
Dissecting Non-Vacuous Generalization Bounds
based on the Mean-Field Approximation–Appendix

Konstantinos Pitas 1

1École Polytechnique Fédérale de Lausanne, Switzer-
land. Correspondence to: Konstantinos Pitas <konstanti-
nos.pitas@epfl.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Dissecting Non-Vacuous Generalization Bounds–Appendix

Appendix

A. Derivations for valid bound
We present again for clarity the PAC-Bayes bound by Catoni (2007).
Theorem 2.1. (Catoni, 2007) Given a distributionD overX ×Y , a hypothesis setF , a loss function `′ : F×X ×Y → [0, 1],
a prior distribution π over F , a real number δ ∈ (0, 1], and a real number β > 0, with probability at least 1− δ over the
choice of (X,Y) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′

D(f) ≤Φ−1
β (Ef∼ρ̂L̂`

′

X,Y (f)

+
1

βn
(KL(ρ̂||π) + ln

1

δ
)),

(1)

where Φ−1
β (x) = 1−e−βx

1−e−β .

Evaluating a valid PAC-Bayes bound, using empirical estimates, requires some care.

Optimizing λ. For a start, when modeling π(θ) = N (0, λI), it is often beneficial to optimize the hyperparameter λ. As
the PAC-Bayes theorem requires the prior to be independent from the posterior, we need to take a union bound over an
appropriately chosen grid, representing different possible values of λ. Following (Dziugaite & Roy, 2017), we can choose
λ = c exp{−j/b} for j ∈ N and fixed b, c ≥ 0, where c corresponds to the grid scale and b to it’s precision. Then, if
the PAC-Bayes bound for each j ∈ N is designed to hold with probability at least 1− 6δ

π2j2 , by union bound it will hold
uniformly for all j ∈ N with probability at least 1 − (6δ

π2)
∑
j∈N

1
j2 = 1 − δ. We solve for j = b log c

λ and substitute
this value in the probability for each term in the union bound. We get that any bound corresponding to j ∈ N holds with
probability 1− 6δ

π2b2 ln (c/λ2) . Thus looking back to theorem 2.1 the term ln 1
δ becomes ln π2b2 ln (c/λ2)

6δ . In practice we see

that even for very large numbers c, b, δ when divided by the number of samples n the term ln π2b2 ln (c/λ2)
6δ is negligible and

we treat j as a continuous number.

Empirical estimate of Eθ∼ρ̂∗(θ)L̂`
′

X,Y (fθ). Furthermore, assuming an optimized posterior ρ̂∗(θ) directly evaluating
Eθ∼ρ̂∗(θ)L̂`

′

X,Y (fθ) is intractable. Instead, since L̂`′X,Y (fθ) is a bounded random variable, one can approximate the expecta-
tion using Monte Carlo sampling and use a Chernoff bound to bound it’s tail. Let L̃`′X,Y (fθ) ≡ (1/m)

∑m
i=0 L̂`

′

X,Y (fθi) be
the observed failure rate of m random hypotheses drawn according to ρ̂∗(θ). One can then show the following (Langford &
Caruana, 2002) (presented here without proof)
Theorem 0.1. (Sample Convergence Bound) For all distributions, ρ̂∗(θ), for all sample sets (X,Y), assuming that
L̂`′X,Y (fθ) ∈ [0, 1]

Prρ̂∗(θ)(Eθ∼ρ̂∗(θ)L̂`
′

X,Y (fθ) ≤ L̃`
′

X,Y (fθ) +

√
ln 2

δ′

m
)

≤ δ′,

(2)

where m is the number of evaluations of the stochastic hypothesis.

We take a union bound over values of λ, and apply the Chernoff bound for the tail of the empirical estimate of Ef∼ρ̂L̂`
′

X,Y (f).
Putting everything together, one can obtain valid PAC-Bayes bounds subject to a posterior distribution ρ̂∗(θ) that hold with
probability at least 1− δ − δ′ and are of the form

Eθ∼ρ̂∗(θ)L`
′

D(fθ) ≤Φ−1
β (L̃`

′

X,Y (fθ) +
1

βn
KL(ρ̂∗(θ)||π)

+
1

βn
ln(

π2b2 ln(c/λ)2

6δ
) +

√
ln 2

δ′

m
),

(3)

where Φ−1
β (x) = 1−e−βx

1−e−β . Also c, b are constants, m is the number of samples from ρ̂ for approximating Ef∼ρ̂L̂`
′

X,Y (f)

and L̃`′X,Y (fθ) the empirical estimate.

