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Abstract

Explaining how overparametrized neural net-
works simultaneously achieve low risk and zero
empirical risk on benchmark datasets is an open
problem. PAC-Bayes bounds optimized using
variational inference (VI) have been recently pro-
posed as a promising direction in obtaining non-
vacuous bounds. We show empirically that this ap-
proach gives negligible gains when modeling the
posterior as a Gaussian with diagonal covariance—
known as the mean-field approximation. We in-
vestigate common explanations, such as the fail-
ure of VI due to problems in optimization or
choosing a suboptimal prior. Our results sug-
gest that investigating richer posteriors is the most
promising direction forward.

1. Introduction
Two recent works (Dziugaite & Roy, 2017; Zhou et al.,
2018) based on the PAC-Bayes framework (McAllester,
1999) have made remarkable progress towards explain-
ing why overparametrized neural networks simultaneously
achieve low risk and zero empirical risk on benchmark
datasets. PAC-Bayes bounds deal with randomized clas-
sifiers with posterior and prior distributions ρ̂ and π respec-
tively. Given that typically one wants to bound the risk of a
deterministic classifier f the posterior ρ̂ is chosen to be in
some sense close to f (i.e. it is usually centered at f ). Then,
PAC-Bayes theorems make statements that are roughly of
the form

EL(ρ̂) ≤ EL̂(ρ̂) + βKL(ρ̂||π), (1)

where L(ρ̂) is the risk, L̂(ρ̂) is the empirical risk and the
expectation is over the posterior. The βKL(ρ̂||π) term be-
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Figure 1. Risk-Complexity plot for MNIST 10: The area below
the dashed line corresponds to non-vacuous pairs of (complexity,
empirical risk). The purple star corresponds to the optimal bound
implied by the testing set. We parametrize the PAC-Bayes bound
with different combinations of diagonal Gaussian priors and poste-
riors. “Isotropic@” corresponds to isotropic priors and posteriors
with the prior centered at 0 and at the deep neural network ran-
dom initialization. Similarly for “Mean-Field VI@” the posterior
is diagonal but non-isotropic and we optimize it with variational
inference. Choosing the prior mean to be the random initialization
improves the bounds greatly in both cases. On the contrary when
optimizing with mean-field variational inference there is negligible
improvement over the isotropic case.

tween the prior and posterior acts as a measure of complexity
for the classifier.

The RHS of (1) corresponds to a variational encoding
scheme of the deep neural network weights, where the vari-
ance of the noise in the posterior measures the level of pre-
cision used in the encoding (Blier & Ollivier, 2018). In Dzi-
ugaite & Roy (2017), the authors minimize this variational
code directly using a differentiable surrogate, by parameter-
izing the prior and posterior as Gaussians, and optimizing
using stochastic variational inference (Hoffman et al., 2013;
Kingma & Welling, 2013). They obtain non-vacuous gener-
alization bounds on a simplified MNIST(LeCun & Cortes,
2010) dataset, but are unable to scale their result to larger
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problems.

Stochastic variational inference is known to result in poor
weight encodings, but the reasons behind this are unclear
(Blier & Ollivier, 2018). Variational inference, in the con-
text of Bayesian neural networks, is thought to suffer from
high gradient variance (Kingma et al., 2015; Wu et al., 2018;
Wen et al., 2018). In addition, correlations between parame-
ters are often omitted, as storing and manipulating the full
covariance matrix is computationally infeasible. This can be
seen as adding independent noise to each weight, an approx-
imation know as mean-field. This might be too restrictive in
deriving useful posteriors (Ritter et al., 2018; Mishkin et al.,
2018), and therefore tight codes.

Consequently, in Zhou et al. (2018) the authors first com-
press deep neural networks by sparsifying them and deriving
a variational code on the remaining parameters. Off the shelf
compression algorithms compress remarkably well and thus
Zhou et al. (2018) obtain non-vacuous but loose bounds for
the much more complex Imagenet (Deng et al., 2009). A
significant drawback of this approach is that the bound is
derived for a network whose parameters are not similar even
in expectation to the original ones (Suzuki, 2019).

