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Abstract

Is there a classifier that ensures optimal robust-
ness against all adversarial attacks? This paper
tackles this question by adopting a game-theoretic
point of view. We present the adversarial attacks
and defenses problem as an infinite zero-sum
game where classical results (e.g. Nash or Sion
theorems) do not apply. We demonstrate the non-
existence of a Nash equilibrium in our game when
the classifier and the Adversary are both determin-
istic, hence giving a negative answer to the above
question in the deterministic regime. Nonethe-
less, the question remains open in the randomized
regime. We tackle this problem by showing that
any deterministic classifier can be outperformed
by a randomized one. This gives arguments for
using randomization, and leads us to a simple
method for building randomized classifiers that
are robust to state-or-the-art adversarial attacks.
Empirical results validate our theoretical analysis,
and show that our defense method considerably
outperforms Adversarial Training against strong
adaptive attacks, by achieving 0.55 accuracy un-
der adaptive PGD-attack on CIFAR10, compared
to 0.42 for Adversarial training.

1. Introduction

Adversarial example attacks recently became a major con-
cern in the machine learning community. An adversarial
attack refers to a small, imperceptible change of an input
that is maliciously designed to fool a machine learning al-
gorithm. Since the seminal work of (Biggio et al., 2013)
and (Szegedy et al., 2014) it became increasingly important
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to understand the very nature of this phenomenon (Fawzi
et al., 2016; 2018; Bubeck et al., 2019; Ilyas et al., 2019;
Gourdeau et al., 2019). Furthermore, a large body of work
has been published on designing attacks (Goodfellow et al.,
2015; Papernot et al., 2016a; Madry et al., 2018; Carlini &
Wagner, 2017; Athalye et al., 2018) and defenses (Goodfel-
low et al., 2015; Papernot et al., 2016b; Madry et al., 2018;
Cohen et al., 2019).

Besides, in real-life scenarios such as for an autonomous
car, errors can be very costly. It is not enough to just defend
against new attacks as they are published. We would need an
algorithm that behaves optimally against every single attack.
However, it remains unknown whether such a defense exists.
This leads to the following questions, for which we provide
principled and theoretically-grounded answers.

Q1: Is there a deterministic classifier that ensures optimal
robustness against any adversarial attack?

Al: To answer this question, in Section 3.1, we cast the
adversarial examples problem as an infinite zero-sum game
between a Defender (the classifier) and an Adversary that
produces adversarial examples. Then we demonstrate, in
Section 4, the non-existence of a Nash equilibrium in the
deterministic setting of this game. This entails that no deter-
ministic classifier can claim to be more robust than all other
classifiers against any possible adversarial attack. Another
consequence of our analysis is that there is no free lunch for
transferable attacks: an attack that works on all classifiers
will never be optimal against any of them.

Q2: Would randomized defense strategies be a suitable
alternative to defend against strong adversarial attacks?

A2: We tackle this problem both theoretically and empiri-
cally. In Section 5, we demonstrate that for any deterministic
defense there exists a mixture of classifiers that offers better
worst-case theoretical guarantees. Building upon this, we
devise a method that generates a robust randomized clas-
sifier with a one step boosting method. We evaluate this
method, in Section 6, against strong adaptive attacks on CI-
FAR10 and CIFAR100 datasets. It outperforms Adversarial
Training against both ¢..-PGD (Madry et al., 2018), and #»-
C&W (Carlini & Wagner, 2017) attacks. More precisely, on
CIFARI10, our algorithm achieves 0.55 (resp. 0.53) accuracy
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under attack against these attacks, which is an improvement
of 0.13 (resp. 0.18) over Adversarial Training.

2. Related Work

Many works have studied adversarial examples, in several
different settings. We discuss hereafter the different frame-
works that we believe to be related to our work, and discuss
the aspects on which our contribution differs from them.

