
Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

A. Proofs
The definitions of continuity and convergence for pseudo-
metrics are similar to those for metrics, and we state them
below.

A function f : Q 7→ Q is continuous with respect to a
pseudo-metric d if for any p ∈ Q and any scalar ε > 0,
there exists a δ such that for all q ∈ Q,

d(p, q) < δ =⇒ d(f(p), f(q)) < ε.

An infinite sequence p1, p2 . . . converges to a value p with
respect to a pseudo-metric d, which we write as

lim
t→∞

pt → p,

if

lim
t→∞

d(pt, p)→ 0.

Note that if f is continuous, then

lim
t→∞

dH(pt, q)→ 0 =⇒ lim
t→∞

dH(f(pt), f(q))→ 0.

A.1. Proof of Lemma 3.1

Lemma A.1. Let S be a compact set. Define the set
of distributions Q = {p : support(p) ⊆ S}. Let F :
Q 7→ Q be continuous with respect to the pseudomet-
ric dH(p, q) , |H(p)−H(q)| and H(F(p)) ≥ H(p) with
equality if and only if p is the uniform probability distribu-
tion on S, denoted as US . Define the sequence of distri-
butions P = (p1, p2, . . .) by starting with any p1 ∈ Q
and recursively defining pt+1 = F(pt). The sequence
P converges to US with respect to dH. In other words,
limt→0 |H(pt)−H(US)| → 0.

Proof. The idea of the proof is to show that the distance
(with respect to dH) between pt and US converges to a
value. If this value is 0, then the proof is complete since
US uniquely has zero distance to itself. Otherwise, we will
show that this implies that F is not continuous, which a
contradiction.

For shorthand, define dt to be the dH-distance to the uniform
distribution, as in

dt , dH(pt, US).

First we prove that dt converges. Since the entropies of the
sequence (p1, . . .) monotonically increase, we have that

d1 ≥ d2 ≥

We also know that dt is lower bounded by 0, and so by the
monotonic convergence theorem, we have that

lim
t→∞

dt → d∗.

for some value d∗ ≥ 0.

To prove the lemma, we want to show that d∗ = 0. Suppose,
for contradiction, that d∗ 6= 0. Then consider any distribu-
tion, q∗, such that dH(q∗, US) = d∗. Such a distribution
always exists since we can continuously interpolate entropy
values between H(p1) and H(US) with a mixture distri-
bution. Note that q∗ 6= US since dH(US , US) = 0. Since
limt→∞ dt → d∗, we have that

lim
t→∞

dH(pt, q
∗)→ 0, (5)

and so

lim
t→∞

pt → q∗.

Because the function F is continuous with respect to dH,
Equation 5 implies that

lim
t→∞

dH(F(pt),F(q∗))→ 0.

However, since F(pt) = pt+1 we can equivalently write the
above equation as

lim
t→∞

dH(pt+1,F(q∗))→ 0.

which, through a change of index variables, implies that

lim
t→∞

pt → F(q∗)

Since q∗ is not the uniform distribution, we have that
H(F(q∗)) > H(q∗), which implies that F(q∗) and q∗ are
unique distributions. So, pt converges to two distinct values,
q∗ and F(q∗), which is a contradiction. Thus, it must be the
case that d∗ = 0, completing the proof.

A.2. Proof of Lemma 3.2

Lemma A.2. Given two distribution p(x) and q(x) where
p� q and

0 < Covp[log p(X), log q(X)] (6)

define the distribution pα as

pα(x) =
1

Zα
p(x)q(x)α

where α ∈ R and Zα is the normalizing factor. LetHα(α)
be the entropy of pα. Then there exists a constant a > 0
such that for all α ∈ [−a, 0),

Hα(α) > Hα(0) = H(p). (7)

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

Proof. Observe that {pα : α ∈ [−1, 0]} is a one-
dimensional exponential family

pα(x) = eαT (x)−A(α)+k(x)

with log carrier density k(x) = log p(x), natural parameter
α, sufficient statistic T (x) = log q(x), and log-normalizer
A(α) =