We thus focus on analyzing the case of applying variational
inference directly on the original weights. Importantly, we
lack meaningful comparison tools. The techniques in Dz-
iugaite & Roy (2017); Zhou et al. (2018) actually provide
multiple bounds corresponding to different levels of encod-
ing precision of the weights, which is usually controlled by
the the parameter β in (1). However, results are presented
in single (empirical risk, complexity) pairs, making drawing
conclusions difficult.

Our first contribution is thus to introduce “Risk-Complexity”
plots 1. On the x-axis we plot the Empirical Risk L̂(ρ̂),
while on the y-axis we plot the estimated Complexity
βKL(ρ̂||π) or the equivalent complexity metric. The plots
have a number of advantages. We can easily plot the region
of non-vacuity and the location of the best possible bound
implied by the testing set. For an optimization based bound
method we can then derive multiple (complexity, empirical
risk) estimates and plot a Pareto front of all combinations.
This results in an intuitive way for comparing bounding
methods where one can simply inspect the Pareto fronts in
relation to the best possible pair implied by the testing set.

Armed with our new visualization tools we are ready to scru-
tinize the results of Dziugaite & Roy (2017). The authors
combine four elements in deriving non-vacuous bounds: i)
changing the prior to be centered at the random initialization
instead of at zero ii) optimizing the posterior covariance iii)
optimizing the posterior mean iii) simplifying the classifi-
cation problem by merging the 10 MNIST classes into 2
aggregate ones. In this way it is unclear what is the contri-

bution of each to obtaining non-vacuous bounds.

In particular, separating the effects of i,ii and iii is impor-
tant. Flatness at the minimum has been frequently cited as
a desirable property for good generalization (Keskar et al.,
2016). However, current results show mainly empirical cor-
relations with generalization error (Keskar et al., 2016) and
the exact effect of flatness is still debated (Dinh et al., 2017).
Point ii is related to flatness at the minimum, as increased
posterior variance while EL̂(ρ̂) remains small implies a
flat minimum. Importantly, when relating PAC-Bayes to
flatness one needs to keep the mean of the posterior fixed.
Optimizing the mean and then the covariance corresponds
to measuring the flatness of a different minimum.

Our contributions. Through detailed experiments we find
that for diagonal Gaussian priors and posteriors the domi-
nant element which turns a vacuous bound to non-vacuous
is centering the prior at the random initialization instead of
at 0. Optimizing the covariance using stochastic variational
inference results in negligible or no gains. In fact, a simple
isotropic Gaussian baseline in the prior and posterior results
in nearly identical bound values.

We are then motivated to investigate two common explana-
tions for this ineffectiveness. First it could be that stochastic
variational inference has not properly converged. Secondly,
PAC-Bayes theory allows improved bounds by choosing pri-
ors that reflect prior knowledge about the problem, as long
as these priors don’t depend on the training set. Choosing
the random initialization to be the prior mean is already a
good prior mean choice. It might be that through a better
choice of prior covariance the mean-field approximation
could yield meaningful improvements to the posterior co-
variance and hence the bound.

Through a simple theoretical analysis, we explore both of
these explanations. Specifically, we leverage the fact that the
loss landscape around the minimum is empirically quadratic,
to derive closed form bound solutions with respect to both
posterior and prior covariance. The second result is invalid
under the PAC-Bayes framework but is useful as a sanity
check. Our results imply both problems with optimization
of VI as well as that significantly better priors can in theory
be found. At the same time, the closed form results are
far from optimal and point to intrinsic limitations of the
mean-field approximation.

We then motivate modeling the curvature at the minimum
through a simplified version of K-FAC (Martens & Grosse,
2015). This allows us to efficiently sample (complexity,
empirical risk) pairs with improved curvature estimates. Us-
ing our Risk-Complexity plots, we find that for randomized
classifiers with medium to low empirical risk this results
in significant improvements in the generalization bound
quality, compared to the implied limits of the mean-field
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approximation.