Dissecting Non-Vacuous Generalization Bounds–Appendix

Number of samples for Chernoff bound. In our experiments we use m = 1000 for all experiments including VI
experiments. We make a single exception due to time constraints for the case of optimizing the posterior in closed form
(Section 4.1 equation 6) where we use m = 100.

• For m = 1000 and δ′ = 0.05, this gives bounds with confidence
√

log (2/0.05)
1000 ≈ 0.06.

• For m = 100 and δ′ = 0.05, this gives bounds with confidence
√

log (2/0.05)
100 ≈ 0.19.

Importantly bounds with even higher confidence
√

log (2/0.05)
10000 ≈ 0.019 and sample size m = O(104) are possible for all

experiments with a computational time in the order of weeks. However we consider this point a technicality as the Chernoff
bound is quite pessimistic. Empirically the estimates in our experiments converge much faster than implied by the bound
analysis, exhibiting no significant difference between m = 1000, m = 100 or even m = 10 in the isotropic cases. This is
because this particular Chernoff bound is an application of Hoeffding’s inequality for general bounded random variables
(Vershynin, 2018)[p. 25]. The only assumption is that the random variable is bounded L̂`′X,Y (fθ) ∈ [0, 1] , and thus the
variance of the random variable is significantly overestimated.

Dissecting Non-Vacuous Generalization Bounds–Appendix

B. Proof of Lemma 4.1
Lemma 4.1. The convex optimization problem minΣρ̂ Eη∼ρ̂′(θ)[

1
2η

THη] + βKL(ρ̂(θ)||π(θ)) where ρ̂(θ) = N (µρ̂,Σρ̂)
and π(θ) = N (µπ, λΣπ) is minimized at

Σ∗ρ̂ = β(H +
β

λ
Σ−1
π)−1, (4)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the minimum, while Σπ is the prior covariance.

Proof.

Cβ(X,Y ; ρ̂, π) = Eη∼ρ̂′(θ)[
1

2
ηTHη] + βKL(ρ̂(θ)||π(θ))

= Eη∼ρ̂′(θ)[
1

2
tr(HηηT)] + βKL(ρ̂(θ)||π(θ))

=
1

2
tr(HEη∼ρ̂′(θ)[ηη

T]) + βKL(ρ̂(θ)||π(θ))

=
1

2
tr(HΣρ̂) +

β

2
(tr(

1

λ
Σ−1
π Σρ̂)− k +

1

λ
(µρ̂ − µπ)TΣ−1

π (µρ̂ − µπ)

+ ln

(
detλΣπ

det Σρ̂

)
)

(5)

The gradient with respect to Σρ̂ is

∂Cβ(X,Y ; ρ̂, π)

∂Σρ̂
= [

1

2
H +

β

2λ
Σ−1
π −

β

2
Σ−1
ρ̂]. (6)

Setting it to zero, we obtain the minimizer Σ∗ρ̂ = β(H + β
λΣ−1

π)−1.

C. Proof of Lemma 4.2
Lemma 4.2. The optimal prior and posterior covariances for minσρ̂,σπ Cβ(X,Y ; ρ̂, π) = minσρ̂,σπ Eη∼ρ̂′(θ)[

1
2η

THη] +
βKL(ρ̂(θ)||π(θ)) with ρ̂(θ) = N (µρ̂,σρ̂) and π(θ) = N (µπ, λσπ) have elements

(σ∗ρ̂i)
−1 =

1

2β
[hi +

√
h2
i +

4βhi
(µiρ̂ − µiπ)2

], (7)

(σ∗πi)
−1 =

λ

2β
[

√
h2
i +

4βhi
(µiρ̂ − µiπ)2

− hi], (8)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the the minimum. Then

min
σρ̂,σπ

Cβ(X,Y ; ρ̂, π) ≥ 1

2
(
∑
i

ai(µiρ̂ − µiπ)2

+ β
∑
i

ln(
hi + ai
ai

)),

(9)

where ai , ai(β, µiρ̂, µiπ, hi) = 1
2 [
√
h2
i + 4βhi

(µiρ̂−µiπ)2 − hi].