∫
X e

αT (x)+k(x)dx. As shown in (Nielsen & Nock,
2010), the entropy of a distribution from a one-dimensional
exponential family with parameter α is given by:

Hα(α) , H(pα) = A(α)− αA′(α)− Epα [k(X)]

The derivative with respect to α is then

d

dα
Hα(α) = −αA′′(α)−

d

dα
Epα [k(x)]

= −αA′′(α)− Eα[k(x)(T (x)−A′(α)]
= −αVarpα [T (x)]− Covpα [k(x), T (x)]

where we use the fact that the nth derivative ofA(α) give the
n central moment, i.e. A′(α) = Epα [T (x)] and A′′(α) =
Varpα [T (x)]. The derivative of α = 0 is

d

dα
Hα(0) = −Covp0 [k(x), T (x)]

= −Covp[log p(x), log q(x)]

which is negative by assumption. Because the derivative at
α = 0 is negative, then there exists a constant a > 0 such
that for all α ∈ [−a, 0],Hα(α) > Hα(0) = H(p).

The paper applies to the case where q = qGφ and p = pSφ .
When we take N →∞, we have that pskewed corresponds to
pα above.

A.3. Simple Case Proof

We prove the convergence directly for the (even more) sim-
plified case when pθ = p(S | qGφt) using a similar technique:

Lemma A.3. Assume the set S has finite volume so that
its uniform distribution US is well defined and has finite
entropy. Given any distribution p(s) whose support is S,
recursively define pt with p1 = p and

pt+1(s) =
1

Ztα
pt(s)

α, ∀s ∈ S

where Ztα is the normalizing constant and α ∈ [0, 1).

The sequence (p1, p2, . . .) converges to US , the uniform
distribution S.

Proof. If α = 0, then p2 (and all subsequent distributions)
will clearly be the uniform distribution. We now study the
case where α ∈ (0, 1).

At each iteration t, define the one-dimensional exponential
family {ptθ : θ ∈ [0, 1]} where ptθ is

ptθ(s) = eθT (s)−A(θ)+k(s)

with log carrier density k(s) = 0, natural parameter θ,
sufficient statistic T (s) = log pt(s), and log-normalizer
A(θ) =

∫
S e

θT (s)ds. As shown in (Nielsen & Nock, 2010),
the entropy of a distribution from a one-dimensional expo-
nential family with parameter θ is given by:

Htθ(θ) , H(ptθ) = A(θ)− θA′(θ)

The derivative with respect to θ is then

d

dθ
dHtθ(θ) = −θA′′(θ)

= −θVars∼ptθ [T (s)]
= −θVars∼ptθ [log pt(s)] (8)

≤ 0

where we use the fact that the nth derivative of A(θ) is
the n central moment, i.e. A′′(θ) = Vars∼ptθ [T (s)]. Since
variance is always non-negative, this means the entropy
is monotonically decreasing with θ. Note that pt+1 is a
member of this exponential family, with parameter θ = α ∈
(0, 1). So

H(pt+1) = Htθ(α) ≥ Htθ(1) = H(pt)

which implies

H(p1) ≤ H(p2) ≤

This monotonically increasing sequence is upper bounded
by the entropy of the uniform distribution, and so this se-
quence must converge.

The sequence can only converge if d
dθH

t
θ(θ) converges to

zero. However, because α is bounded away from 0, Equa-
tion 8 states that this can only happen if

Vars∼ptθ [log pt(s)]→ 0. (9)

Because pt has full support, then so does ptθ. Thus, Equa-
tion 9 is only true if log pt(s) converges to a constant, i.e.
pt converges to the uniform distribution.