1.1. Related work

Criticism of uniform convergence. In Nagarajan & Kolter
(2019), the authors posit that two sided uniform convergence
bounds cannot produce non-vacuous estimates for deep neu-
ral networks, even with aggressive pruning of the hypothesis
space. To the best of the authors understanding the criti-
cism holds only for derandomized PAC-Bayes bounds. In
the following we will be dealing only with bounding the
generalization error of stochastic classifiers. Even for the
deterministic case the issue is far from resolved (Negrea
et al., 2019).

Bounds leveraging the Hessian. A number of bounds in-
corporating the Hessian have been proposed. Some works
provide complexity measures that by design simply correlate
with generalization error (Keskar et al., 2016; Li et al., 2019;
Rangamani et al., 2019; Liang et al., 2017; Jia & Su, 2019).
Others approximate the loss around the minimum using a
second order Taylor expansion (Tsuzuku et al., 2019; Wang
et al., 2018) and and then optimize the bound with respect
to this approximation. In Tsuzuku et al. (2019) the authors
first set the prior variance equal to the posterior variance,
and then optimize the bound. This results in a suboptimal
choice of prior. In Wang et al. (2018) the authors restrict
the Hessian to be diagonal and optimize with respect only
to the posterior covariance. Both Tsuzuku et al. (2019) and
Wang et al. (2018) result in vacuous bounds.

Other bounds and relationship to Bayesian inference.
There has been a huge number of works on generaliza-
tion bounds for deep neural networks(Bartlett et al., 2017;
Golowich et al., 2017; Wei & Ma, 2019; Ledent et al., 2019;
Pitas et al., 2019). These are typically vacuous by several
orders of magnitude. A number of works have pointed out
the relationship between PAC-Bayes and Bayesian inference
(Germain et al., 2016; Achille & Soatto, 2018; Achille et al.,
2019; Dziugaite & Roy, 2017).

In Huang et al. (2019) the authors propose “Kronecker flow”
to obtain better PAC-Bayes bounds. While we also test
a more flexible posterior, our emphasis is on a detailed
criticism of the mean-field approximation. Furthermore, as
we discuss in section 5, flow based methods face a number
of challenges in our testing setup.

2. Preliminaries
A neural network transforms its inputs a0 = x to an output
fθ(x) = al through a series of l layers, each of which con-
sists of a bank of units/neurons. The computation performed
by each layer i ∈ {1, ..., l} is given as follows

si = Wiai−1,

ai = φi(si),

where φi is an element-wise non-linear function and Wi is
a weight matrix.

We will define θ = [vec(W0)vec(W0) · · · vec(Wl)],
which is the vector consisting of all the network’s parame-
ters concatenated together, where vec is the operator which
vectorizes matrices by concatenating their rows horizontally.

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈
(X × Y)n, that contains n input-output pairs. Samples
(X,Y ) are assumed to be sampled randomly from a distribu-
tion D. Thus, we denote (X,Y ) ∼ Dn the i.i.d observation
of n elements. We consider loss functions ` : F×X ×Y →
R, where F is a set of predictors f : X → Y . We also de-
note the empirical risk L̂`X,Y (f) = (1/n)

∑
i `(f,xi, yi)

and the risk L`D(f) = E(x,y)∼D`(f,x, y).

We will use two loss functions, the non-differentiable zero-
one loss `01(f, x, y) = I(arg max(f(x)) = y), and categor-
ical cross-entropy, which is a commonly used differentiable
surrogate `cat(f, x, y) = −

∑
i I[i = y] log(f(x)i), where

we assume that the outputs of f are normalized to form a
probability distribution.

We will also use the following PAC-Bayes formulation, by
Catoni (2007)
Theorem 2.1. (Catoni, 2007) Given a distribution D over
X × Y , a hypothesis set F , a loss function `′ : F × X ×
Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at
least 1− δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′

D(f) ≤Φ−1β (Ef∼ρ̂L̂`
′

X,Y (f)

+
1

βn
(KL(ρ̂||π) + ln

1

δ
)),

(2)

where Φ−1β (x) = 1−e−βx
1−e−β .

