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Abstract

What goals should a multi-goal reinforcement
learning agent pursue during training in long-
horizon tasks? When the desired (test time) goal
distribution is too distant to offer a useful learning
signal, we argue that the agent should not pursue
unobtainable goals. Instead, it should set its own
intrinsic goals that maximize the entropy of the
historical achieved goal distribution. We propose
to optimize this objective by having the agent pur-
sue past achieved goals in sparsely explored areas
of the goal space, which focuses exploration on
the frontier of the achievable goal set. We show
that our strategy achieves an order of magnitude
better sample efficiency than the prior state of
the art on long-horizon multi-goal tasks including
maze navigation and block stacking.'

1. Introduction

Multi-goal reinforcement learning (RL) agents (Plappert
et al., 2018; Schaul et al., 2015b; Kaelbling, 1993) learn
goal-conditioned behaviors that can achieve and generalize
across a range of different goals. Multi-goal RL forms a
core component of hierarchical agents (Sutton et al., 1999;
Nachum et al., 2018), and has been shown to allow unsu-
pervised agents to learn useful skills for downstream tasks
(Warde-Farley et al., 2019; Hansen et al., 2020). Recent
advances in goal relabeling (Andrychowicz et al., 2017)
have made learning possible in complex, sparse-reward en-
vironments whose goal spaces are either dense in the initial
state distribution (Plappert et al., 2018) or structured as a
curriculum (Colas et al., 2018). But learning without demon-
strations in long-horizon tasks remains a challenge (Nair
et al., 2018a; Trott et al., 2019), as learning signal decreases
exponentially with the horizon (Osband et al., 2014).
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In this paper, we improve upon existing approaches to intrin-
sic goal setting and show how multi-goal agents can form
an automatic behavioural goal curriculum that allows them
to master long-horizon, sparse reward tasks. We begin with
an algorithmic framework for goal-seeking agents that con-
textualizes prior work (Baranes & Oudeyer, 2013; Florensa
et al., 2018; Warde-Farley et al., 2019; Nair et al., 2018b;
Pong et al., 2019) and argue that past goal selection mech-
anisms are not well suited for long-horizon, sparse reward
tasks (Section 2). By framing the long-horizon goal seeking
task as optimizing an initially ill-conditioned distribution
matching objective (Lee et al., 2019), we arrive at our un-
supervised Maximum Entropy Goal Achievement (MEGA)
objective, which maximizes the entropy of the past achieved
goal set. This early unsupervised objective is annealed into
the original supervised objective once the latter becomes
tractable, resulting in our OMEGA objective (Section 3).

We propose a practical algorithmic approach to maximizing
entropy, which pursues past achieved goals in sparsely ex-
plored areas of the achieved goal distribution, as measured
by a learned density model. The agent revisits and explores
around these areas, pushing the frontier of achieved goals
forward (Ecoffet et al., 2019). This strategy, similar in spirit
to Baranes & Oudeyer (2013) and Florensa et al. (2018),
encourages the agent to explore at the edge of its abili-
ties, which avoids spending environment steps in pursuit of
already mastered or unobtainable goals. When used in com-
bination with hindsight experience replay and an off-policy
learning algorithm, our method achieves more than an order
of magnitude better sample efficiency than the prior state of
the art on difficult exploration tasks, including long-horizon
mazes and block stacking (Section 4). Finally, we draw
connections between our approach and the empowerment
objective (Klyubin et al., 2005; Salge et al., 2014) and iden-
tify a key difference to prior work: rather than maximize
empowerment on-policy by setting maximally diverse goals
during training (Gregor et al., 2016; Warde-Farley et al.,
2019; Nair et al., 2018b; Pong et al., 2019), our proposed
approach maximizes it off-policy by setting goals on the
frontier of the past achieved goal set. We conclude with
discussion of related and future work (Sections 5-7).

'Code available athttps://github.com/spitis/mrl
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Figure 1. Illustration of density-based SELECT mechanisms at start of training, when achieved (p,4) and desired (pqg4) goal distributions
are disconnected. HER samples goals from the desired distribution p4y. RIG samples from the achieved distribution p, 4. DISCERN and
Skew-Fit skew pq4 to sample diverse achieved goals. Our approach (MEGA) focuses on low density regions of p,4. See Subsection 2.3.

