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A. Appendix
A.1. Remaining Proofs for Submodular Sharpness

Proof of Theorem 3. Let us denote by S; := {e1,...,e;}
the set we obtain in the i-th iteration of Algorithm 1 and
So = (0. Note that S9 := Sy. Since the greedy algorithm
chooses the element with the largest marginal in each itera-
tion, then for all ¢ € [k] we have

f(Si) = f(Si—1) > max

EES*\SI‘71 fs,iil((i)

Now, from the submodular sharpness condition we conclude
that

[F(5%) = F(Sie)] ™0 £(5%)
ke '

The rest of the proof is the same as the proof of Theorem 1,
which gives us the desired result. O

J(S:) — f(Si—1) >

Finally, we prove the main result for the concept of dynamic
submodular sharpness. This proof is similar to the proof of
Theorem 2.

Proof of Theorem 4. For each iteration ¢ € [k] in the greedy
algorithm we have

JF(Si) — f(Si—1) >

max

eeS*\Si,l fSiil(e)

Now, from the dynamic submodular sharpness condition we
conclude that

F(5%) = S(Sim)) ™" f(57)

kci—1

f(S) = f(Si-1) = :
which gives the same recurrence than Theorem 2. The rest
of the proof is the same as the proof of Theorem 2. O

'Zuse Institute Berlin (ZIB), TU Berlin 2Georgia Insti-
tute of Technology *CERC Data Science, Polytechnique Mon-
treal. Correspondence to: Alfredo Torrico <alfredo.torrico-
palacios@polymtl.ca>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

A.2. Remaining Lemmata

Lemma 1. Consider any monotone set function f : 2V —
R. Then,

1. There is always a set of parameters c and 0 such that
f is (¢, 0)-monotonic sharp. In particular, f is always
(¢, 0)-monotonic sharp when both ¢ — 1 and 0 — 0.

2. If f is (¢, 0)-monotonic sharp, then for any ¢’ > c and
0" < 6, fis (,0")-monotonic sharp. Therefore, in
order to maximize the guarantee of Theorem I we look
Jor the smallest feasible c and the largest feasible 6.

3. If f is also submodular, then Inequality (3) needs to be
checked only for sets of size exactly k.

. - % 1
Proof. 1. Note that 5750 <1 5o (%)9 < (Y7,

1
* 0
% — 0O whenc — 1

which shows that (
and # — 0. Therefore, Definition 1 is simply
Zees*\s fs(e) > 0, which is satisfied since from

monotonicity we have fg(e) > 0.

1
* ? .
2. Observe that (%) as a function of ¢ and 6
is increasing in # and decreasing in c¢. Therefore,

1 1
(%)9 > (%)9 forc’ > cand 0’ < 4.

3. Consider a set S with ¢ elements and such that
|S*\S| = ¢. Let us add k — ¢ elements to S that
do not belong to S* and denote this set S’. The new
set S’ satisfies |S*\S’| = ¢, |S’| = k and from sub-
modularity we have fg(e) > fs/(e). This proves that
the inequality can be checked only for sets of size k.

O

Lemma 2. Consider any monotone submodular set function
f: 2V R.. Then,

1. There is always a set of parameters c and 0 such that f
is (¢, 0)-submodular sharp. In particular, f is always
(¢, 0)-submodular sharp when both ¢ — 1 and 6§ — 0.
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2. If f is (¢, 0)-submodular sharp, then for any ¢’ > ¢
and §' < 0, f is (¢, 8')-submodular sharp. Therefore,
in order to maximize the guarantee of Theorem 3 we

look for the smallest feasible c and the largest feasible
0.

3. Definition 1 implies Definition 3.

Proof. 1. Note that f satisfies the following sequence of
inequalities for any set .S:
2ees\s fs(e)
ax fs(€) 2 =g
L JBUST) — £(8)
- k
180 19) o

where the second inequality is because of submodular-
ity and in the last inequality we applied monotonicity.
Observe that (11) is exactly (4) forc = 1 and 6 — 0.