The above PAC-Bayes theorem works with bounded loss
functions and as such is typically evaluated with the zero-
one loss `01. However, one might want to optimize the
above bound as proposed in Dziugaite & Roy (2017). One
approach, is to then parametrize fθ using diagonal Gaus-
sians as ρ̂(θ) = N (µρ̂,σρ̂) and the prior as π(θ) =
N (µπ, λI). Then, one can use the reparametrization trick
θ = µρ̂+

√
σρ̂�N (0, I) and the categorical cross-entropy

to optimize the surrogate

Eθ∼ρ̂(θ)L̂`cat
X,Y (fθ) +

1

βn
(KL(ρ̂(θ)||N (µπ, λI)) + ln

1

δ
),

(3)
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Figure 2. Detailed comparison of posterior and prior choices: The area below the dashed line corresponds to non-vacuous pairs of
(complexity, empirical risk). The purple star corresponds to the optimal bound implied by the testing set. For the MNIST case there
is a significant improvement when changing from a prior centered at 0 to a prior centered at the random initialization. The baseline
isotropic bounds are non-vacuous for a prior centered at 0. Optimizing the mean-field approximation using variational inference provides
no improvements over the baseline, regardless of prior choice. In the CIFAR case all modelling choices result in vacuous bounds.

for µρ̂, σρ̂. In practice, one optimizes (3), but wants to
evaluate (2). It’s also often beneficial to fine tune λ and
we want to approximate Ef∼ρ̂L̂`01X,Y (f) with an empirical
estimate. We take a union bound over values of λ, and apply
a Chernoff bound for the tail of the empirical estimate of
Ef∼ρ̂L̂`01X,Y (f). Putting everything together, as proposed in
Dziugaite & Roy (2017), one can obtain valid PAC-Bayes
bounds subject to a posterior distribution ρ̂∗(θ) that hold
with probability at least 1− δ − δ′ and are of the form

Eθ∼ρ̂∗(θ)L`01D (fθ) ≤Φ−1β (L̃`01X,Y (fθ) +
1

βn
KL(ρ̂∗(θ)||π)

+
1

βn
ln(

π2b2 ln(c/λ)2

6δ
) +

√
ln 2

δ′

m
),

(4)

where Φ−1β (x) = 1−e−βx
1−e−β . Also c, b are constants, m is the

number of samples from ρ̂ for approximating Ef∼ρ̂L̂`01X,Y (f)

and L̃`01X,Y (fθ) the empirical estimate.

It is not difficult to see, that for a high enough number of
samples n and m, the terms in line 2 of (4) have a negligible
effect on the bound. All proofs are deferred to the Appendix.

3. Empirical results
We tested 6 different datasets. These consist of the original
MNIST-10 and CIFAR-10 (Krizhevsky & Hinton, 2010)
datasets, as well as simplified versions, where we collapsed
the 10 classes into 5 and 2 aggregate classes, potentially sim-
plifying the classification problem. All had 50000 training
samples. We test the architectures

input→ 300FC→ 300FC→ #classesFC→ output

on MNIST, and

input→ 200FC→ 200FC→ #classesFC→ output

on CIFAR, where xFC denotes a fully connected layer with
x neurons.
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Figure 3. Empirical evaluation of the categorical cross-entropy loss: We take normalized random directions vi, i ∈ {1, 2, 3, 4} and
plot the deterministic categorical cross-entropy loss L̂`cat

X,Y (fθ) for MNIST2 and CIFAR2 and values on the line θ = θ∗ + tvi, t ∈
[−200, 200]. We see that the loss closely reassembles a quadratic around the minimum θ∗. High dimensional Gaussian vectors concentrate
close to a hypersphere centered on the mean. We find the radius of the hyperspheres and shade the corresponding 1 dimensional cross
sections in the plots. Posteriors relevant to our experiments concentrate within an area well approximated by the quadratic.