2. The Long-Horizon Problem
2.1. Preliminaries

We consider the multi-goal reinforcement learning (RL)
setting, described by a generalized Markov Decision Process
(MDP) M = (S, A, T, G, [p4q)), where S, A, T, and G are
the state space, action space, transition function and goal
space, respectively (Sutton & Barto, 2018; Schaul et al.,
2015a) and pg, is an optional desired goal distribution. In
the most general version of this problem each goal is a tuple
g = (Rg,7g), where R, : S — R is a reward function and
vg € [0,1] is a discount factor (Sutton et al., 2011), so that
“solving” goal ¢ € G amounts to finding an optimal policy
in the classical MDP M, = (S, A, T, R,,~,). Although
goal-oriented methods are general and could be applied to
dense reward MDPs (including the standard RL problem,
as done by Warde-Farley et al. (2019), among others), we
restrict our present attention to the sparse reward case, where
each goal g corresponds to a set of “success” states, Sy,
with Ry : S — {—1,0} (Plappert et al., 2018) defined as
R,(s) =I{s € Sy} + c. Following Plappert et al., we use
base reward ¢ = —1, which typically leads to more stable
training than the more natural ¢ = 0 (see Van Seijen et al.
(2019) for a possible explanation). We also adopt the usual
form S, = {s|d(AG(s),g) < €}, where AG : S — G
maps state s to an “achieved goal” AG(s) and d is a metric
on G. An agent’s “achieved goal distribution” pgg is the
distribution of goals achieved by states s (i.e., AG(s)) the
agent visits (not necessarily the final state in a trajectory).
Note that this may be on-policy (induced by the current
policy) or historical, as we will specify below. The agent
must learn to achieve success and, if the environment is not
episodic, maintain it. In the episodic case, we can think
of each goal g € G as specifying a skill or option o0 € 2
(Sutton et al., 1999; Eysenbach et al., 2018), so that multi-
goal reinforcement learning is closely related to hierarchical
reinforcement learning (Nachum et al., 2018).

A common approach to multi-goal RL, which we adopt,
trains a goal-conditioned state-action value function, @ :
S x Ax G — R, using an off-policy learning algorithm that
can leverage data from other policies (past and exploratory)
to optimize the current policy (Schaul et al., 2015b). A

goal-conditioned policy, 7 : S x G — A, is either induced
via greedy action selection (Mnih et al., 2013) or learned
using policy gradients. Noise is added to 7 during explo-
ration to form exploratory policy Texpiore- Our continuous
control experiments all use the DDPG algorithm (Lillicrap
et al., 2015), which parameterizes actor and critic separately,
and trains both concurrently using Q-learning for the critic
(Watkins & Dayan, 1992), and deterministic policy gradi-
ents (Silver et al., 2014) for the actor. DDPG uses a replay
buffer to store past experiences, which is then sampled from
to train the actor and critic networks.

2.2. Sparse rewards and the long horizon problem

Despite the success of vanilla off-policy algorithms in dense-
reward tasks, standard agents learn very slowly—or not at
all—in sparse-reward, goal-conditioned tasks (Andrychow-
icz et al., 2017). In order for a vanilla agent to obtain a
positive reward signal and learn about goal g, the agent
must stumble upon g through random exploration while it
is trying to achieve g. Since the chance of this happening
when exploring randomly decreases exponentially with the
horizon (“the long horizon problem”) (Osband et al., 2014),
successes are infrequent even for goals that are relatively
close to the initial state, making learning difficult.

One way to ameliorate the long horizon problem is based
on the observation that, regardless of the goal being pur-
sued, (state, action, next state) transitions are unbiased sam-
ples from the environment dynamics. An agent is therefore
free to pair transitions with any goal and corresponding re-
ward, which allows it to use experiences gained in pursuit
of one goal to learn about other goals (“goal relabeling”)
(Kaelbling, 1993). Hindsight Experience Replay (HER)
(Andrychowicz et al., 2017) is a form of goal relabeling that
relabels experiences with goals that are achieved later in the
same trajectory. For every real experience, Andrychowicz
etal. (2017)’s future strategy produces k relabeled expe-
riences, where the k goals are sampled uniformly from goals
achieved by future states in the same trajectory. This forms
an implicit optimization curriculum, and allows an agent to
learn about any goal g it encounters during exploration.

Note, however, that a HER agent must still encounter g (or
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Algorithm 1 Unified Framework for Multi-goal Agents

function TRAIN(xargs):
Alternate between collecting experience using ROLLOUT
and optimizing the parameters using OPTIMIZE.

function ROLLOUT (policy Texplore, buffer B, xargs):
g < SELECT(xargs)
So < initial state
fortin0... 7 —1do
at, St41 4 execute Texplore (S¢, g) in environment
r¢ < REWARD(s¢, at, St+1,9)
Store (st, at, St+1, r't,g) in replay buffer B

function OPTIMIZE (buffer B, algorithm .4, parameters 6):
Sample mini-batch B = {(s,a,s’,r,q)i}/e, ~ B
B’ < RELABEL(B, xargs)
Optimize 6 using A (e.g., DDPG) and relabeled B’

function SELECT (xargs):

Returns a behavioural goal for the agent. Examples in-
clude the environment goal gex, a sample from the buffer of
achieved goals B,y (Warde-Farley et al., 2019), or samples
from a generative model such as a GAN (Florensa et al.,
2018) or VAE (Nair et al., 2018b). Our approach (MEGA)
selects previously achieved goals in sparsely explored areas
of the goal space according to a learned density model.

function REWARD (s¢, a¢, St+1, 9):
Computes the environment reward or a learned reward func-
tion (Warde-Farley et al., 2019; Nair et al., 2018b).

function RELABEL (B, *args):
Relabels goals and rewards in minibatch B according to
some strategy; e.g., don’t relabel, future, mix future
and generated goals (Nair et al., 2018b), or rfaab (ours).

goals sufficiently similar to g) in order to learn about g, and
the long horizon problem persists for goals that are too far re-
moved from the agent’s initial state distribution. This is illus-
trated in Figure 2, and is most easily understood by consider-
ing the tabular case, where no generalization occurs between
a finite set of MDPs M, since a learning signal is obtained
only when transitioning into s € S, the agent’s achieved
goal distribution must overlap with S, for learning to oc-
cur. Empirically, this means that DDPG+HER agents that
explore using only action noise or epsilon random actions
fail to solve long-horizon tasks, whose desired goal distribu-
tion does not overlap with the initial state distribution. This
includes the original version of FetchPickAndPlace
(with all goals in the air) (Andrychowicz et al., 2017), block
stacking (Nair et al., 2018a), and mazes (Trott et al., 2019).