2. Observe that L=/ ﬂl_ef(s )’ as a function of ¢
and 6 is increasing in 0 and decreasing in c¢. There-
fore, LSI=INTIH(5)" » (SS)-F(S)'" iC

for ¢’ >cand0’<6

3. Definition 1 implies that

-9
Voesso(0) _ [Seess )] 18"
|S*\S|  ~ ke '

12)
On the other hand, by using submodularity and mono-
tonicity we get

> fsle)

eeS*\S

> f(STUS) = f(5) = £(57) = f(S).

Therefore, by using (12) we obtain
ZeES*\S fS(C)
[S*\S]
GO EIC) G
- k'c )

which proves the desired result.

eé%%’fsfs< e) >

A.3. Analysis of Monotonic Sharpness for Specific
Classes of Functions

Let us denote by S(f) the sharpness feasible region for f,
i.e., f is (¢, 8)-monotonic sharp if, and only, if (¢,0) €
S(f). We focus now on obtaining the best approximation
guarantee for a monotone submodular function with sharp-
ness region S(f).

Proposition 1. Given a non-negative monotone submod-
ular function f : 2V — R, with sharpness region S(f)

then the highest approximation guarantee 1 — (1 - f) for
Problem (Py) is given by a pair of parameters that lies on

the boundary of S(f).

Proof. Fix an optimal solution S* for Problem (P;). Note
that we can compute the best pair (c,8) for that S* by
solving the following optimization problem

max 1— (1—0)9 (13)

C

st (c,0) € S(f,5%),

where S(f, S*) corresponds to the sharpness region related
1

to S*. Observe that function 1 — (1 — %) ¢ is continuous

and convex in [1,00) x (0, 1]. Note that for any ¢ > 1, if

1
6 — 0, then (1 — g) % — e~ 1/¢. Also, for any subset S,
Inequality (3) is equivalent to

Wﬂﬂ,(zﬁwa“@>e_c<o

k OPT

where the left-hand side is convex as a function of ¢ and
0, hence S(f, S*) is a convex region. Therefore, the opti-
mal pair (c*,6*) of Problem (13) lies on the boundary of
S(f,S*). Since we considered an arbitrary optimal set, then
the result easily follows. O

Let us study S(f) for general monotone submodular func-
tions. If we fix |S*
depend explicitly on S. On the other hand, for a fixed size
|S*\ S|, there is a subset S* that minimizes the left-hand
side of (3), namely

> Isle) >

e€S*\S

Z fse(e)

e€S*\S¢

for all feasible subset S such that |[S*\S| = ¢. For each
¢ € [k], let us denote

Z fse(e)

e€S*\S*

Therefore, instead of checking Inequality (3) for all feasible
subsets, we only need to check k inequalities defined by
W(1),...,W (k). In general, computing W (¢) is difficult
since we require access to S*. However, for very small
instances or specific classes of functions, this computation
can be done efficiently. In the following, we provide a
detailed analysis of the sharpness feasible region for specific
classes of functions.
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A.3.1. LINEAR FUNCTIONS.

Consider weights w, > 0 for each element e € V" and func-
tion f(S) = > cgwe. Let us order elements by weight
as follows wy > wy > ... > w,, where element ¢; has
weight w;. We observe that an optimal set S* for Prob-
lem (P;) is formed by the top-k weighted elements and

Proposition 2 (Linear functions). Consider weights wy >
wo > ... > wy > 0, where element e; € V has weight
w;, and denote W ({) = Zf:k—é+1 w; for each ¢ €
{1,...,k}. Then, the linear function f(S) = 3., cgwi
is (¢, 8)-monotonic sharp in

{(c,@) €[1,00) x [0,1] :

-0
czf;(%) : vze[k—u}.

Moreover, this region has only k — 1 constraints.