We also tested four combinations of prior and posterior

1. ρ̂(θ) = N (µρ̂, λI) , π(θ) = N (0, λI)

2. ρ̂(θ) = N (µρ̂, λI) , π(θ) = N (µinit, λI)

3. ρ̂(θ) = N (µρ̂,σρ̂) , π(θ) = N (0, λI).

4. ρ̂(θ) = N (µρ̂,σρ̂) , π(θ) = N (µinit, λI).

Isotropic posterior. Isotropic combinations 1 and 2 dif-
fer only in the prior mean. The first prior is centered at
0, while the second prior is centered at the random deep
neural network initialization. In practice, to derive mul-
tiple (complexity, empirical risk) pairs we sample λ,β in
the range λ ∈ [0.031, 0.3] and β ∈ [1, 5]. For these we
compute L̂(ρ̂) and KL(ρ̂||π). The second can be computed
analytically, while we approximate the first using Monte
Carlo sampling with m = 1000 samples from ρ̂. We then
plug the results into (4). We set the estimated complexity
as Complexity ≡ [Φ−1β∗ (L̂(ρ̂∗)+ 1

β∗nKL(ρ̂∗||π))−L̂(ρ̂∗)],
where β∗ is the optimal β.

Diagonal posterior (VI). Combinations 3 and 4 corre-
spond to a posterior with diagonal covariance and a non-
informative prior centered at 0 and at the random initializa-
tion. For MNIST we do a grid search over β ∈ [1, 5] and
λ ∈ [0.03, 0.1] while for CIFAR we search in β ∈ [1, 5] and
λ ∈ [0.1, 0.3]. For each (β, λ) pair we optimize σρ̂ using
the surrogate (3). Specifically, we use the state of the art
Flipout estimator (Wen et al., 2018). We used 5 epochs of
training using the Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 1e − 1. Increasing the number of
epochs didn’t affect the results. We calculate the complexity
and empirical risk as in the isotropic case.

We plot the Pareto fronts of all modeling choices in 2. For
the case of MNIST, changing from the prior centered at 0
to the prior centered at the random initialization resulted
in a significant improvement of the bound. The resulting
bounds with a prior at the random initialization are non-
vacuous, even for the simple isotropic posterior. Optimizing
the covariance with VI yields negligible or no improvements,
regardless of the prior choice.

For CIFAR, we do not see significant variation in the bounds.
The Catoni bound has a saturating effect above the line
y = 1− x, s.t. x ∈ [0, 1]. All (complexity,empirical risk)
pairs fall into this saturating region. Specifically, mean-field
VI fails to meaningfully improve the bound. Looking at the
optimal bound points (star shapes), one explanation for the
difference with MNIST, is that CIFAR DNNs have overfit
the data significantly.

4. Quadratic Approximation
The stochastic and non-convex objective (3) is difficult to
analyze theoretically. As such we first propose to approx-
imate the cross-entropy loss at the mean of the posterior
using a second order Taylor expansion which will make the
subsequent analysis tractable (this corresponds to a Laplace
approximation (Bishop, 2006) to the posterior). We intro-
duce the centered random variable η = θ − E[θ] so that
η ∼ ρ̂′(θ), we get

Cβ(X,Y ; ρ̂, π) = Eθ∼ρ̂(θ)L̂`cat
X,Y (fθ) + βKL(ρ̂(θ)||π(θ))

≈ Eη∼ρ̂′(θ)[η
T∇L̂`cat

X,Y (fθ) +
1

2
ηT∇2L̂`cat

X,Y (fθ)η]

+ βKL(ρ̂(θ)||π(θ))

(5)
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≈ Eη∼ρ̂′(θ)[
1

2
ηTHη] + βKL(ρ̂(θ)||π(θ)).

where H ≡ ∇2L̂`cat
X,Y (fθ) is the Hessian and captures the

curvature at the minimum.