2.3. Setting intrinsic goals

We propose to approach the long-horizon problem by ig-
noring long-horizon goals: rather than try to achieve unob-
tainable goals, an agent can set its own intrinsic goals and
slowly expand its domain of expertise in an unsupervised
fashion. This is inspired by a number of recent papers on
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Figure 2. Performance of a DDPG+HER agent that must lift a box
to reach goals at increasing heights (3 seeds). As the horizon
(desired height) increases, the agent loses the ability to solve the
task in reasonable time. Our approach, OMEGA (Section 3), is
robust to the horizon length. Specific details in Appendix.

unsupervised multi-goal RL, to be described below. Our
main contributions relative to past works are (1) a novel goal
selection mechanism designed to address the long-horizon
problem, and (2) a practical method to anneal initial unsu-
pervised selection into training on the desired goals.

To capture the differences between various approaches, we
present Algorithm 1, a unifying algorithmic framework for
multi-goal agents. Variations occur in the subprocedures
SELECT, REWARD, and RELABEL. The standard HER
agent Andrychowicz et al. (2017) SELECTS the environ-
ment goal gey, uses the environment REWARD and uses the
future RELABEL strategy. Functions used by other agents
are detailed in Appendix A. We assume access to the envi-
ronment REWARD and propose a novel SELECT strategy—
MaxEnt Goal Achievement (MEGA)—that initially sam-
ples goals from low-density regions of the achieved goal
distribution. Our approach also leads to a novel RELABEL
strategy, r faab, which samples from Real, Future, Actual,
Achieved, and behavioural goals (detailed in Appendix C).

Prior work also considers intrinsic SELECT functions. The
approaches used by DISCERN (Warde-Farley et al., 2019),
RIG (Nair et al., 2018b) and Skew-Fit (Pong et al., 2019)
select goals using a model of the past achieved goal dis-
tribution. DISCERN samples from a replay buffer (a non-
parametric model), whereas RIG and Skew-Fit learn and
sample from a variational autoencoder (VAE) (Kingma &
Welling, 2013). These approaches are illustrated in Fig-
ure 1, alongside HER and MEGA. Prior density-based ap-
proaches were not tailored to the long-horizon problem:;
e.g., DISCERN was primarily focused on learning an in-
trinsic REWARD function, and left “the incorporation of
more explicitly instantiated [SELECT] curricula to future
work.” By contrast, MEGA focuses on the low density, or
sparsely explored, areas of the achieved goal distribution,
forming a curriculum that crosses the gap between the initial
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state distribution and the desired goal distribution in record
time. Although Diverse sampling (e.g., Skew-Fit) is less
biased towards already mastered areas of the goal space than
Achieved sampling (e.g., RIG), we show in our experiments
that it still under-explores relative to MEGA.

MEGA’s focus on the frontier of the achieved goal set makes
it similar to SAGG-RIAC (Baranes & Oudeyer, 2013),
which seeks goals that maximize learning progress, and
Goal GAN (Florensa et al., 2018), which seeks goals of
intermediate difficulty.

3. Maximum Entropy Goal Achievement
3.1. The MEGA and OMEGA objectives

To motivate the MEGA objective, we frame exploration in
episodic, multi-goal RL with goal relabeling as a distribu-
tion matching problem (Lee et al., 2019). We note that the
original distribution matching objective is ill-conditioned
in long-horizon problems, which suggests maximizing the
entropy of the achieved goal distribution (the MEGA ob-
jective). We then show how this can be annealed into the
original objective (the OMEGA objective).

We start by noting that, for a truly off-policy agent, the
actual goals used to produce the agent’s experience do not
matter, as the agent is free to relabel any experience with any
goal. This implies that only the distribution of experience
in the agent’s replay buffer, along with the size of the buffer,
matters for effective off-policy learning. How should an
agent influence this distribution to accumulate useful data
for achieving goals from the desired distribution pg,?

