(Ã2ε) = ν((−∞, F−1(t0) + 2ε]) = G(F−1(t0) + 2ε).

Thus, we have

Dε(µ, ν) = sup
A
µ(A)− ν(A2ε)

≥ µ(Ã)− ν(Ã2ε)

= t0 −G(F−1(t0) + 2ε)

> 0.

A similar argument may also be made for the case when F−1(t0)−G−1(t0) >
2ε.

Corollary 0.2. Let µ and ν be as in Theorem 3. Suppose that for every
x ∈ R, we have F (x) ≥ G(x) and F (x) ≤ G(x+ 2ε). Then Dε(µ, ν) = 0.

Proof. Applying the G−1 function to both sides of both inequalities, we
arrive at

T (x) ≤ x, and T (x) ≥ x+ 2ε.

This gives |T (x)− x| ≤ 2ε for all x, which concludes the proof.

Before we examine the case of Gaussian distributions with identical
means but different variances, we define notions of transport for measures
with unequal masses.
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Definition 1. [Optimal transport cost for general measures] Let µ and ν be
as in Theorem 3. Suppose that µ(R) = U and ν(R) = V and U ≤ V . Let ν ′

be a measure on R with Radon-Nikodyn derivative g′ such that ν ′(R) = U .
We say ν ′ ⊆ ν, or ν ′ is contained in ν, if g(x) ≥ g′(x) ν-almost surely. Then
the optimal transport cost Dε(µ, ν) is defined as

Dε(µ, ν) = inf
ν′⊆ν

Dε(µ, ν
′).

Note that the amount of mass being moved is min(U, V ) = U .

Lemma 0.4. Let µ and ν be as in Theorem 3. Assume that µ(R) = U and
ν(R) = V . Suppose the following conditions hold:

1. The support of g is [a,+∞) and the support of f is [a + 2ε,+∞) =:
[a′,+∞).

2. For all x ∈ R, we have g(x) ≤ f(x+ 2ε).

Then Dε(µ, ν) = 0. A similar result holds if the supports of g and f are
(−∞,−a] and (−∞,−a− 2ε], and f(−x− 2ε) ≥ g(−x).

Figure 2: Figure illustrating the conditions in Lemma 0.4.

Proof. Consider the transport map T (x) = x + 2ε applied to ν. This map
has the effect of “translating” the measure ν by 2ε to the right. Call this
translated measure η. Since f(x) ≥ g(x − 2ε), it is immediate that η ⊆ µ.
Moreover, the transport cost is Dε(ν, η) = 0. This shows that Dε(µ, ν) =
0.

Lemma 0.5. Let µ and ν be as in Theorem 3. Assume that µ(R) = ν(R) =
U . Suppose the following conditions hold (see Figure 3 for an illustration):

1. Let a, b ∈ R be such that b− a > 2ε. The support of f is [a, b] and the
support of g is [a′, b] := [a+ 2ε, b].
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2. There exists t ∈ [a, b] such that f(x) ≥ g(x) for x ∈ [a, t), and f(x) ≤
g(x) for x ∈ (t, b].

3. Let g̃(x) = g(x+2ε). Note that g̃ is supported on [a, b−2ε]. There exists
t̃ ∈ [a, b− 2ε] such that f(x) ≤ g̃(x) for x ∈ [a, t̃), and f(x) ≥ g̃(x) for
x ∈ (t̃, b− 2ε].

Then Dε(µ, ν) = 0. A mirror image of this result also holds: Dε(µ, ν) = 0
when the support of f is [b, c + 2ε], that of g is [b, c], and f(x) ≤ g(x) for
x ∈ [b, t) and f(x) ≥ g(x) for x ∈ [t, c + 2ε]; and for g̃(x) = g(x + 2ε) we
have f(x) ≥ g̃(x) for x ∈ [b+ 2ε, t̃) and f(x) ≤ g(x) for x ∈ [t̃, c+ 2ε] .

Figure 3: Figure illustrating the conditions in Lemma 0.5.

Proof. We first prove F (x) ≥ G(x). To see this, consider H(x) = F (x) −
G(x). Since the derivative of H is f − g, it must be that H is increasing
from [a, t) and decreasing from [t, b]. Also, we have H(a) = H(b) = 0, and
so the function H must be non-negative in [a, b]. Equivalently, we must
have F (x) ≥ G(x) for x ∈ R. We now prove F (x) ≤ G(x + 2ε). Consider
H̃(x) = F (x) − G̃(x). By condition (3), the derivative of this function is
negative from [a, t̃] and positive from [t̃, b]. Thus, the function H̃ decreases
on the interval [a, t̃) and increases on the interval [t̃, b]. Note that since
H̃(a) = H̃(b) = 0, the function H̃ must be non-positive in the interval [a, b].
Thus, we have F (x) ≤ G(x + 2ε). Applying Corollary 0.2 concludes the
proof.