In the above we made a number of assumptions. First, we
assumed that the gradient at the point of expansion is zero.
For a well trained overparametrized DNN this is a reason-
able assumption. Secondly, we omit terms of the Taylor
expansion of order ≥ 3. This results in a quadratic approx-
imation. We conduct experiments to see whether this is
reasonable. Specifically, we take random directions along
the loss landscape and plot along them the value of the loss.
We see in Figure 3 that the loss is indeed approximately
quadratic around the minimum. At the same time, we note
that approximating the loss as quadratic has been used to
obtain state of the art results in the DNN compression litera-
ture (Dong et al., 2017; Wang et al., 2019; Peng et al., 2019;
LeCun et al., 1990; Hassibi & Stork, 1993).

For the expectation of the quadratic loss to be a good approx-
imation of the expectation of the categorical loss, the mass
of the posterior has to be concentrated at locations where
the true loss is well approximated by a quadratic. We have
thus far dealt with Gaussian posteriors ρ̂(θ) = N (µρ̂,σρ̂),
where ∀i, σρ̂i ≈ λ, 0.01 ≤ λ ≤ 1. It is well know that
Gaussians in high dimensions concentrate on a thin ”bub-
ble” away from the origin. We can use this intuition and
make a rough calculation of the radius of this bubble (Ver-
shynin, 2018). Specifically, assuming that ∀i, σρ̂i = λ, we
can calculate Eη∼ρ̂′(θ)||η||22 = Eη∼N (0,σρ̂)[

∑d
i=0 η

2
i ] =∑d

i=0 σρ̂i = λd. Finally we expect that the radius of the
“bubble” is Eη∼ρ̂′(θ)||η||2 ≈

√
λd. We plot these regions

in Figure 3. We see that posteriors concentrate within areas
where the quadratic approximation is reasonable.

4.1. Optimal Posterior

Compared to the diagonal modeling of the previous section,
we now make the slightly more general modeling choices
ρ̂(θ) = N (µρ̂,Σρ̂) and π(θ) = N (µπ, λΣπ). We can
then show that the optimal posterior covariance of the ob-
jective (5) for fixed prior and posterior means has a closed
form solution.

Lemma 4.1. The convex optimization problem
minΣρ̂ Eη∼ρ̂′(θ)[

1
2η

THη] + βKL(ρ̂(θ)||π(θ)) where
ρ̂(θ) = N (µρ̂,Σρ̂) and π(θ) = N (µπ, λΣπ) is
minimized at

Σ∗ρ̂ = β(H +
β

λ
Σ−1π )−1, (6)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the

minimum, while Σπ is the prior covariance.

4.2. Optimal Prior

We can relax the modeling choices further by noting that
PAC-Bayesian theory allows one to choose an informative
prior, with the restriction that the prior can only depend
on the data generating distribution and not the training set.
A number of previous works (Parrado-Hernández et al.,
2012; Catoni, 2003; Ambroladze et al., 2007) have used
this insight mainly on simpler linear settings and usually by
training a classifier on a separate training set and using the
result as a prior. Recently, Dziugaite & Roy (2018) have
proposed to use the original training set to derive valid priors
by imposing differential privacy constraints.

We ignore these concerns for the moment, and optimize the
prior covariance directly. The objective is non-convex, how-
ever for the case of diagonal prior and posterior covariances
we can find the global minimum.

Lemma 4.2. The optimal prior and posterior covariances
for minσρ̂,σπ Eη∼ρ̂′(θ)[

1
2η

THη] + βKL(ρ̂(θ)||π(θ)) with
ρ̂(θ) = N (µρ̂,σρ̂) and π(θ) = N (µπ, λσπ) have ele-
ments

(σ∗ρ̂i)
−1 =

1

2β
[hi +

√
h2i +

4βhi
(µiρ̂ − µiπ)2

], (7)

(σ∗πi)
−1 =

λ

2β
[

√
h2i +

4βhi
(µiρ̂ − µiπ)2

− hi], (8)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the

minimum.

We cannot prove generalization using this result. Rather we
use it as a sanity check for what is achievable through the
mean-field approximation and an optimal informative prior
covariance.