Dissecting Non-Vacuous Generalization Bounds–Appendix

Proof. The developed objective (5) is

Cβ(X,Y ; ρ̂, π) =
1

2
tr(HΣρ̂) +

β

2
(tr(

1

λ
Σ−1
π Σρ̂)− k +

1

λ
(µρ̂ − µπ)TΣ−1

π (µρ̂ − µπ) + ln

(
detλΣπ

det Σρ̂

)
) (10)

We substitute the precision matrix Λπ = Σ−1
π and Σρ̂ with the minimizer Σ∗ρ̂ = β(H + β

λΛπ)−1 in (10), we obtain

Cβ(X,Y ; ρ̂, π)|Σρ̂=Σ∗ρ̂
=

1

2
tr(Hβ(H +

β

λ
Λπ)−1) +

β

2
(tr(

1

λ
Λπβ(H +

β

λ
Λπ)−1)

+
1

λ
(µρ̂ − µπ)TΛπ(µρ̂ − µπ)− k + ln

(
detλΛ−1

π

detβ(H + β
λΛπ)−1

)
)

=
β

2
tr(H(H +

β

λ
Λπ)−1) +

β2

2λ
(tr(Λπ(H +

β

λ
Λπ)−1))

+
β

2
(+

1

λ
(µρ̂ − µπ)TΛπ(µρ̂ − µπ)− k + ln

(
detλΛ−1

π

detβ(H + β
λΛπ)−1

)
)

=
β

2
(tr((H +

β

λ
Λπ)(H +

β

λ
Λπ)−1)

1

λ
(µρ̂ − µπ)TΛπ(µρ̂ − µπ)− k + ln

(
detλΛ−1

π

detβ(H + β
λΛπ)−1

)
)

=
β

2
[+

1

λ
(µρ̂ − µπ)TΛπ(µρ̂ − µπ) + ln

(
detλΛ−1

π

detβ(H + β
λΛπ)−1

)
].

(11)

Substituting Λπ = diag(Λ1π,Λ2π, ...,Λkπ) and H = diag(h1, h2, ..., hk) in the above expression we get

Cβ(X,Y ; ρ̂, π)|Σρ̂=Σ∗ρ̂
=
β

2
(
1

λ

∑
i

Λiπ(µiρ̂ − µiπ)2 −
∑
i

ln(
Λiπ
λ

) +
∑
i

ln(
hi + β

λΛiπ

β
)) (12)

The above expression is easy to optimize. We see that the sole stationary point exists at

Λ∗iπ =
λ

2β
[

√
h2
i +

4βhi
(µiρ̂ − µiπ)2

− hi]. (13)

We now need to calculate second derivatives so as to prove that the stationary point is a local optimum. We go back to
the developed objective (10), and substitute Σρ̂ = diag(σρ̂) and Σπ = diag(σπ). For the diagonal approximation the
objective turns into a sum of separable functions.

Cβ(X,Y ; ρ̂, π) =
∑
i

hi
2
σiρ̂ +

∑
i

β

2λ

σiρ̂
σiπ
−
∑
i

β

2
+
∑
i

β(µiρ̂ − µiπ)2

2λ

1

σiπ

+
β

2
[
∑
i

ln(λσiπ)−
∑
i

ln(σiρ̂)]

=
∑
i

Aiσiρ̂ +
∑
i

Bi
σiρ̂
σiπ
−
∑
i

β

2
+
∑
i

Ci
1

σiπ
+Di[

∑
i

ln(λσiπ)−
∑
i

ln(σiρ̂)]

=
∑
i

[Aiσiρ̂ +Bi
σiρ̂
σiπ
− β

2
+ Ci

1

σiπ
+Di(ln(λσiπ)− ln(σiρ̂))]

(14)

Dissecting Non-Vacuous Generalization Bounds–Appendix

where we have set Ai = hi
2 , Bi = β

2λ , Ci =
β(µiρ̂−µiπ)2

2λ , Di = β
2 .

We take the derivatives of one of these functions with respect to σiρ̂, σiπ and drop the indices i for clarity

∂Cβ(X,Y ; ρ̂, π)

∂σρ̂
= A+

B

σπ
− D

σρ̂
,

∂Cβ(X,Y ; ρ̂, π)

∂σπ
= −Bσρ̂

σ2
π

− C

σ2
π

+
D

σπ
(15)

and
∂Cβ(X,Y ; ρ̂, π)

∂2σρ̂
=
D

σ2
ρ̂

,
∂Cβ(X,Y ; ρ̂, π)

∂2σπ
= 2(Bσρ̂ + C)

1

σ3
π

− D

σ2
π

(16)

∂Cβ(X,Y ; ρ̂, π)

∂σρ̂∂σπ
= − B

σ2
π

,
∂Cβ(X,Y ; ρ̂, π)

∂σπ∂σρ̂
= − B

σ2
π

(17)

We need to check whether the Hessian matrix is PSD so that the stationary point we found is a local minimum and the
function is convex. We do that by calculating whether all principal minors of the Hessian are positive.