Though we lack a precise characterization of which data is
useful, we know that all successful policies for goal g pass
through g, which suggests that useful data for achieving
g monotonically increases with the number of times g is
achieved during exploration. Past empirical results, such as
the success of Andrychowicz et al. (2017)’s future strat-
egy and the effectiveness of adding expert demonstrations to
the replay buffer (Nair et al., 2018a), support this intuition.
Assuming a relatively fixed initial state distribution and uni-
formly distributed pg,2, it follows that the intrinsic goal g*
at episode ¢ should be chosen to bring the agent’s historical
achieved goal distribution p!, o closer to the desired distribu-
tion pgg. We can formalize this as seeking g to minimize
the following distribution matching objective:

Joriginal (Phy) = DL (Pdag || Phg) (1)

where pflg represents the historical achieved goal distri-
bution in the agent’s replay buffer after executing its ex-

%For diverse initial state distributions, we would need to condi-
tion both pay and p,4 on the initial state. For non-uniform pgg, we
would likely want to soften the desired distribution as the marginal
benefit of additional data is usually decreasing.

ploratory policy in pursuit of goal g*. It is worth highlight-
ing that objective (1) is a forward KL: we seek p,4 that
“covers” pqq (Bishop, 2006). If reversed, it would always be
infinite when py, and the initial state distribution sq do not
overlap, since pg, cannot cover sg.

So long as (1) is finite and non-increasing over time, the
support of p,4 covers pq, and the agent is accumulating data
that can be used to learn about all goals in the desired distri-
bution. In those multi-goal environments where HER has
been successful (e.g., FetchPush), this is easily achieved
by setting the behavioural goal distribution py, to equal pgq
and using action space exploration (Plappert et al., 2018).
In long-horizon tasks, however, the objective (1) is usually
ill-conditioned (even undefined) at the beginning of training
when the supports of py, and p,, do not overlap. While
this explains why HER with action space exploration fails
in these tasks, it isn’t very helpful, as the ill-conditioned
objective is difficult to optimize.

When p,4 does not cover pgg, a natural objective is to ex-
pand the support of p,4, in order to make the objective (1)
finite as fast as possible. We often lack a useful inductive
bias about which direction to expand the support in; e.g.,
a naive heuristic like Euclidean distance in feature space
can be misleading due to dead-ends or teleportation (Trott
et al., 2019), and should not be relied on for exploration. In
absence of a useful inductive bias, it is sensible to expand
the support as fast as possible, in any and all directions as
in breadth-first search, which can be done by maximizing
the entropy of the achieved goal distribution H [p,4]. We
call this the Maximum Entropy Goal Achievement (MEGA)
objective:

IveGa (Pog) = —H [Pagl; 2)

The hope is that by maximizing H[p,q] (minimizing
JMEGA), the agent will follow a natural curriculum, expand-
ing the size of its achievable goal set until it covers the
support of the desired distribution p,, and objective (1)
becomes tractable.

In the unsupervised case, where pg, is not specified, the
agent can stop at the MEGA objective. In the supervised
case we would like the agent to somehow anneal objective
(2) into objective (1). We can do this by approximating (2)
using a distribution matching objective, where the desired
distribution is uniform over the current support:

IMEGA (Pag) = Dkr (U(supp(pig)) || Pag)- (©)

This is a sensible approximation, as it shares a maximum
with (2) when the uniform distribution over ( is obtainable,
and encourages the agent to “cover” the current support
of the achieved goal distribution as broadly as possible, so
that the diffusion caused by action space exploration will
increase entropy. We may now form the mixture distri-
bution p!, = apag + (1 — a)U (supp(p,,)) and state our
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final “OMEGA” objective, which anneals the approximated
MEGA into the original objective:

JomEGA (Pag) = DKL (Pa || Pag)- (C))

The last remaining question is, how do we choose a? We
would like o = 0 when pq4 and pgy are disconnected, and
a close to 1 when p,, well approximates pgq. One way to
achieve this, which we adopt in our experiments, is to set

Q= 1/m3‘X(b + DKL(pdg H pag)’ 1)7

where b < 1. The divergence is infinite (o« = 0) when
Dag does not cover pgy and approaches 0 (o = 1) as pyq
approaches pg,. Our experiments use b = —3, which we
found sufficient to ensure o = 1 at convergence (with b = 1,
we may never have « = 1, since p,g is historical and biased
towards the initial state distribution sg).

3.2. Optimizing the MEGA objective

We now consider choosing behavioural goal g ~ py4 in
order to optimize the MEGA objective (2), as it is the critical
component of (4) for early exploration in long-horizon tasks
and general unsupervised goal-seeking. In supervised tasks,
the OMEGA objective (4) can be approximately optimized
by instead using the environment goal with probability a.

We first consider what behavioural goals we would pick
if we had an oracle that could predict the conditional dis-
tribution (g’ | §) of goals ¢’ that would be achieved by
conditioning the policy on §. Then, noting that this may
be too difficult to approximate in practice, we propose a
minimum density heuristic that performs well empirically.
The resulting SELECT functions are shown in Algorithm 2.

Oracle strategy If we knew the conditional distribution
q(g’ | §) of goals ¢’ that would be achieved by conditioning
behaviour on g, we could compute the expected next step
MEGA objective as the expected entropy of the new empiri-
cal pog| 4 after sampling g’ and adding it to our buffer:

—Egnatg 19)HPag| 4]
= Z Q(glm) Zpag | g’ (g) logpag | g’ (9)7
g’ g

JMEGA (Pag | g') =

To explicitly compute this objective one must compute both
the new distribution and its entropy for each possible new
achieved goal ¢’. The following result simplifies matters in
the tabular case. Proofs may be found in Appendix B.