Proof. First, observe that W (k) = OPT. Note that for
any subset we have |[S*\S| € {1,...,k} (for |[S*\S| =0
the sharpness inequality is trivially satisfied). Given ¢ €
{1, ..., k}, pick any feasible set such that |S*\'S| = ¢, then
the sharpness inequality corresponds to

1

>z (i)

ecS*\S

-W(k), (14)

where the left-hand side is due to linearity. Fix ¢ €
{1,...,k}, we observe that the lowest possible value for the
left-hand side in (14) is when S*\S = {ex—r41,..., €k}
Therefore, for a linear function, Definition 1 is equivalent to

1

W (£)
— 1,.
W (k) (k c) I N
¢ (W)
— | === , Ledl,.
¢ () (el
Note that ¢ = k is redundant with ¢ > 1. Given this,
we have £ — 1 curves that define a feasible region in

which the linear function is (¢, f)-monotonic sharp. In
particular, if we consider ¢ = 1, then we can pick § =

) log(k/€)
Millge[k—1] {1og(v3‘%1(<)§vv(z)) } O

| \/

%

C

From Proposition 2 we observe that the sharpness of the
function depends exclusively on w1, . . ., wg. Moreover, the
weights’ magnitude directly affects the sharpness parame-
ters. Let us analyze this: assume without loss of generality

that mq/U(’Z) <z , and more generally, % < % for all

telk—

(,fc)ég%sf;,

1], so we have

te{l,....k}

This shows that a sharp linear function has more similar
weights in its optimal solution, i.e., when the weights in the
optimal solution are balanced. We have the following facts
fore € (0,1):

w 4
o If [y = (1—¢)- . then gy > (1—¢)- f for every

¢ € [k — 1]. Observe that ¢ = 71— and § = 1 satisfy
(1-0-% > (%

is (1,1
the function becomes sharper. Also, if we set ¢ = 1,
then from the analysis of Proposition 2 we could pick

L
telk—1] | log(W (k)/W (£))

log E
> min 8 i =
Le[k—1] log @

showing that f is (1, Q(%))—Sharp. Again,

when € — 0 the function becomes sharper.

1
)? forany ¢ € [k—1], showing that f

-sharp. More importantly, when € is small

9:

log k
log 7755

e On the other hand, suppose that % = 1, then

% < ¢ £ forevery ¢ € [k—1]. Similarly to

the previous bullet, by setting ¢ = 1 we can choose

o, {0}
eelk—1) | log(W(k)/W (£))

log & log k
< min o8 f; = % )
telk-1] | log 7Z log 2

showing that f is (1, O(logﬁl;e) ))-sharp. Observe that

when € — 0 the function becomes less sharp.

9:

Observation 1. Given parameters ¢ > 1 and 0 € [0, 1],
it is easy to construct a linear function that is (c, 0)-sharp
by using Proposition 2. Without loss of generality assume
1
W (k) = 1. From constraint { = 1 choose wj, = ()7 ,
and more generally, from constraint £ € [k — 1] choose

0N\ k .
Wg_pt1 = (E) - Ei:k—l+2 w;. Finally, set w; = 1 —

Zf:z Wi
Observation 2. Given 3 € [0, 1], there exists a linear func-
tion f and parameters (c,0) € [ ) [0, 1] such that f

is (c,0)-sharp and 1 — (1 — f) — B. To obtain this,
we use Observation 1 with ¢ = 1 and any 0 € [0, 1] such
that 8 > (1 — )*/°,
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A.3.2. CONCAVE OVER MODULAR FUNCTIONS.