To approximate the Hessian we note that for the cross
entropy loss and the softmax activation function p(y =
c|fθ) = exp(fθ(x)c)/

∑
i exp(fθ(x)i) the Fisher In-

formation matrix coincides with the generalized Gauss-
Newton approximation of the Hessian (Kunstner et al.,
2019). We sample one ouput ỹi from the model distri-
bution p(yi|fθ(xi)) for each input xi, and approximate
H ≈

∑n
i=0∇θ log p(ỹi|fθ(xi))∇θ log p(ỹi|fθ(xi))

T, re-
taining only the diagonal elements.

Keeping the posterior and prior means fixed, we optimize
the posterior covariance, as well as the posterior and prior
covariance jointly in closed form. We plot the results in
Figure 4, using the same approach as section 3 with m =
1000 for (7),(8), m = 100 for (6) and sampling over β and
λ. For MNIST, valid bounds where we only optimize the
posterior in closed form get significant benefits over VI of
between 5-10%. Thus, even though Adam is very robust
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Figure 4. Closed form posterior and prior: We plot the results obtained by mean-field variational inference, as well as the closed
form bounds with optimized posterior and jointly optimized posterior and prior covariances. For MNIST, we plot the empirical risk in
logarithmic scale for ease of exposition. Valid bounds where we only optimize the posterior in closed form get significant benefits over VI
of between 5-10%. Optimizing the prior results in further improvements of 5-10%, implying that in theory better priors can be found. The
results are far from tight even when optimizing the prior and for CIFAR all bounds are vacuous. This implies inherent limitations of the
mean-field approximation, as we typically don’t even have access to the optimal prior covariance.

to hyperparameter selection, and the Flipout estimator is
state of the art, one might look to hyperparameter tuning
for better results. We present arguments in the next section,
that hold also for the mean-field case, as to why it should be
beneficial to avoid hyperparameter tuning. Invalid bounds
where we optimize the prior and posterior jointly result in
further improvements of 5-10%, implying that in theory
better priors can be found. The bounds are far from tight,
even when optimizing the prior, and for CIFAR all bounds
are vacuous. This implies that the mean-field approximation
is limited in the bound improvements it can provide.

5. Beyond the mean-field approximation
5.1. Computational Issues

Given the implied shortcomings of the mean-field approx-
imation it is interesting to look at richer posterior distribu-
tions. A number of approximations exist to model such
posteriors. In Mishkin et al. (2018), the authors model the

covariance as having a low-rank + diagonal structure. In
normalizing flows (Rezende & Mohamed, 2015) a simple
initial density is transformed into a more complex one, by
applying a sequence of invertible transformations, until a
desired level of complexity is attained. In K-FAC (Martens
& Grosse, 2015), the Hessian can be approximated as a
Khatri-Rao product to construct a Laplace approximation
of the posterior (Ritter et al., 2018). Considerable effort has
been placed into

Optimizing multiple variational objectives. To obtain
Pareto fronts we will perform a grid search over λ and β,
corresponding toO(102) classifiers with different empirical
risk and complexity. Optimizing variational objectives is
known to be unstable, to scale badly and to require extensive
hyperparameter tuning (Wu et al., 2018). Optimizing each
posterior using SGD as in Mishkin et al. (2018); Rezende &
Mohamed (2015), for even a few minutes, can add several
hours to obtaining the full grid. Hyperparameter tuning
objectives that do not converge can quickly make the task
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(a) (b) (c)

Figure 5. Beyond the mean field approximation: We compared the simplified K-FAC curvature approximation to the closed form invalid
mean-field inference. Invalid results correspond to an optimal prior and posterior covariance to which we don’t typically have access. For
medium to low empirical risk the block diagonal curvature improves the bound for MNIST10-5-2 by 8.2%, 7.5%, 4.4% respectively.

infeasible.

Sampling efficiently from the posterior. At the same time
we will need to sample efficiently between O(104) and
O(105) posterior samples. This is because we will be ap-
plying a Chernoff bound on the tail of the empirical risk.
For flow based methods, the KL term also has to be approx-
imated with MC sampling.