B. Additional Experiments
B.1. Sensitivity Analysis

Sensitivity to RL Algorithm In our experiments, we
combined Skew-Fit with soft actor critic (SAC) (Haarnoja
et al., 2018). We conduct a set of experiments to test whether
Skew-Fit may be used with other RL algorithms for train-
ing the goal-conditioned policy. To that end, we replaced

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

Figure 9. We compare using SAC (Haarnoja et al., 2018) and
TD3 (Fujimoto et al., 2018) as the underlying RL algorithm on
Visual Door, Visual Pusher and Visual Pickup. We see that Skew-
Fit works consistently well with both SAC and TD3, demonstrating
that Skew-Fit may be used with various RL algorithms. For the
experiments presented in Section 6, we used SAC.

SAC with twin delayed deep deterministic policy gradient
(TD3) (Fujimoto et al., 2018) and ran the same Skew-Fit ex-
periments on Visual Door, Visual Pusher, and Visual Pickup.
In Figure 9, we see that Skew-Fit performs consistently well
with both SAC and TD3, demonstrating that Skew-Fit is
beneficial across multiple RL algorithms.

Sensitivity to α Hyperparameter We study the sen-
sitivity of the α hyperparameter by testing values of
α ∈ [−1,−0.75,−0.5,−0.25, 0] on the Visual Door and
Visual Pusher task. The results are included in Figure 10
and shows that our method is robust to different parameters
of α, particularly for the more challenging Visual Pusher
task. Also, the method consistently outperform α = 0,
which is equivalent to sampling uniformly from the replay
buffer.

-.25
=-.5
=-.75
=-1
=0 (No Skew-Fit)

50K 100K 150K 200K 250K 300K 350KTimesteps
0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Fin
al O

bje
ct D

ista
nce

Visual Object Pickup Ablation

20K 30K 40K 50K 60K 70KTimesteps
0.0

0.1

0.2

0.3

0.4

0.5

Fin
al A

ng
le D

iffe
ren

ce

Visual Door Opening

100K 200K 300KTimesteps
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

Fin
al P

uck
 Di

sta
nce

Visual Puck Pushing Ablation

Figure 10. We sweep different values of α on Visual Door, Visual
Pusher and Visual Pickup. Skew-Fit helps the final performance
on the Visual Door task, and outperforms No Skew-Fit (α = 0) as
seen in the zoomed in version of the plot. In the more challenging
Visual Pusher task, we see that Skew-Fit consistently helps and
halves the final distance. Similarly, we observe that Skew-Fit
consistently outperforms No Skew-fit on Visual Pickup. Note that
alpha=-1 is not always the optimal setting for each environment,
but outperforms α = 0 in each case in terms of final performance.

B.2. Variance Ablation

Figure 11. Gradient variance averaged across parameters in last
epoch of training VAEs. Values of α less than −1 are numerically
unstable for importance sampling (IS), but not for Skew-Fit.

We measure the gradient variance of training a VAE on an
unbalanced Visual Door image dataset with Skew-Fit vs
Skew-Fit with importance sampling (IS) vs no Skew-Fit (la-
beled MLE). We construct the imbalanced dataset by rolling
out a random policy in the environment and collecting the
visual observations. Most of the images contained the door
in a closed position; in a few, the door was opened. In Fig-
ure 11, we see that the gradient variance for Skew-Fit with
IS is catastrophically large for large values of α. In contrast,
for Skew-Fit with SIR, which is what we use in practice, the

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

Method NLL
MLE on uniform (oracle) 20175.4
Skew-Fit on unbalanced 20175.9
MLE on unbalanced 20178.03

Table 1. Despite training on a unbalanced Visual Door dataset (see
Figure 7 of paper), the negative log-likelihood (NLL) of Skew-Fit
evaluated on a uniform dataset matches that of a VAE trained on a
uniform dataset.

variance is relatively similar to that of MLE. Additionally
we trained three VAE’s, one with MLE on a uniform dataset
of valid door opening images, one with Skew-Fit on the
unbalanced dataset from above, and one with MLE on the
same unbalanced dataset. As expected, the VAE that has
access to the uniform dataset gets the lowest negative log
likelihood score. This is the oracle method, since in practice
we would only have access to imbalanced data. As shown in
Table 1, Skew-Fit considerably outperforms MLE, getting a
much closer to oracle log likelihood score.