Distributionally robust optimization. The work in (Sinha
et al., 2018) addresses the problem of adversarial exam-
ples through the lens of distributionally robust optimization.
They study a min-max problem where the Adversary ma-
nipulates the test distribution while being constrained in a
Wasserstein distance ball (they impose a global constraint
on distributions for the Adversary, while we study a local,
pointwise constraint, leading to different attack policies). A
similar analysis was presented in (Lee & Raginsky, 2018) in
a more general setting that does not focus on adversarial ex-
amples. Even though our work studies a close problem, our
reasoning is very different. We adopt a game theoretic stand-
point, which allows us to investigate randomized defenses
and endow them with strong theoretical evidences.

Game Theory. Some works have tackled the problem of
adversarial examples as a two player game. For exam-
ple (Briickner & Scheffer, 2011) views adversarial example
attacks and defenses as a Stackelberg game. More recently,
(Rota Bulo et al., 2017) and (Perdomo & Singer, 2019)
investigated zero-sum games. They consider restricted ver-
sions of the game where classical theorems apply, such as
when the players only have a finite set of possible strate-
gies. We study a more general setting. Finally, (Dhillon
et al., 2018) motivates the use of noise injection as a defense
mechanism by game theoretic arguments but only present
empirical results.

Randomization. Following the work of (Dhillon et al.,
2018) and (Xie et al., 2018), several recent works stud-
ied noise injection as a defense mechanism. In particular,
(Lecuyer et al., 2018), followed by (Cohen et al., 2019; Li
et al., 2019; Pinot et al., 2019; Wang et al., 2019) demon-
strated that noise injection can, in some cases, give provable
defense against adversarial attacks. The analysis and de-
fense method we propose in this paper are not based on
noise injection. However, a link could be made between
these works and the mixture we propose, by noting that a
classifier in which noise is being injected can be seen as an
infinite mixture of perturbed classifiers.

Optimal transport. Our work considers a distributionnal
setting, in which the Adversary manipulating the dataset is
formalized by a push-forward measure. This kind of setting
is close to optimal transport settings recently developed by
(Bhagoji et al., 2019) and (Pydi & Jog, 2019). Specifically,

these works investigate classifier-agnostic lower bounds on
the risk for binary classification under attack, with some
hypothesis on the data distribution. The main differences
are that we focus on studying equilibria and not deriving
bounds. Moreover, these works do not study the influence
of randomization. Finally they express the optimal risk of
the Defender in terms of transportation costs between two
distributions, whereas we explicitly study the Adversary’s
behaviour as a transport from one distribution to another.
Even though they do not treat the problem from the same
prism, we believe that these works are profoundly related
and complementary to ours.

Ensemble of classifiers. Some works have been done to
improve the robustness of a model by constructing ensem-
ble of classifiers (Abbasi & Gagné, 2017; Xu et al., 2017;
Verma & Swami, 2019; Pang et al., 2019; Sen et al., 2020).
However all the defense methods proposed in those papers
subsequently proved to be ineffective against adaptive at-
tacks introduced in (He et al., 2017; Tramer et al., 2020).
The main difference with our method is that it is not an
ensemble method since it uses sampling instead of voting to
aggregate the classifiers’ output. Hence in terms of volatil-
ity, in voting methods, whenever a majority agrees on an
opinion, all others votes will be ignored, whereas here each
classifier always contributes according to its probability
weights, which do not depend on the others.

3. A Game Theoretic point of view.
3.1. Initial problem statement

Notations. For any set Z with o-algebra o (Z), if there is
no ambiguity on the considered o-algebra, we denote P (Z)
the set of all probability measures over (£, 0 (Z£)), and
Fz the set of all measurable functions from (£, 0 (2)) to
(Z,0(Z)). For p € P(Z) and ¢ € Fz, the pushforward
measure of 1 by ¢ is the measure ¢# 1 such that p#u(B) =
wu(¢t(B)) forany B € o(Z).