In the non-flow based methods, one typically seeks to factor
Σ = LLT . Then y = Lz, where z is standard normal, has
the appropriate distribution, and can be sampled efficiently.
While Mishkin et al. (2018) provide an efficient Cholesky
factorization of their low-rank + diagonal approximation,
the Khatri-Rao product (Martens & Grosse, 2015) has no
obvious Cholesky factorization. Finally inference time in
flow based methods will be influenced by the number of
mappings used in the flow.

Simplified K-FAC Laplace. We assume a multiclass
classification problem with c classes, and that the la-
bels y are one-hot encoded. We then define the mean
square error loss `mse(f, x, y) = (1/c)

∑c
i=0(f(x)i −

yi)
2. Assuming r neurons per layer, θ has a form θ =

[vec(W0,:
0 )vec(W1,:

0 ) · · · vec(Wr,:
l )]. We also denote for

layer i and neuron j, θij , µρ̂ij , Σρ̂ij , µπij the correspond-
ing split variables. We can then motivate optimizing the
following surrogate upper bound

Lemma 5.1. Assuming negligible layerwise derivatives of
order other than 2, the differentiable surrogate objective

Eθ∼ρ̂(θ)L̂`mse
X,Y (fθ) +

1

βn
(KL(ρ̂(θ)||N (µπ, λI)) + ln

1

δ
),

(9)

has the following upper bound∑
i,j

[Eηij∼ρ̂′ij(θ)[
1

2
ηTijHiηij ] +

1

βn
KL(ρ̂ij(θ)||πij(θ)]

+O(cl),

(10)

where ρ̂ij(θ) = N (µρ̂ij ,Σρ̂ij), πij(θ) = N (µπij , λI),

Hi = (1/n)
∑n
k=0 aki a

k
i
T

, are neuronwise posteriors, pri-
ors and Hessians.

The above corresponds to a greatly simplified version of
K-FAC, where each layer has a posterior with covariance
Σi = Hi ⊗ I, i.e. we assume correlations only for pa-
rameters in each neuron. While this approximation covers
our needs, one could in principle use the slightly more ex-
pressive Σi = Hi ⊗ Gi, where Gi = E[gig

T
i ] and gi

are the backpropagated layerwise errors for layer i (Ritter
et al., 2018), and we note that optimizing more expressive
versions of K-FAC efficiently is an active area of research
(Zhang et al., 2018; Bae et al., 2018). We’ve broken the
original into many much smaller subproblems. We can now
compute the Hessian efficiently and in a stable way once,
and then sample the posterior efficiently in closed form at
different variance levels λ.

5.2. Empirical Results

We now present results on the MNIST datasets. We run a
grid search over β and λ, with 20 samples each, for β ∈
[0.001, 0.02] and λ ∈ [0.001, 0.1]. We use m = 1000
samples for estimating the empirical risk. For computing
the Pareto fronts we optimize (10) with (6) and evaluate (4)
following the procedure of Section 3. The running time for
each experiment was 33h, 30h and 25h respectively.

We plot the results in Figure 5 where we compare with the
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case of jointly optimized diagonal prior and posterior. At
very low and very high empirical risk levels the complex-
ity estimates saturate. However, for medium empirical risk
levels the block diagonal covariance yields significant im-
provements to the bounds. The effect is more pronounced
on the more difficult MNIST10 and MNIST5 experiments,
where using the block diagonal posterior results in a de-
crease in the estimated complexity of ∼ 10%.

6. Conclusion and Future Work
We have presented several arguments in favor of richer pos-
terior distributions under the PAC-Bayes framework. We’ve
only scratched the surface, as we’ve relaxed only slightly
from the diagonal case, getting significant gains. Of course,
another line of approach would be to optimize further the
prior mean in a valid way, an area that has been little inves-
tigated. As research moves closer to solving the generaliza-
tion puzzle of deep learning, we hope that our plots provide
a more intuitive way to compare new bounds.
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