B.3. Goal and Performance Visualization

We visualize the goals sampled from Skew-Fit as well as
those sampled when using the prior method, RIG (Nair
et al., 2018). As shown in Figure 12 and Figure 13, the
generative model qGφ results in much more diverse samples
when trained with Skew-Fit. We we see in Figure 14, this
results in a policy that more consistently reaches the goal
image.

C. Implementation Details
C.1. Likelihood Estimation using β-VAE

We estimate the density under the VAE by using a sample-
wise approximation to the marginal over x estimated using
importance sampling:

qGφt(x) = Ez∼qθt (z|x)
[

p(z)

qθt(z|x)
pψt(x | z)

]
≈ 1

N

N∑
i=1

[
p(z)

qθt(z|x)
pψt(x | z)

]
.

where qθ is the encoder, pψ is the decoder, and p(z) is the
prior, which in this case is unit Gaussian. We found that
sampling N = 10 latents for estimating the density worked
well in practice.

C.2. Oracle 2D Navigation Experiments

We initialize the VAE to the bottom left corner of the en-
vironment for Four Rooms. Both the encoder and decoder
have 2 hidden layers with [400, 300] units, ReLU hidden
activations, and no output activations. The VAE has a la-
tent dimension of 8 and a Gaussian decoder trained with a

fixed variance, batch size of 256, and 1000 batches at each
iteration. The VAE is trained on the exploration data buffer
every 1000 rollouts.

C.3. Implementation of SAC and Prior Work

For all experiments, we trained the goal-conditioned policy
using soft actor critic (SAC) (Haarnoja et al., 2018). To
make the method goal-conditioned, we concatenate the tar-
get XY-goal to the state vector. During training, we retroac-
tively relabel the goals (Kaelbling, 1993; Andrychowicz
et al., 2017) by sampling from the goal distribution with
probabilty 0.5. Note that the original RIG (Nair et al., 2018)
paper used TD3 (Fujimoto et al., 2018), which we also re-
placed with SAC in our implementation of RIG. We found
that maximum entropy policies in general improved the per-
formance of RIG, and that we did not need to add noise on
top of the stochastic policy’s noise. In the prior RIG method,
the VAE was pre-trained on a uniform sampling of images
from the state space of each environment. In order to ensure
a fair comparison to Skew-Fit, we forego pre-training and
instead train the VAE alongside RL, using the variant de-
scribed in the RIG paper. For our RL network architectures
and training scheme, we use fully connected networks for
the policy, Q-function and value networks with two hidden
layers of size 400 and 300 each. We also delay training any
of these networks for 10000 time steps in order to collect
sufficient data for the replay buffer as well as to ensure the
latent space of the VAE is relatively stable (since we contin-
uously train the VAE concurrently with RL training). As in
RIG, we train a goal-conditioned value functions (Schaul
et al., 2015) using hindsight experience replay (Andrychow-
icz et al., 2017), relabelling 50% of exploration goals as
goals sampled from the VAE prior N (0, 1) and 30% from
future goals in the trajectory.

For our implementation of (Hazan et al., 2019), we trained
the policies with the reward

r(s) = rSkew-Fit(s) + λ · rHazan et al.(s)

For rHazan et al., we use the reward described in Section 5.2 of
Hazan et al. (2019), which requires an estimated likelihood
of the state. To compute these likelihood, we use the same
method as in Skew-Fit (see Appendix C.1). With 3 seeds
each, we tuned λ across values [100, 10, 1, 0.1, 0.01, 0.001]
for the door task, but all values performed poorly. For
the pushing and picking tasks, we tested values across
[1, 0.1, 0.01, 0.001, 0.0001] and found that 0.1 and 0.01 per-
formed best for each task, respectively.