Proposition 1 (Discrete Entropy Gain). Given buffer B with
n= \Tl?I’ maximizing expected next step entropy is equivalent
fo maximizing expected point-wise entropy gain AH(g'):

§* = arg en Eg ~ate 15)H[Pag) o]

N (5)
= argmax By ~q(g 1) AH(9),

Algorithm 2 O/MEGA SELECT functions

function OMEGA _SELECT (env goal gex, bias b, xargs):
a < 1/max(b+ DkL(pdg || Pag), 1)
if z ~ U(0,1) < « then return gey
else return MEGA _SELECT(xargs)

function MEGA _SELECT (buffer 3, num_candidates N):
Sample N candidates {g;}/~; ~ B
Eliminate unachievable candidates (see text)
return § = arg min,, pag(gi) (*)

where AH(Q/) = Pag (gl) logpag(gl) -
(Pag(g") +m) log(pag(g’) + ).

For most agents n will quickly approach 0 as they accumu-
late experience, so that choosing § according to (9) becomes
equal (in the limit) to choosing ¢ to maximize the directional
derivative <vpagH[p(lg}7 q(g/ | g) - pag>~

Proposition 2 (Discrete Entropy Gradient).

lim " = argmax(Vy,, H[pag], a(9' | 9) = Pag)

n—0

o P ()
= argmax Dxr.(4(g'[9) || pag) + Hla(g"[9)]

This provides a nice intuition behind entropy gain explo-
ration: we seek maximally diverse outcomes (H [¢(g’ | §)])
that are maximally different from historical experiences
(Dk1(¢(9" | §) || pag))—i-e., exploratory behavior should
evenly explore under-explored regions of the state space.
By choosing goals to maximize the entropy gain, an agent
effectively performs constrained gradient ascent (Frank &
Wolfe, 1956; Hazan et al., 2018) on the entropy objective.

Assuming the empirical p, is used to induce (abusing no-
tation) a density p,, with full support, Proposition 2 ex-
tends to the continuous case by taking the functional deriva-
tive of the differential entropy with respect to the variation

n(9) = (9" | §)(9) — Pag(g) (Appendix B).

Minimum density approximation Because we do not
know ¢(g’ | §), we must approximate it with either a learned
model or an effective heuristic. The former solution is
difficult, because by the time there is enough data to make an
accurate prediction conditional on g, ¢(¢’ | §) will no longer
represent a sparsely explored area of the goal space. While
it might be possible to make accurate few- or zero-shot
predictions if an agent accumulates enough data in a long-
lived, continual learning setting with sufficient diversity for
meta-learning (Ren et al., 2018), in our experiments we
find that a simple, minimum-density approximation, which
selects goals that have minimum density according to a
learned density model, is at least as effective (Appendix D).
We can view this approximation as a special case where
the conditional ¢(¢’ |§) = 1[¢’ = g, i.e. that the agent
achieves the behaviour goal.



Maximum Entropy Gain Exploration for Long Horizon Multi-goal Reinforcement Learning

Proposition 3. If q(¢'|g) = 1[g’ = §], the discrete entropy
gradient objective simplifies to a minimum density objective:

§" = arg max — 10g[pag(§)]
geB
@)

= argmin pag (9)

Our minimum density heuristic (Algorithm 2) fits a density
model to the achieved goals in the buffer to form estimate
Dag of the historical achieved goal distribution p,, and uses
a generate and test strategy (Newell, 1969) that samples
N candidate goals {g;}Y.;, ~ B from the achieved goal
buffer (we use N = 100 in our experiments) and selects
the minimum density candidate § = argmin, pay(gi). We
then adopt a Go Explore (Ecoffet et al., 2019) style strategy,
where the agent increases its action space exploration once
a goal is achieved. Intuitively, this heuristic seeks out past
achieved goals in sparsely explored areas, and explores
around them, pushing the frontier of achieved goals forward.

It is important for § to be achievable. If it is not, then
q(g’ | §) may be disconnected from g, as is the case when
the agent pursues unobtainable g.x (Figure 2), which un-
dermines the purpose of the minimum density heuristic. To
promote achievability, our experiments make use of two dif-
ferent mechanisms. First, we only sample candidate goals
from the past achieved goal buffer B. Second, we elimi-
nate candidates whose estimated value (according to the
agent’s goal-conditioned Q-function) falls below a dynamic
cutoff, which is set according to agent’s goal achievement
percentage during exploration. The specifics of this cutoff
mechanism may be found in Appendix C. Neither of these
heuristics are core to our algorithm, and they might be be
replaced with, e.g., a generative model designed to gener-
ate achievable goals (Florensa et al., 2018), or a success
predictor that eliminates unachievable candidates.

4. Experiments

Having described our objectives and proposed approaches
for optimizing them, we turn to evaluating our O/MEGA
agents on four challenging, long-horizon environments that
standard DDPG+HER agents fail to solve. We compare the
performance of our algorithms with several goal selection
baselines. To gain intuition on our method, we visualize
qualitatively the behaviour goals selected and quantitatively
the estimated entropy of the achieved goal distribution.