Our next lemma is specific to Gaussian pdfs:
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Lemma 0.6. Let f and g be Gaussian pdfs corresponding to N (µ1, σ
2
1) and

N (µ2, σ
2
2), respectively. Assume σ2

1 > σ2
2. Then the equation f(x)−g(x) = 0

has exactly two solutions s1 < µ2 < s2.

Proof. By scaling and translating, we may set µ2 = 0 and σ2
2 = 1. Solving

f(x)− g(x) = 0 is equivalent to solving the quadratic equation

x2

2
− (x− µ1)2

2σ2
1

= log σ1.

Simplifying, we wish to solve

x2(σ2
1 − 1) + 2µ1x− (µ2

1 + 2σ2
1 log σ1) = 0.

Since σ1 > 1, the above quadratic has two distinct roots: one negative and
one positive. This proves the claim.

We shall call the two points where f and g intersect as the left and right
intersection points.

Theorem 4. Let µ and ν be the Gaussian measures N (0, σ2
1) and N (0, σ2

2),
respectively. Assume σ2

1 > σ2
2 without loss of generality. Let m > 0 be such

that f(m+ ε) = g(m− ε). Let A = (−∞,−m]∪ [m,+∞). Then the optimal
transport cost between µ and ν is given by

Dε(µ, ν) = µ(A−ε)− ν(Aε)

= 2Q

(
m+ ε

σ1

)
− 2Q

(
m− ε
σ2

)
.

The corresponding robust risk is

R∗ε =
1− µ(A−ε) + ν(Aε)

2
.

Moreover, if µ corresponds to hypothesis 1, the optimal robust classifier de-
cides 1 on the set A.

Proof. We shall propose a map that transports µ to ν. (See Figure 4 for
an illustration.) Consider r ∈ (0,m− ε) whose value will be provided later.
First, we partition R into the five regions for µ and ν, as shown in Table 1.
For µ, these partitions are (−∞,−m− ε], (−m− ε,−r], (−r,+r), [r,m+ ε),
and [m + ε,∞). Let µ restricted to these intervals be µ−−, µ−, µ0, µ+,
and µ++, respectively. The measure ν is also partitioned five ways, but
the intervals used in this case are slightly modified to be (−∞,−m + ε],
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µ−− (−∞,−m− ε]
µ− (−m− ε,−r]
µ0 (−r,+r)
µ+ [r,m+ ε)

µ++ [m+ ε,∞)

ν−− (−∞,−m+ ε]

ν− (−m+ ε,−r]
ν0 (−r,+r)
ν+ [r,m− ε)
ν++ [m− ε,∞)

Table 1: The real line is partitioned into five regions for µ and ν, as shown
in the table.

(−m+ ε,−r], (−r, r), [r,m− ε), and [m− ε,+∞). Call ν restricted to these
intervals ν−−, ν−, ν0, ν+, and ν++, respectively.

The transport plan from µ to ν will consist of five maps transporting
µ−− → ν−−, µ− → ν−, µ0 → ν0, µ+ → ν+, and µ++ → ν++. In each case,
we plan to show that Dε(µ∗, ν∗) = 0, where ∗ ranges over all possible sub-
scripts. Note that these measures do not necessarily have identical masses,
and thus by Definition 1, we are transporting a quantity of mass equal to
the minimum mass among the two measures. For this reason, even though
the transport cost is Dε(µ∗, ν∗) = 0, it does not mean Dε(µ, ν) = 0.

Consider µ++ and ν++. We have f(m + ε) = g(m− ε) by the choice of
m. We argue that for any t ≥ 0, we must have f(m+ ε+ t) ≥ g(m− ε+ t).
This is because any two Gaussian pdfs can intersect in at most two points.
By Lemma 0.6, the ε-shifted Gaussian pdfs f(x + ε) and g(x − ε) have
m as their right intersection point, and there are no additional points of
intersection to the right of m. Since the tail of f is heavier, it means that
f(m+ε+t) ≥ g(m−ε+t) for all t ≥ 0. By Lemma 0.4, we can now conclude
Dε(µ++, ν++) = 0. A similar argument also shows Dε(µ−−, ν−−) = 0.