∇2Cβ(σρ̂, σπ) =

[
D
σ2
ρ̂

− B
σ2
π

− B
σ2
π

2(Bσρ̂ + C) 1
σ3
π
− D

σ2
π

]
(18)

We see easily that det(D
σ2
ρ̂
) > 0. While

det(∇2Cβ(σρ̂, σπ)) =
D

σ2
ρ̂

(
2(Bσρ̂ + C)

1

σ3
π

− D

σ2
π

)
− B2

σ4
π

=
1

σ2
ρ̂σ

4
π

(
2CDσπ − (Dσπ −Bσρ̂)2

)
=

(
1

σ2
ρ̂σ

4
π

β2

2

)(
(µρ̂ − µπ)2

λ
σπ −

1

2
(σπ −

σρ̂
λ

)2

) (19)

The determinant is not always positive and the function is not convex. We now check whether the sole stationary point
is always a local minimum. We start by substituting σ?ρ̂ = β(h+ β

λ
1
σπ

)−1 in the multiplicand of (19) as the multiplier is
positive by definition

det(∇2Cβ(σ?ρ̂, σπ)) =
1

σ?ρ̂
2σ4
π

β2

2

(
(µρ̂ − µπ)2

λ
σπ −

1

2
(σπ −

β

λ
(h+

β

λ

1

σπ
)−1)2

)
=

1

σ?ρ̂
2σ4
π

β2

2

(
(µρ̂ − µπ)2

λ
σπ −

1

2
(σπ −

β

λ
(

σπλ

hλσπ + β
))2

)
=

1

σ?ρ̂
2σ4
π

β2

2

(
(µρ̂ − µπ)2

λ
σπ −

σ2
π

2
(1− (

β

hλσπ + β
))2

)
=

1

σ?ρ̂
2σ3
π

β2

2

(
(µρ̂ − µπ)2

λ
− σπ

2
(

hλσπ
hλσπ + β

)2

)
=

1

σ?ρ̂
2σ3
π

β2

2

(
(µρ̂ − µπ)2

λ
− λ2h2σ3

π

2(hλσπ + β)2

)
=

1

σ?ρ̂
2σ3
π2λ(hλσπ + β)2

(2(µρ̂ − µπ)2(hλσπ + β)2 − λ3h2σ3
π)

=
1

σ?ρ̂
22λ(hλΛ−1

π + β)2
(2Λπ(µρ̂ − µπ)2(hλ+ Λπβ)2 − λ3h2)

(20)

Dissecting Non-Vacuous Generalization Bounds–Appendix

Where we substituted σπ = Λ−1
π as this will make the calculations easier. We now show a useful identity for Λ?π =

λ
2β [
√
h2 + 4βh

(µρ̂−µπ)2 − h]

(Λ?π)
2

=
λ2

4β2

(
h2 +

4βh

(µρ̂ − µπ)2
− 2h

√
h2 +

4βh

(µρ̂ − µπ)2
+ h2

)

=
λ2

4β2

(
2h

(
h−

√
h2 +

4βh

(µρ̂ − µπ)2

)
+

4βh

(µρ̂ − µπ)2

)

=
hλ

β

λ

2β

((
h−

√
h2 +

4βh

(µρ̂ − µπ)2

)
+

2β

(µρ̂ − µπ)2

)

=
hλ

β

(
λ

(µρ̂ − µπ)2
− Λ?π

)
(21)

We substitute Λπ = Λ?π in (20) and again develop only the multiplicand

det(∇2Cβ(σ?ρ̂, σ
?
π)) =

1

σ?ρ̂
22λ(hλΛ?π

−1 + β)2
(2Λ?π(µρ̂ − µπ)2(hλ+ Λ?πβ)2 − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(hλ+ Λ?πβ)2 − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + 2hλΛ?πβ + (Λ?π)
2
β2)− λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + 2hλΛ?πβ +
hλ

β

(
λ

(µρ̂ − µπ)2
− Λ?π

)
β2)− λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + hλΛ?πβ +
βλ2h

(µρ̂ − µπ)2
)− λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 +
βλ2h

(µρ̂ − µπ)2
) + 2(Λ?π)2(µρ̂ − µπ)2hλβ − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 +
βλ2h