C.4. RIG with Skew-Fit Summary

Algorithm 2 provides detailed pseudo-code for how we
combined our method with RIG. Steps that were removed
from the base RIG algorithm are highlighted in blue and

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

Figure 12. Proposed goals from the VAE for RIG and with Skew-Fit on the Visual Pickup, Visual Pusher, and Visual Door environments.
Standard RIG produces goals where the door is closed and the object and puck is in the same position, while RIG + Skew-Fit proposes
goals with varied puck positions, occasional object goals in the air, and both open and closed door angles.

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

Figure 13. Proposed goals from the VAE for RIG (left) and with RIG + Skew-Fit (right) on the Real World Visual Door environment.
Standard RIG produces goals where the door is closed while RIG + Skew-Fit proposes goals with both open and closed door angles.

Figure 14. Example reached goals by Skew-Fit and RIG. The first column of each environment section specifies the target goal while the
second and third columns show reached goals by Skew-Fit and RIG. Both methods learn how to reach goals close to the initial position,
but only Skew-Fit learns to reach the more difficult goals.

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

steps that were added are highlighted in red. The main
differences between the two are (1) not needing to pre-train
the β-VAE, (2) sampling exploration goals from the buffer
using pskewed instead of the VAE prior, (3) relabeling with
replay buffer goals sampled using pskewed instead of from
the VAE prior, and (4) training the VAE on replay buffer
data data sampled using pskewed instead of uniformly.

C.5. Vision-Based Continuous Control Experiments

In our experiments, we use an image size of 48x48. For
our VAE architecture, we use a modified version of the
architecture used in the original RIG paper (Nair et al.,
2018). Our VAE has three convolutional layers with kernel
sizes: 5x5, 3x3, and 3x3, number of output filters: 16,
32, and 64 and strides: 3, 2, and 2. We then have a fully
connected layer with the latent dimension number of units,
and then reverse the architecture with de-convolution layers.
We vary the latent dimension of the VAE, the β term of the
VAE and the α term for Skew-Fit based on the environment.
Additionally, we vary the training schedule of the VAE
based on the environment. See the table at the end of the
appendix for more details. Our VAE has a Gaussian decoder
with identity variance, meaning that we train the decoder
with a mean-squared error loss.

When training the VAE alongside RL, we found the fol-
lowing three schedules to be effective for different environ-
ments:

1. For first 5K steps: Train VAE using standard MLE
training every 500 time steps for 1000 batches. After
that, train VAE using Skew-Fit every 500 time steps
for 200 batches.

2. For first 5K steps: Train VAE using standard MLE
training every 500 time steps for 1000 batches. For
the next 45K steps, train VAE using Skew-Fit every
500 steps for 200 batches. After that, train VAE using
Skew-Fit every 1000 time steps for 200 batches.

3. For first 40K steps: Train VAE using standard MLE
training every 4000 time steps for 1000 batches. Af-
terwards, train VAE using Skew-Fit every 4000 time
steps for 200 batches.

We found that initially training the VAE without Skew-Fit
improved the stability of the algorithm. This is due to the
fact that density estimates under the VAE are constantly
changing and inaccurate during the early phases of training.
Therefore, it made little sense to use those estimates to pri-
oritize goals early on in training. Instead, we simply train
using MLE training for the first 5K timesteps, and after
that we perform Skew-Fit according to the VAE schedules
above. Table 2 lists the hyper-parameters that were shared

across the continuous control experiments. Table 3 lists
hyper-parameters specific to each environment. Addition-
ally, Appendix C.4 discusses the combined RIG + Skew-Fit
algorithm.
Algorithm 2 RIG and RIG + Skew-Fit. Blue text denotes RIG
specific steps and red text denotes RIG + Skew-Fit specific steps

Require: β-VAE mean encoder qφ, β-VAE decoder pψ , policy
πθ , goal-conditioned value function Qw, skew parameter α,
VAE Training Schedule.

1: Collect D = {s(i)} using random initial policy.
2: Train β-VAE on data uniformly sampled from D.
3: Fit prior p(z) to latent encodings {µφ(s(i))}.
4: for n = 0, ..., N − 1 episodes do
5: Sample latent goal from prior zg ∼ p(z).
6: Sample state sg ∼ pskewedn and encode zg = qφ(sg) if R

is nonempty. Otherwise sample zg ∼ p(z)
7: Sample initial state s0 from the environment.
8: for t = 0, ..., H − 1 steps do
9: Get action at ∼ πθ(qφ(st), zg).