Before we consider µ− and ν−, we first define r as follows: Pick r > 0
such that µ([−m − ε,−r)) = ν([−m + ε,−r)). To see that such an r must
exist, consider the functions a(t) := µ([−m− ε, t)) and b(t) := ν([−m+ ε, t))
as t ranges over (−m + ε, 0). When t = −m + ε, we have a(t) > b(t) = 0.
When t = 0, we have a(t) = 1/2 − µ−−(R) < b(t) = 1/2 − ν−−(R). Thus,
there must exist a t0 ∈ (−m + ε, 0) such that a(t0) = b(t0). Pick the
smallest (i.e., the leftmost) such t0, and set −r = t0. Call f(·) restricted to
[−m− ε,−r) and g(·) restricted to [−m+ ε,−r) as f− and g−, respectively,
and their corresponding cdfs F− and G−, respectively. We claim that µ−
and ν− satisfy all three conditions from Lemma 0.5. Since the supports of
f− and g− are [−m− ε,−r) and [−m+ ε,−r), condition (1) is immediately
verified. To check condition (2), we break up the interval [−m− ε,−r) into
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two parts: [−m− ε,−s) and [−s,−r), where s is such that f(−s) = g(−s).
Observe that f− ≥ g− on [−m− ε,−s), whereas f− ≤ g− on [−s,−r). This
shows that condition (2) is satisfied. We have g−(−m + ε) = f−(−m − ε).
Again, using Lemma 0.6 the 2ε-shifted Gaussian pdf f(x−2ε) and g(x) have
−m+ ε as their left intersection point, and the right intersection point is to
the right of 0. Thus, we have f(x − 2ε) ≤ g(x) for all x ∈ [−m + ε, 0] ⊇
[−m+ε, r). Using this domination, we conclude that f− ≤ g̃− in the interval
[−m − ε,−r − 2ε) and f− ≥ g− = 0 in the interval (−r − 2ε,−r], and so
condition (3) is satisfied. Applying Lemma 0.5, we conclude Dε(µ−, ν−) = 0.
An essentially identical argument may be used to show Dε(µ+, ν+) = 0. The
minor difference being that r is chosen to satisfy µ([r,m+ε)) = ν([r,m−ε)),
and the mirror image of Lemma 0.5 is applied.

Finally, consider the interval (−r,+r). In this interval, f(x) ≤ g(x) for
every point. Hence, a transport map from µ0 to ν0 is obtained by simply
considering the identity function. Any remaining mass in µ is moved to ν
arbitrarily, incurring a cost of at most 1 per unit mass. The total cost of
transport is then upper-bounded by

Dε(µ, ν) ≤ 1− [min(µ−−, ν−−) + min(µ−, ν−) + min(µ0, ν0)

+ min(µ+, ν+) + min(µ++, ν++)]

= 1− [ν−− + µ− + µ0 + µ+ + ν++]

= 1− µ([−m− ε,m+ ε])− 2ν([m− ε,∞))

= µ(A−ε)− ν(Aε)

= 2Q

(
m+ ε

σ1

)
− 2Q

(
m− ε
σ2

)
.

where for brevity we have denoted µ∗(R) as µ∗. However, we also have

Dε(µ, ν) ≥ µ(A−ε)− ν(Aε).

The lower and upper bounds match and this concludes the proof. The robust
risk R∗ε is given by Theorem 1. The robust risk of the classifier that decides
1 on the set A is easily seen to be R∗ε .

Theorem 5. Let µ and ν be Gaussian measures N (µ1, σ
2
1) and N (µ2, σ

2
2)

respectively. Assume σ2
1 > σ2

2 without loss of generality. Let m1,m2 > 0
be such that f(−m1 − ε) = g(−m1 + ε) and f(m2 + ε) = g(m2 − ε). Let
A = (−∞,−m1] ∪ [m2,∞). Then the optimal transport cost between µ and
ν is given by

Dε(µ, ν) = µ(A−ε)− ν(Aε).
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Figure 4: Optimal transport coupling for centered Gaussian distributions
µ and ν. As in the proof of Theorem 4, we divide the real line into five
regions. The transport plan from µ to ν consists of five maps transporting
µ−− → ν−− (blue regions to the left), µ− → ν− (orange regions to the left),
µ0 → ν0 (green regions in the middle), µ+ → ν+ (orange regions to the
right), and µ++ → ν++ (blue regions to the right).

Consequently, the robust risk is given by

R∗ε =
1

2
(1− µ(A−ε) + ν(Aε)).

If µ corresponds to hypothesis 1, the optimal robust classifier decides 1 on
the set A.

Proof. As in the proof of Theorem 4, we shall divide the real line into
five regions as shown in Table 2 where we define r1 and r2 shortly. Us-
ing an identical strategy as in Theorem 4, we conclude Dε(µ−−, ν−−) =
Dε(mu++, ν++) = 0. Define r1 as the leftmost point where µ([−m1 −
ε, r1)) = ν([−m1 +ε, r1)). Similarly, define r2 to be the rightmost point such
that µ([r2,m2 + ε)) = ν([r2,m2 − ε)). We shall now prove Dε(µ−, ν−) = 0
by using Lemma 0.5. Verifying conditions (1) and (2) is exactly as in that
of Theorem 4. The novel component of this proof is verifying condition
(3), since the domination used in the proof of Theorem 4 does not work in
this case due to the asymmetry. Consider the pdfs f−(x) and g−(x + 2ε).
These two pdfs, being restrictions of Gaussian pdfs to suitable intervals,
may only intersect in at most two points. One of these points of intersection
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µ−− (−∞,−m1 − ε]
µ− (−m1 − ε,−r1]