(µρ̂ − µπ)2
)

+ 2
hλ

β

(
λ

(µρ̂ − µπ)2
− Λ?π

)
(µρ̂ − µπ)2hλβ − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 +
βλ2h

(µρ̂ − µπ)2
) + 2λ3h2 − 2h2λ2(µρ̂ − µπ)2Λ?π − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 +
βλ2h

(µρ̂ − µπ)2
) + λ3h2 − 2h2λ2(µρ̂ − µπ)2Λ?π)

= A(2Λ?πβλ
2h+ λ3h2)

> 0

(22)

where we have set A = 1
σ?ρ̂

22λ(hλ(Λ?π)−1+β)2
> 0. We have used (21) in lines 4 and 7.

Indeed the stationary point is a local minimum. We now show that there are no other local minima at the boundaries
of the domain. From (14) we see that we only need to evaluate expressions of the form f(σρ̂) = σρ̂ − ln(σρ̂) and
g(σπ) = 1

σρ̂
+ ln(σρ̂). By application of L’Hôpital’s rule it’s easy to show that

lim
σρ̂→0
σπ=ct

Cβ(σρ̂, σπ) = lim
σρ̂→+∞
σπ=ct

Cβ(σρ̂, σπ)

= lim
σρ̂=ct
σπ→0

Cβ(σρ̂, σπ) = lim
σρ̂=ct

σπ→+∞

Cβ(σρ̂, σπ) = +∞
(23)

Dissecting Non-Vacuous Generalization Bounds–Appendix

D. Proof of Lemma 5.1
Preliminaries We remind that a neural network transforms it’s inputs a0 = x to an output fθ(x) = al through a series of l
layers, each of which consists of a bank of units/neurons. The computation performed by each layer i ∈ {1, ..., l} is given as

si = Wiai−1,

ai = φi(si).

We also denote the vectorization of the weights as θ = [vec(W0,:
0)vec(W1,:

0) · · · vec(Wr,:
0)], where vec(Wj,:

i) are the
weights corresponding to layer i and neuron j. We assume trained vectorized weights µρ̂i and trained weights in matrix
form Wρ̂i for layer i. We will be adding bounded perturbations to the weights of each layer i so that ||Wi −Wρ̂i||F ≤ C.
We will want to quantify the effect of these perturbations on the latent representations of the network.

We then define Ai = [a0
i , · · · ,ani], where aji is the unperturbed latent representation of sample j at layer i, where Ai is

produced by the operation Ai = rect(Wρ̂iAi−1). We perturb only layer i and define Âi, as the representations resulting
from the new perturbed matrix Wi, Âi = rect(WiAi−1). We then define Ãi as the representations at layer i with
accumulated error from layers ≤ i. Similarly we can define the same quantities for the pre-activations sji , we denote the
corresponding matrices as Ŝi and S̃i.

We can then define the layerwise mean square error from perturbing only layer i

ê2
i = (1/n)||Ai − Âi||2F ,

Ê2
i = (1/n)||Si − Ŝi||2F ,

as well as the accumulated mean square error

ẽ2
i = (1/n)||Ai − Ãi||2F ,

Ẽ2
i = (1/n)||Si − S̃i||2F ,

where the true representations are considered as constants. We make a simplifying assumption, assuming that the mean
square error of our trained classifier is 0. In this case we can set L̂`mse

X,Y (fθ) ≡ ẽ2
l = (1/n)||Al − Ãl||2F , as Al now

correspond to the ground truth vectors. We can easily extend to the non-zero error case using the triangle inequality.

These errors are difficult to analyze theoretically. As such we will make the useful assumption that they are well approximated
by a quadratic, which will make the analysis tractable. This assumption is quite strong and we do not claim that the
approximation is tight. Furthermore Figure 3 of the main text does not directly apply in this setting; we will be dealing with
the mean-square error instead of the categorical cross-entropy and we will be analyzing layerwise errors instead of the error
at the output. At the same time our aim is only to derive a useful surrogate objective. The empirical results in Section 5
provide evidence that the surrogate we propose is indeed useful in providing tighter bounds.

Useful Lemmata We prove the following Lemma which will be useful later. We first show that the mean square error at the
output of a deep neural network can be decomposed as a sum of mean square errors for intermediate representations.