Environments We consider four environments. In
PointMaze (Trott et al., 2019), a point must navigate
a 2d maze, from the bottom left corner to the top right
corner. In AntMaze (Nachum et al., 2018; Trott et al.,
2019), an ant must navigate a U-shaped hallway to reach the
target. In FetchPickAndPlace (hard version) (Plap-
pert et al., 2018), a robotic arm must grasp a box and

move it to the desired location that is at least 20cm in
the air. In FetchStack?2 (Nair et al., 2018a), a robotic
arm must move each of the two blocks into the desired
position, where one of the block rests on top of the other.
In PointMaze and AntMaze goals are 2-dimensional
and the agent is successful if it reaches the goal once. In
FetchPickAndPlace and FetchStack?2, goals are 3-
and 6-dimensional, respectively, and the agent must main-
tain success until the end of the episode for it to count.

Baselines We compare MEGA and OMEGA to the three
density-based SELECT mechanisms shown in Figure 1
above: sampling from pgy, (“HER”), sampling from the
historical p,4 as done approximately by RIG (“Achieved”),
and sampling from a skewed historical p, that is approxi-
mately uniform on its support, as done by DISCERN and
Skew-Fit (“Diverse”). We also compare against non density-
based baselines as follows. PointMaze and AntMaze
are the same environments used by the recent Sibling Ri-
valry paper (Trott et al., 2019). Thus, our results are directly
comparable to Figure 3 of their paper, which tested four
algorithms: HER, PPO (Schulman et al., 2017), PPO with
intrinsic curiosity (Pathak et al., 2017), and PPO with Sib-
ling Rivalry (PPO+SR). The AntMaze environment uses
the same simulation as the MazeAnt environment tested in
the Goal GAN paper (Florensa et al., 2018), but is four times
larger. In Appendix D, we test MEGA on the smaller maze
and obtain an almost 1000x increase in sample efficiency as
compared to Goal GAN and the Goal GAN implementation
of SAGG-RIAC (Baranes & Oudeyer, 2013). Results are
not directly comparable as Goal GAN uses an on-policy
TRPO base (Schulman et al., 2015), which is very sample
inefficient relative to our off-policy DDPG base. Thus, we
adapt the Goal GAN discriminator to our setting by train-
ing a success predictor to identify goals of intermediate
difficulty (Appendix C) (“GoalDisc”). Finally, we compare
against a minimum Q heuristic, which selects distant goals
(Hartikainen et al., 2020) (“MinQ”).

We note a few things before moving on. First, Sibling
Rivalry (Trott et al., 2019) is the only prior work that directly
addresses the long-horizon, sparse reward problem (without
imitation learning). Other baselines were motivated by and
tested on other problems. Second, the generative parts of
Goal GAN and RIG are orthogonal to our work, and could
be combined with MEGA-style generate-and-test selection,
as we noted above in Section 3.2. We adopted the generative
mechanism of DISCERN (sampling from a buffer) as it is
simple and has a built-in bias toward achievable samples.
For a fair comparison, all of our implemented baselines use
the same buffer-based generative model and benefit from our
base DDPG+HER implementation (Appendix C). The key
difference between MEGA and our implemented baselines
is the SELECT mechanism (line () of Algorithm 2).
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Figure 3. Test success on the desired goal distribution, evaluated throughout training, for several behaviour goal selection methods (3
seeds each). Our methods (MEGA and OMEGA) are the only the methods which are able to solve the tasks with highest sample efficiency.
In FetchStack?2 we see that OMEGA'’s eventual focus on the desired goal distribution is necessary for long run stability.
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Figure 4. Visualization of behavioural (top) and terminal achieved (bottom) goals in PointMaze, colour-coded for over the course
of training for several behavioural goal sampling methods. Only our methods reach the desired goal area in top right hand corner in
approximately 2000 episodes, beating the previous state of the art (Trott et al., 2019) by almost 2 orders of magnitude (100 times).

Main results Our main results, shown in Figure 3 clearly
demonstrate the advantage of minimum density sampling.
We confirm that desired goal sampling (HER) is unable to
solve the tasks, and observe that Achieved and Diverse goal
sampling fail to place enough focus on the frontier of the
achieved goal distribution to bridge the gap between the
initial state and desired goal distributions. On PointMaze,
none of the baselines were able to solve the environment
within 1 million steps. The best performing algorithm from
Trott et al. (2019) is PPO+SR, which solves PointMaze
to 90% success in approximately 7.5 million time steps
(O/MEGA is almost 100 times faster). On AntMaze, only
MEGA, OMEGA and the GoalDisc are able to solve the en-
vironment. The best performing algorithm from Trott et al.
(2019) is hierarchical PPO+SR, which solves AntMaze
to 90% success in approximately 25 million time steps
(O/MEGA is roughly 10 times faster). On a maze that
is four times smaller, Florensa et al. (2018) tested four algo-
rithms, including SAGG-RIAC (Baranes & Oudeyer, 2013),
which was implemented, along with Goal GAN, using a
TRPO base. Their best performing result achieves 71% cov-
erage of the maze in about 175 million time steps (O/MEGA
is roughly 100 times faster on a larger maze). O/MEGA
also demonstrates that Fet chStack?2 can be solved from
scratch, without expert demonstrations (Duan et al., 2017;
Nair et al., 2018a) or a task curriculum (Colas et al., 2018).