10: Get next state st+1 ∼ p(· | st, at).
11: Store (st, at, st+1, zg) into replay bufferR.
12: Sample transition (s, a, s′, zg) ∼ R.
13: Encode z = qφ(s), z

′ = qφ(s
′).

14: (Probability 0.5) replace zg with z′g ∼ p(z).
15: (Probability 0.5) replace zg with qφ(s′′) where s′′ ∼

pskewedn .
16: Compute new reward r = −||z′ − zg||.
17: Minimize Bellman Error using (z, a, z′, zg, r).
18: end for
19: for t = 0, ..., H − 1 steps do
20: for i = 0, ..., k − 1 steps do
21: Sample future state shi , t < hi ≤ H − 1.
22: Store (st, at, st+1, qφ(shi)) intoR.
23: end for
24: end for
25: Construct skewed replay buffer distribution pskewedn+1 us-

ing data fromR with Equation 3.
26: if total steps < 5000 then
27: Fine-tune β-VAE on data uniformly sampled from R

according to VAE Training Schedule.
28: else
29: Fine-tune β-VAE on data uniformly sampled from R

according to VAE Training Schedule.
30: Fine-tune β-VAE on data sampled from pskewedn+1 ac-

cording to VAE Training Schedule.
31: end if
32: end for

D. Environment Details
Four Rooms: A 20 x 20 2D pointmass environment in the
shape of four rooms (Sutton et al., 1999). The observation
is the 2D position of the agent, and the agent must specify
a target 2D position as the action. The dynamics of the
environment are the following: first, the agent is teleported
to the target position, specified by the action. Then a Gaus-
sian change in position with mean 0 and standard deviation
0.0605 is applied6. If the action would result in the agent

6In the main paper, we rounded this to 0.06, but this difference
does not matter.

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

Hyper-parameter Value Comments
training batches per time step 2 Marginal improvements after 2

Exploration Noise None (SAC policy is stochastic) Did not tune
RL Batch Size 1024 smaller batch sizes work as well

VAE Batch Size 64 Did not tune
Discount Factor 0.99 Did not tune
Reward Scaling 1 Did not tune

Policy Hidden Sizes [400, 300] Did not tune
Policy Hidden Activation ReLU Did not tune
Q-Function Hidden Sizes [400, 300] Did not tune

Q-Function Hidden Activation ReLU Did not tune
Replay Buffer Size 100000 Did not tune

Number of Latents for Estimating Density (N) 10 Marginal improvements beyond 10

Table 2. General hyper-parameters used for all visual experiments.

Hyper-parameter Visual Pusher Visual Door Visual Pickup Real World Visual Door
Path Length 50 100 50 100
β for β-VAE 20 20 30 60

Latent Dimension Size 4 16 16 16
α for Skew-Fit −1 −1/2 −1 −1/2

VAE Training Schedule 2 1 2 1
Sample Goals From qGφ pskewed pskewed pskewed

Table 3. Environment specific hyper-parameters for the visual experiments

Hyper-parameter Value
training batches per time step .25

Exploration Noise None (SAC policy is stochastic)
RL Batch Size 512

VAE Batch Size 64
Discount Factor 299

300
Reward Scaling 10

Path length 300
Policy Hidden Sizes [400, 300]

Policy Hidden Activation ReLU
Q-Function Hidden Sizes [400, 300]

Q-Function Hidden Activation ReLU
Replay Buffer Size 1000000

Number of Latents for Estimating Density (N) 10
β for β-VAE 10

Latent Dimension Size 2
α for Skew-Fit −2.5

VAE Training Schedule 3
Sample Goals From pskewed

Table 4. Hyper-parameters used for the ant experiment.

Skew-Fit: State-Covering Self-Supervised Reinforcement Learning

moving through or into a wall, then the agent will be stopped
at the wall instead.