Lemma 0.2. Assuming layerwise perturbations that are bounded by a constant ||Wi −Wρ̂i||F ≤ C, the accumulated
mean square error ẽ2

l at layer l can be bounded as

(1/n)||Al − Ãl||2F ≤
l∑
i=0

ci(1/n)||Ai − Âi||2F +O(cl) (24)

where ∀i < l, ci =
∏l
k=i+1 ||Wk||2F , cl = 1 and c is some constant.

Proof. We denote âi+1 a single element of âi+1 and wT
i the corresponding row of Wi where we drop the indices for

Dissecting Non-Vacuous Generalization Bounds–Appendix

individual samples and neurons for clarity. One can easily see through the properties of the rectifier function that

âi+1 = rect(wT
i+1ãi + wT

i+1(ai − ãi))

≤ ãi+1 + rect(wT
i+1(ai − ãi))

≤ ãi+1 + |wT
i+1(ai − ãi)|

(25)

Similarly we can obtain ãi+1 ≤ âi+1 + |wT
i+1(ai − ãi)| and therefore we can write

|ãi+1 − âi+1| ≤ |wT
i+1(ai − ãi)|.

In matrix notation this becomes

||Ãi+1 − Âi+1||F ≤ ||Wi+1(Ai − Ãi)||F ≤ ||Wi+1||F ||Ãi −Ai||F

By the triangle inequality we can then write

ẽi+1 = (1/
√
n)||Ãi+1 −Ai+1||F ≤ (1/

√
n)||Ãi+1 − Âi+1||F + (1/

√
n)||Âi+1 −Ai+1||F

≤ (1/
√
n)||Wi+1||F ||Ãi −Ai||F + (1/

√
n)||Âi+1 −Ai+1||F

≤
i∑
t=0

(

i+1∏
k=t+1

||Wk||F ||Ât −At||F) + (1/
√
n)||Âi+1 −Ai+1||F

=

i∑
t=0

(

i+1∏
k=t+1

||Wk||F êt) + êi+1

(26)

If ||Wi −Wρ̂i||F ≤ C, then the errors êt = ||At − Ât||F and also all terms
∏i+1
k=t+1 ||Wk||F êt are bounded. We raise

both sides to the power of 2. We get the desired terms as well as terms of the form
∏i+1
k=a+1 ||Wk||F

∏i+1
k=b+1 ||Wk||F êaêb

assuming that ||Wi||F ≤
√
c we see that these are of the order O((

√
c)2l) = O(cl) and we get the desired result.

In the following it will be useful to deal with the preactivations sji instead of the representations aji so as to avoid taking
derivatives of the rectifier non-linearity. We will then find useful the following simple Lemma.

Lemma 0.3. Given the true preactivations Si and representations Ai, as well as the perturbed Ŝi and Âi for layer i the
following holds

(1/n)||Ai − Âi||2F ≤ (1/n)||Si − Ŝi||2F . (27)

Proof. We assume (rect(x)− rect(y))2 ≤ (x− y)2 and check that it holds for different signs of x, y.

We will now approximate the precativation error for each layer using a second order Taylor expansion. We prove the
following.

Lemma 0.4. We apply a Taylor expansion of the layerwise preactivation error Ê2
i (θ) of layer i, around a point µ. Given j

neurons and n training samples, Ê2
i (θ) can be approximated as

Ê2
i (θ) = (1/n)||Si − Ŝi||2F =

∑
j

(θij − µij)THi(θij − µij) +O(||θi − µi||3). (28)

where Hi = (1/n)
∑n
k=0 aki−1a

k
i−1

T
.

Proof. It will be easier to work with the vectorized weights per neuron θij directly. We note that the unperturbed

Dissecting Non-Vacuous Generalization Bounds–Appendix

representations Si are considered as constants, and get

∂Ê2
i

∂θij
=

∂

∂θij
(1/n)||Ŝi − Si||2F

=
∂

∂θij
(1/n)||WiAi−1 − Si||2F

=
∂

∂θij
(1/n)

n∑
k=0

||Wia
k
i−1 − ski ||22

=
∂

∂θij
(1/n)

n∑
k=0

r∑
t=0

||θTitaki−1 − skit||22

=
1

n

n∑
k=0

r∑
t=0

∂

∂θij
||θTitaki−1 − skit||22 =

2

n

n∑
k=0

(θTija
k
i−1 − skij)aki−1

T

(29)

where in the third line we expand with respect to the samples and in the fourth line we expand with respect to each neuron.
Then we can calculate the second order derivatives.