Maximizing entropy In Figure 5 (top), we observe that
our approach increases the empirical entropy of the achieved
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Figure 5. Top:  Entropy of the achieved goal buffer for
Pointmaze (left) and Antmaze (right) over course of train-
ing, estimated using a Kernel Density Estimator. O/MEGA expand
the entropy much faster than the baselines. Bottom: oo computed
by OMEGA, which transitions from intrinsic to extrinsic goals.

goal buffer (the MEGA objective) much faster than other
goal sampling methods. MEGA and OMEGA rapidly in-
crease the entropy and begin to succeed with respect to
the desired goals as the maximum entropy is reached. As
OMEGA begins to shift towards sampling mainly from the
desired goal distribution (Figure 5 (bottom)), the entropy
declines as desired goal trajectories become over repre-
sented. We observe that the intermediate difficulty heuristic
(GoalDisc) is a good optimizer of the MEGA objective on
AntMaze, likely due to the environment’s linear structure.
This explains its comparable performance to MEGA.
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Figure 6. Visualization of behavioural (top) and terminal achieved (bottom) goals in AntMaze, colour-coded for over the course of
training for several behavioural goal sampling methods. The only baseline that reached the desired goal in the top left was GoalDisc.

Visualization of achieved goals To gain intuition for how
our method compares to the baselines, we visualize the ter-
minal achieved goal at the end of the episodes throughout
the training for PointMaze in Figure 4. Both MEGA and
OMEGA set goals that spread outward from the starting
location as training progresses, akin to a breadth-first search,
with OMEGA eventually transitioning to goals from the
desired goal distribution in the top right corner. Diverse
sampling maintains a fairly uniform distribution at each iter-
ation, but explores slowly as most goals are sampled from
the interior of the support instead of the frontier. Achieved
sampling oversamples goals near the starting location and
suffers from a “rich get richer” problem. Difficulty-based
GoalDisc and distance-based MinQ sampling explore deeply
in certain directions, akin to a depth-first search, but ignore
easier/closer goals that can uncover new paths.

A similar visualization for AntMaze is shown in Figure
6. Aside from our methods, the only baseline able to reach
the desired goal area is GoalDisc. MEGA and OMEGA
observe a higher diversity in achieved goals, which suggests
the learned policy from our methods will be more robust
than the GoalDisc policy if the desired goal distribution
changes, but we did not directly test this hypothesis.

5. Other Related Work

Maximum entropy-based prioritization (MEP) While
MEGA influences the entropy of the historical achieved
goal distribution during SELECT, MEP (Zhao et al., 2019)
reweighs experiences during OPTIMIZE to increase the en-
tropy of the goals in an agent’s training distribution. Unlike
MEGA, MEP does not set intrinsic goals and does not di-
rectly influence an agent’s exploratory behavior. As a result,
MERP is limited to the support set of the observed achieved
goals and must rely on the generalization of the neural net-
work model to cross long-horizon gaps. As MEGA and
MEP can be applied simultaneously, we compared using
HER and O/MEGA, with and without MEP in PointMaze
and FetchPickAndPlace. As shown in Figure 7, ap-
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Figure 7. MEP (Zhao et al., 2019) maximizes the entropy of train-
ing goals in the OPTIMIZE method. While MEP can help the func-
tion approximator generalize, and allows HER to achieve some
success in FetchPickAndPlace (hard), it does not directly
help the agent explore and cross long horizon gaps.

plying MEP to HER helps the agent achieved some success
in the FetchPickAndPlace, but is unable to help in the
PointMaze where the long horizon gap is more severe.
Combining MEGA and MEP has limited effect, possibly be-
cause a MEGA agent’s achieved goal distribution is already
close to uniform. See Appendix C (“MEP”) for details.

Curiosity Maximizing entropy in the goal space is closely
related to general RL (not multi-goal) algorithms that seek
to maximize entropy in the state space (Hazan et al., 2018;
Lee et al., 2019) or grant the agent additional reward based
on some measure of novelty, surprise or learning progress
(Kolter & Ng, 2009; Schmidhuber, 2010; Lopes et al., 2012;
Bellemare et al., 2016; Ostrovski et al., 2017; Tang et al.,
2017; Pathak et al., 2017; Burda et al., 2019). Two key
differences should be noted. First, MEGA uses a low-
dimensional, abstract goal space to drive exploration in
meaningful directions (Baranes & Oudeyer, 2010). This
focuses the agent on what matters, and avoids the “noisy-
TV” problem (Burda et al., 2019). As this requires a known,
semantically meaningful goal space, future work might ex-
plore how one can automatically choose a good goal space
(Lee et al., 2020). Second, MEGA agents learn and use a
goal-conditioned policy, which makes MEGA exploration
more “active” than exploration based on intrinsic reward
(Shyam et al., 2018). It is reasonable to interpret the low
density region of an agent’s achievable goal space as its
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“frontier”, so that MEGA exploration is a form of frontier
exploration (Yamauchi, 1997; Holz et al., 2010; Ecoffet
et al., 2019). Recent work in this family includes Badia
et al. (2020), Bharadhwaj et al. (2020) and Zhang et al.
(2020). Since the agent’s entire policy changes with the
goal, goal-conditioned exploration is somewhat similar to
noise-conditioned (Plappert et al., 2017; Osband et al., 2017)
and variational exploration algorithms (next paragraph), a
key difference being that MEGA agents choose their goal.