Ant: A MuJoCo (Todorov et al., 2012) ant environment. The
observation is a 3D position and velocities, orientation, joint
angles, and velocity of the joint angles of the ant (8 total).
The observation space is 29 dimensions. The agent controls
the ant through the joints, which is 8 dimensions. The
goal is a target 2D position, and the reward is the negative
Euclidean distance between the achieved 2D position and
target 2D position.

Visual Pusher: A MuJoCo environment with a 7-DoF
Sawyer arm and a small puck on a table that the arm must
push to a target position. The agent controls the arm by
commanding x, y position for the end effector (EE). The
underlying state is the EE position, e and puck position p.
The evaluation metric is the distance between the goal and
final puck positions. The hand goal/state space is a 10x10
cm2 box and the puck goal/state space is a 30x20 cm2 box.
Both the hand and puck spaces are centered around the ori-
gin. The action space ranges in the interval [−1, 1] in the x
and y dimensions.

Visual Door: A MuJoCo environment with a 7-DoF Sawyer
arm and a door on a table that the arm must pull open to a
target angle. Control is the same as in Visual Pusher. The
evaluation metric is the distance between the goal and final
door angle, measured in radians. In this environment, we do
not reset the position of the hand or door at the end of each
trajectory. The state/goal space is a 5x20x15 cm3 box in
the x, y, z dimension respectively for the arm and an angle
between [0, .83] radians. The action space ranges in the
interval [−1, 1] in the x, y and z dimensions.

Visual Pickup: A MuJoCo environment with the same robot
as Visual Pusher, but now with a different object. The object
is cube-shaped, but a larger intangible sphere is overlaid on
top so that it is easier for the agent to see. Moreover, the
robot is constrained to move in 2 dimension: it only controls
the y, z arm positions. The x position of both the arm and
the object is fixed. The evaluation metric is the distance
between the goal and final object position. For the purpose
of evaluation, 75% of the goals have the object in the air and
25% have the object on the ground. The state/goal space for
both the object and the arm is 10cm in the y dimension and
13cm in the z dimension. The action space ranges in the
interval [−1, 1] in the y and z dimensions.

Real World Visual Door: A Rethink Sawyer Robot with
a door on a table. The arm must pull the door open to a
target angle. The agent controls the arm by commanding the
x, y, z velocity of the EE. Our controller commands actions
at a rate of up to 10Hz with the scale of actions ranging
up to 1cm in magnitude. The underlying state and goal
is the same as in Visual Door. Again we do not reset the

position of the hand or door at the end of each trajectory. We
obtain images using a Kinect Sensor. The state/goal space
for the environment is a 10x10x10 cm3 box. The action
space ranges in the interval [−1, 1] (in cm) in the x, y and z
dimensions. The door angle lies in the range [0, 45] degrees.

E. Goal-Conditioned Reinforcement Learning
MinimizesH(G | S)

Some goal-conditioned RL methods such as Warde-Farley
et al. (2018); Nair et al. (2018) present methods for min-
imizing a lower bound for H(G | S), by approximating
log p(G | S) and using it as the reward. Other goal-
conditioned RL methods (Kaelbling, 1993; Lillicrap et al.,
2016; Schaul et al., 2015; Andrychowicz et al., 2017; Pong
et al., 2018; Florensa et al., 2018a) are not developed with
the intention of minimizing the conditional entropyH(G |
S). Nevertheless, one can see that goal-conditioned RL
generally minimizes H(G | S) by noting that the optimal
goal-conditioned policy will deterministically reach the goal.
The corresponding conditional entropy of the goal given the
state, H(G | S), would be zero, since given the current
state, there would be no uncertainty over the goal (the goal
must have been the current state since the policy is optimal).
So, the objective of goal-conditioned RL can be interpreted
as finding a policy such that H(G | S) = 0. Since zero is
the minimum value ofH(G | S), then goal-conditioned RL
can be interpreted as minimizingH(G | S).