∂2Ê2
i

∂2θij
=

∂

∂θij

2

n

n∑
k=0

(θTija
k
i−1 − skij)aki−1

T
=

2

n

n∑
k=0

aki−1a
k
i−1

T
. (30)

From the above, it is clear that the Hessian is block diagonal, with identical blocks for each neuron j. We can the approximate
the layerwise error ê2

i using a second order Taylor expansion around a point µ as

Ê2
i =

∂Ê2
i

∂θi
(θi − µi)T +

1

2
(θi − µi)T

∂2Ê2
i

∂2θi
(θi − µi) +O(||θi − µi||3)

=
∑
j

[(θij − µij)T
n∑
k=0

1

n
aki−1a

k
i−1

T
(θij − µij)] +O(||θi − µi||3)

(31)

where we assume that the derivatives with respect to the layer weights of order other than two are negligible. This is a strong
but useful assumption to make, and one that will make the analysis tractable.

We are now ready to prove our main lemma.

Lemma 5.1. The differentiable surrogate objective

Eθ∼ρ̂(θ)L̂`mse
X,Y (fθ) +

1

βn
(KL(ρ̂(θ)||N (µπ, λI)) + ln

1

δ
) (32)

, assuming that the layerwise derivatives of order other than 2 are negligible, has the following upper bound

∑
i,j

[Eηij∼ρ̂′ij(θ)[
1

2
ηTijHiηij] +

1

βn
KL(ρ̂ij(θ)||πij(θ)]

+O(cl)

(33)

where ρ̂ij(θ) = N (µρ̂ij ,Σρ̂ij), πij(θ) = N (µπij , λI), Hi = (2/n)
∑n
k=0 aki−1a

k
i−1

T , are neuronwise posteriors, priors
and Hessians.

Proof. We assume that the prior π(θ) and posterior ρ̂(θ) are block diagonal, with blocks corresponding to weights in each

Dissecting Non-Vacuous Generalization Bounds–Appendix

neuron.

Eθ∼ρ̂(θ)[L̂`mse
X,Y (fθ)] ≤ Eθ∼ρ̂(θ)[

l∑
i=0

ci(1/n)||Ai − Âi||2F +O(cl)]

≤ Eθ∼ρ̂(θ)[

l∑
i=0

ci(1/n)||Si − Ŝi||2F +O(cl)]

=

l∑
i=0

Eθ∼ρ̂(θ)[ci]Eθ∼ρ̂(θ)[(1/n)||Si − Ŝi||2F] +O(cl)]

≤
l∑
i=0

c∗Eθ∼ρ̂(θ)[(1/n)||Si − Ŝi||2F] +O(cl)

=

l∑
i=0

c∗Eηij∼ρ̂′ij(θ)[
∑
j

ηTijHiηij] +O(cl)

=
∑
i,j

c∗Eηij∼ρ̂′ij(θ)[η
T
ijHiηij] +O(cl).

(34)

In line 3 we used the fact that the constant ci for layer i depends only on layers k ≥ i+ 1, thus the two random variables are
independent and the expectation operator is multiplicative. In line 4 we assume that the terms ci =

∏l
k=i+1 ||Wk||2F are

upper bounded by the constant c∗. This is reasonable as in practice we will be adding Gaussian noise with bounded variance
to the layer weights. In line 5 we approximate the error Ê2

i = (1/n)||Si − Ŝi||2F using (28) at point µρ̂ which is the mean
of the posterior ρ̂(θ), then we use that ρ̂′(θ) is a centered version of ρ̂(θ). We finally assume that the term O(cl) dominates
the remainders from the Taylor expansion.

We then absorb the constant c∗ in the hyperparameter β. By noting that the KL divergence of block-diagonal Gaussians can
be decomposed as KL(N (ρ̂(θ)||π(θ)) =

∑
ij KL(N (ρ̂ij(θ)||πij(θ)) we get the desired result.

Importantly we don’t require that the deep neural network was trained using the mean square error. Rather we can optimize
(33) for any network and assume that it’s representations remain close based on the mean square error. Our experiments
however show that optimizing (33) is also a good surrogate for keeping the 01-error small.

E. Experimental Setup
Experiments for Variational Inference were performed on NVIDIA Tesla K40c GPU. All other experiments were performed
on an NVIDIA GEFORCE GTX 1080 GPU. The libraries used were Tensoflow 1.15.0 (Abadi et al., 2015), Keras 2.2.4
(Chollet et al., 2015) and Tensorflow-Probability 0.8.0 (Dillon et al., 2017).