Empowerment Since the agent’s off-policy, goal rela-
beling learning algorithm can be understood as minimiz-
ing the conditional entropy of (on-policy) achieved goals
given some potential goal distribution p, (not necessar-
ily the behavioural goal distribution py,4), simultaneously
choosing py, to maximize entropy of historical achieved
goals (the MEGA objective) results in an empowerment-
like objective: maxy, H[pag] — H[AG(T|py)|pg] =
max,, I[pg; AG(T | py)], where equality is approximate be-
cause the first max is with respect to py4, and also because
H{p,,g) is historical, rather than on-policy.

Empowerment (Klyubin et al., 2005; Salge et al., 2014; Mo-
hamed & Rezende, 2015) has gained traction in recent years
as an intrinsic, unsupervised objective due to its intuitive
interpretation and empirical success (Eysenbach et al., 2018;
Hansen et al., 2020). We can precisely define empowerment
in the multi-goal case as the channel capacity between goals
and achieved goals (Cover & Thomas, 2012):

E(s0) = H}l)aprmg,so)pg(g)f[pg; AG(T | pg)l, ®)
g

where s( represents the initial state distribution. To see
the intuitive appeal of this objective, we reiterate the com-
mon argument and write: I[pg; AG(7 |pg)] = Hlpg] —
Hlp, | AG(T | pg)], where H is entropy. This now has an in-
tuitive interpretation: letting H [p,] stand for the size of the
goal set, and H [p, | AG(T | py)] for the uncertainty of goal
achievement, maximizing empowerment roughly amounts
to maximizing the size of the achievable goal set.

The common approach to maximizing empowerment has
been to either fix or parameterize the distribution p,
and maximize the objective I[py; AG(T|py)] on-policy
(Gregor et al., 2016; Warde-Farley et al., 2019; Pong
et al.,, 2019). We can think of this as approximat-
ing (8) using the behavioural goal distribution py, =~
argmax,, I[py; AG(sT|pg)]. A key insight behind our
work is that there is no reason for an off-policy agent to
constrain itself to pursuing goals from the distribution it
is trying to optimize. Instead, we argue that for off-policy
agents seeking to optimize (8), the role of the behavioural
goal distribution py,4 should be to produce useful empirical
data for optimizing the true off-policy empowerment (8),
where the maximum is taken over all possible p,. Practi-
cally speaking, this means exploring to maximize entropy

of the historical achieved goal distribution (i.e,. the MEGA
objective), and letting our off-policy, goal relabeling algo-
rithm minimize the conditional entropy term. Future work
should investigate whether the off-policy gain of MEGA
over the on-policy Diverse sampling can be transferred to
general empowerment maximizing algorithms.

6. Limitations and Future Work

The present work has several limitations that should be
addressed by future work. First, our experiments focus
on environments with predefined, semantically meaningful,
and well-behaved goal spaces. In the general case, an agent
will have to learn its own goal space (Warde-Farley et al.,
2019; Pong et al., 2019) and it will be interesting to see
whether MEGA exploration extends well to latent spaces.
A foreseeable problem, which we did not experience, is
that differential entropy is sensitive to reparameterizations
of the feature space; this implies that either (1) a MEGA
agent’s goal space needs to be, to a degree, “well-behaved”,
or (2) the MEGA objective needs to be recast or extended so
as to be robust to parameterization. We hypothesize that a
major reason for MEGA’s success is that the goal spaces in
our chosen tasks are semantically meaningfully and directly
relevant to the tasks being solved; an interesting direction
for future research involves the automatic discovery of such
low-dimensional abstractions (Lee et al., 2020). A second
limitation of our work is the approach to achievability, which
is required in order for our minimum density heuristic to
be sensible. Presently, we rely on a combination of buffer-
based generation, a cutoff mechanism that eliminates goals
with low Q-values, and the ability of our off-policy learning
algorithm to generalize. But even so, our FetchStack?2
results show that the MEGA agent’s performance begins to
diverge after about 5 million steps. This is because the table
(on which the blocks are being stacked) is not enclosed,
and the agent begins to pursue difficult to achieve goals
that are off the table. Future work should explore better
ways to measure off-policy achievability (Thomas et al.,
2015). Finally, the behavior of MEGA on FetchStack2
suggests that an unconstrained, intrinsically motivated agent
may start to set unsafe goals, which has implications for
safety (Garcia & Fernandez, 2015).

7. Conclusion

This paper proposes to address the long-horizon, sparse
reward problem in multi-goal RL by having the agent maxi-
mize the entropy of the historical achieved goal distribution.
We do this by setting intrinsic goals in sparsely explored
areas of the goal space, which focuses exploration on the
frontier of the achievable goal set. This strategy obtains
results that are more than 10 times more sample efficient
than prior approaches in four long-horizon multi-goal tasks.
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