In this section, we will study a generalization of linear func-
tions. Consider weights w, > 0 for each element e € V,
a parameter o € [0, 1] and function f(S) = (3,5 we) "
Observe that the linear case corresponds to oo = 1. Let us
order elements by weight as follows w; > we > ... > wy,
where element e; has weight w;. Similarly than the lin-
ear case, we note that an optimal set S* for Problem (P;)
is formed by the top-k weighted elements and OPT =

(Eie k] wz) ‘
Proposition 3 (Concave over modular functions). Consider

weights wi > wo > ... > wy > 0, where element e; € V
has weight w; and parameter o € [0, 1]. Denote

[e3

k and k—t
W) := Z Z w; + ij + w;
i=k—0+1 j=k+1 j=1

k+¢ k—t
- 2wt
j=k+1 =1

for each £ € {1,...,k}. Then, the function f(S) =
(Zmies wi)a is (¢, 8)-monotonic sharp in

-0
{(0,9) € [1,00)%[0,1] : ¢ > ﬁ(‘gflﬁ?) Vie [k]}.

Proof. First, observe that unlike the linear case, W (k) #
OPT. Given ¢ € {1,..., k}, pick any feasible set such that
|S*\S| = ¢, then the sharpness inequality corresponds to

5 (zwe,we)a—(zwe,)a

eeS*\S \e’eS e’esS

> (E)Q-OPT. (15)
k-c

Observe that function (z 4+ y)® — z® is increasing in y and
decreasing in z. Therefore, the lowest possible value for the
left-hand side in (15) is when ereg Wer 18 maximized and
we is minimized. Given this, for each ¢ € {1,...,k} we
choose S = {e1,...,€k—¢,€k11,---,€kte}. In this way,
we get S*\S = {ex_¢t1,-..,ex}, Whose elements have
the lowest weights, and .S has the highest weight possible in
V\{ek—¢+1,-..,er}. Hence, Definition 1 is equivalent to

mz(]fc>g, leh] o

Czi'G)VP(?)_e’ l e [k].

We have k curves that define a feasible region in which
the function is (¢, §)-monotonic sharp with respect to S*.

In particular, if we consider ¢ = 1, then we can pick 6 =

. log(k/¢
MiNge k] {1og(01§(T ;w)/(zz)) } O

A.3.3. COVERAGE FUNCTION, (NEMHAUSER &
WOLSEY, 1978).

Consider the space X = {1,...,k}*, sets A; = {x € X :
x; =1} fori € [k—1]and B; = {x € X : z = i}
fori € [k], ground set V = {Ay,...,Ax_1,B1,..., Bk},
and function f(S) = |Upeg Ul for S C V. In this case,
Problem (P;) corresponds to finding a family of k elements
in V that covers X the most. By simply counting, we can
see that the optimal solution for Problem (P;) is S* =
{By,..., By} and OPT = k*. As shown in (Nemhauser
& Wolsey, 1978), the greedy algorithm achieves the best
possible 1 — 1/e guarantee for this problem.

Proposition 4. Consider
{Al, . 7Ak_1,Bl7. .. ,Bk}.
f(S) = |Uyes U| is (c,0)-sharp in

ground set 'V =
Then, the function

{(c, 0) € [1,00) x [0,1] :

CJ.(%(M)@)Q W[k_u}
— k k k ’ ’

Proof. First, note that any family of the form
{4;,...,4,,Bj,,...,Bj,_,} covers the same number
of points for £ € [k — 1]. Second, since there are only
k — 1 sets A;, then any subset S C V of size k satisfies
|S*\S| < k — 1. By simply counting, for ¢ € [k — 1] and
set S such that | S*\ S| = ¢, we have

f(S) = K* — ek 1k — 1)",
f(S+e) =k — (0 -1k - 15

Then, (3) becomes

0 (k=1\"_ [L\?
Zo ) > =
k k — \ ke
Observe that f is (1,%)-sharp since / < k — 1 and

() = () O

Observation 3 (Coverage function, (Nemhauser & Wolsey,

1

1978).). Note that in order to achieve 1 — (1 — %)§ >
1—e !, weneed§ € [0,1] and 1 < ¢ < 17‘2,9. On the
other hand, by taking { = k — 1 in Proposition 4 we have
c > (%)7]“”1, where the right-hand side tends to e?
when k is sufficiently large. Therefore, for k sufficiently
large we have e < ¢ < %, whose only feasible point
isc=1and 0 — 0.