When training the original deterministic classifiers, for the MNIST architectures we used the Keras implementation SGD
with a learning rate of 0.01, momentum value of 0.9 and exponential decay with decay factor 0.001. For CIFAR architectures
we used the Keras implementation of Adam with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, decay value of 0.00005
and the default value for the epsilon parameter. We used the softmax activation as well as the categorical cross-entropy
in both cases. MNIST architectures were trained for 10 epochs while CIFAR architectures where trained for 200 epochs,
which was sufficient for the training loss to stop decreasing.

When optimizing the posterior distributions centered at the deterministic classifier we used a grid search over β and/or λ
where appropriate, with limits specified in the following tables. The computational time reported refers to the total time
required to compute the plots in the main text for each setup, including computing the posterior and/or prior distributions as
well as sampling m number of samples for estimating the expected empirical risk of the stochastic classifier.

MNIST. We report the following values for the MNIST experiments.

Dissecting Non-Vacuous Generalization Bounds–Appendix

Experiment β λ Time
MNIST Is@0 - [0.031,0.3] 14h
MNIST Is@Init - [0.031,0.3] 14h
MNIST VI [1,5] [0.03,0.1] 11h
MNIST Post [0.001,0.07] [0.00005,0.01] 33h
MNIST Post+Prior [0.000007,0.001] - 10h
MNIST sK-FAC [0.001,0.02] [0.001,0.1] 33h

The β and λ ranges are identical for MNIST10, MNIST5, MNIST2 while computation times are of the same order of
magnitude.

CIFAR. We report the following values for the CIFAR experiments.

Experiment β λ Time
CIFAR Is@0 - [0.031,0.3] 15h
CIFAR Is@Init - [0.031,0.3] 15h
CIFAR VI [1,2] [0.1,0.3] 10h
CIFAR Post [0.001,0.1] [0.001,0.1] 32h
CIFAR Post+Prior [0.0001,0.001] - 11h
CIFAR sK-FAC - - -

The β and λ ranges are identical for CIFAR10, CIFAR5, CIFAR2 while computation times are of the same order of
magnitude.

For the Variational Inference experiments we used the Adam (Kingma & Ba, 2014) optimizer with a learning rate of 1e− 1
for 5 epochs of training. For efficient inference we used the Tensorflow-Probability (Dillon et al., 2017) implementation of
the Flipout (Wen et al., 2018) estimator.

F. Notes on PAC-Bayes
We note here some important differences between the PAC-Bayesian setting and the standard Bayesian treatment of deep
neural networks, as there are some important overlaps in the terms used.

First, while PAC-Bayes refers to a “posterior” ρ̂ this distribution is not required to be a posterior in the Bayesian sense. On
the contrary it can be chosen to be any distribution. As such we are free to model ρ̂ using different distributions centered
on the deterministic neural networks, decoupled from how we trained the original deterministic network. In particular in
Section 5 we can minimize the mean square error surrogate from Lemma 5.1. even though the deterministic networks are
trained using the categorical cross-entropy loss.

Second, as noted in the main text the prior π in PAC-Bayes has to be independent of the training set but can depend on the
data distribution.

Dissecting Non-Vacuous Generalization Bounds–Appendix

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL http:
//tensorflow.org/. Software available from tensorflow.org.

Catoni, O. Pac-bayesian supervised classification: the thermodynamics of statistical learning. arXiv preprint
arXiv:0712.0248, 2007.

Chollet, F. et al. Keras. https://keras.io, 2015.

Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., and Saurous,
R. A. Tensorflow distributions. arXiv preprint arXiv:1711.10604, 2017.

Dziugaite, G. K. and Roy, D. M. Computing nonvacuous generalization bounds for deep (stochastic) neural networks with
many more parameters than training data. arXiv preprint arXiv:1703.11008, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Langford, J. and Caruana, R. (not) bounding the true error. In Advances in Neural Information Processing Systems, pp.
809–816, 2002.

Vershynin, R. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge
university press, 2018.

Wen, Y., Vicol, P., Ba, J., Tran, D., and Grosse, R. Flipout: Efficient pseudo-independent weight perturbations on
mini-batches. arXiv preprint arXiv:1803.04386, 2018.

http://tensorflow.org/
http://tensorflow.org/
https://keras.io