µ0 (−r1,+r2)

µ+ [r2,m2 + ε)

µ++ [m2 + ε,∞)

ν−− (−∞,−m1 + ε]

ν− (−m1 + ε,−r1]

ν0 (−r1,+r2)

ν+ [r2,m2 − ε)
ν++ [m2 − ε,∞)

Table 2: The real line is partitioned into five regions for µ and ν as shown
in the table.

is −m1 − ε by the choice of m1, so there can be at most one other point of
intersection in the interval [−m1 − ε,−r1 − 2ε]. Note that there may be no
point of intersection in this interval. However, the key observation is that
in both cases, condition (3) continues to be satisfied. To see this, suppose
that there is a point of interaction t̃. In this case, f− ≤ g̃− in [−m1 − ε, t̃),
and f− ≥ g− in (t̃,−r1]. If there is no point of intersection, then f− ≤ g̃−
in [−m1 − ε,−r1 − 2ε), and f− ≥ g− = 0 in (−r1 − 2ε,−r1]. This verifies
condition (3). Using Lemma 0.5, we conclude Dε(µ−, ν−) = 0. An identical
approach gives Dε(µ+, ν+) = 0. Since f(x) ≤ g(x) for all points in the
interval (−r1, r2), the identity map may be used to conclude Dε(µ0, ν0) = 0.

Any remaining mass in µ is moved to ν arbitrarily, incurring a cost of
at most 1 per unit mass. The total cost of transport is then upper-bounded
by

Dε(µ, ν) ≤ 1− [min(µ−−, ν−−) + min(µ−, ν−) + min(µ0, ν0)

+ min(µ+, ν+) + min(µ++, ν++)]

= 1− [ν−− + µ− + µ0 + µ+ + ν++]

= 1− µ([−m1 − ε,m2 + ε])− ν((−∞,−m1 + ε))− ν([m2 − ε,∞))

= µ(A−ε)− ν(Aε),

where for brevity we have denoted µ∗(R) as µ∗. The rest of the proof is
identical to that of Theorem 4.

Theorem 6 (Uniform distributions). Let µ and ν be uniform measures on
closed intervals I and J respectively. Without loss of generality, we assume
|I| ≤ |J |. Then the optimal robust risk is ν(I2ε) and the optimal classifier
is given by A = Iε.

Proof. Like in the proof for Theorem 4, we prove Theorem 6 by partitioning
the real line into several regions for µ and ν, and transporting mass between
these regions. Figure 5 shows the optimal coupling for the case when I2ε ⊆ J .
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Figure 5: Optimal coupling for two uniform distributions. The region shaded
in green is kept in place (at no cost). The two regions shaded in orange are
transported monotonically from either side at a cost not exceeding 2ε per
unit mass. The remaining region in blue is moved at the cost of 1 per unit
mass.

We first prove a lower bound. Choose the set A = I, we have that

Dε(µ, ν) ≥ µ(A)− ν(A2ε) = 1− ν(I2ε).

To establish the upper bound, we need to find a coupling that transports µ
to ν such that the cost of transportation is bounded above by 1 − ν(I2ε).
Let I = [i1, i2] and J = [j1, j2]. As shown in Figure 5, we pick t1 ∈ [i1, i2]
such that ν([i1 − 2ε, t1]) = µ([i1, t1]). Similarly, pick t2 ∈ [t1, i2] such that
µ([t2, i2]) = ν([t2, i2 + 2ε]).

We now present a plan to transport ν to µ. This plan consists of four
mini-plans:

1. First, transport the mass ν([i1−2ε, t1]) to µ([i1, t1]) using a monotone
transport map.

2. Then transport the mass from ν([t2, i2+2ε]) to µ([t2, i2]) using a mono-
tone transport map.

3. Keep any mass in [t1, t2] in its place.

4. Move any remaining mass in ν arbitrarily to the necessary places in µ.

The key point to note is that in maps (1) and (2), the total distance moved
by every unit of mass is at most 2ε. The proof of this part is along similar

14



lines to that of Theorem 5. Thus, the transport cost in steps (1) and (2) is
0. Naturally, the transport cost in (3) is 0. This means that all the mass
in the interval [i1 − 2ε, i2 + 2ε] can be transported into µ for zero cost. The
total cost of transportation is therefore at most 1−ν([i1−2ε, i2 +2ε]), which
matches our lower bound. It is easily checked that the error attained by the
proposed classifier also matches the bound, which completes the proof.
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