Binary classification task. Let ¥ € R% and ) = {-1,1}.
We consider a distribution D € P (X x V) that we assume
to be of support X x ). The Defender is looking for a hy-
pothesis (classifier) h in a class of functions H, minimizing
the risk of h w.r.t. D:

R():= E [1{h(X)#Y)]
(D
= [E E

=B [LE &) # YY)
Where H := {h : x — sgng(z) | g : X — R continuous},
v € P (Y) is the probability measure that defines the law
of the random variable Y, and for any y € ), p,, € P (X)
is the conditional law of X|(Y = y).



Randomization matters

Adversarial example attack (point-wise). Given a clas-
sifier h : X — ) and a data sample (z,y) ~ D, the
Adversary seeks a perturbation 7 € &’ that is visually im-
perceptible, but modifies = enough to change its class, i.e.
h(x + 7) # y. Such a perturbation is called an adversarial
example attack. In practice, it is hard to evaluate the set of
visually imperceptible modifications of an image. However,
a sufficient condition to ensure that the attack is undetectable
is to constrain the perturbation 7 to have a small norm, be
it for the ¢, or the /5 norm. Hence, one should always
ensure that ||7]| < €, or [|T]|, < €2, depending on the
norm used to measure visual imperceptibility. The choice
of the threshold depends on the application at hand. For
example, on CIFAR datasets, typical values for €., and e
are respectively, 0.031 and 0.4/0.6/0.8. In the remaining
of this work, we will define our constraint using an £5 norm,
but all our results are valid for an ¢, based constraint.

Adpversarial example attack (distributional). The Adver-
sary chooses, for every x € X, a perturbation that depends
on its true label y. This amounts to construct, for each label
y € Y, ameasurable function ¢,, such that ¢, (x) is the per-
turbation associated with the labeled example (x, y). This
function naturally induces a probability distribution over
adversarial examples, which is simply the push-forward
measure ¢, #i,. The goal of the Adversary is thus to find
¢ = (¢1,¢1) € (Fue,)? that maximizes the adversarial
risk Raav(h, ¢) defined as follows:

Radv(h7 (b) = Y]]EV |:X~¢Y##Y

11 {h(X) #Y}}]. @

Where for any ez € (0,1), Fy|e, is the set of functions that
imperceptibly modifies a distribution:

Fapes = {w & F [essup [0(2) — ol < } .
xe

Adpversarial defense, a two-player zero-sum game. With
the setting defined above, the adversarial examples problem
can be seen as a two-player zero-sum game, where the
Defender tries to find the best possible hypothesis h, while
a strong Adversary is manipulating the dataset distribution:

Radv(h7 d)) (3)

gnf sup
€EH ¢E(]:)(‘52 )2

This means that the Defender tries to design the classifier
with the best performance under attack, whereas the Adver-
sary will each time design the optimal attack on this specific
classifier. In the game theoretical terminology, the choice of
a classifier & (resp. an attack ¢) for the Defender (resp. the
Adversary) is called a strategy. It is crucial to note that the
sup-inf and inf-sup problems do not necessarily coincide.
In this paper, we mainly focus on the Defender’s point of
view which corresponds to the inf-sup problem. We will be

interested in understanding the behaviour of players in this
game, i.e. the best responses they have to a given strategy,
and whether some equilibria may arise. This motivates the
following definitions.

Definition 1 (Best Response). Let h € H, and ¢ €

(F. X|€2)2. A best response from the Defender to ¢ is a clas-

sifier h* € H such that Raav(h*, @) = hmlﬁ Radv(h, P).
€

Similarly, a best response from the Adversary to h is

an attack ¢* € (]—'X|Q)2 such that Ragv(h,¢*) =

max  Raav(h, @).
¢€ (]:XI62)2

In the remaining, we denote B9R(h) the set of all best re-
sponses of the Adversary to a classifier h. Similarly BR(¢)
denotes the set of best responses to an attack ¢.

Definition 2 (Pure Nash Equilibrium). In the zero-sum
game (Eq. 3), a Pure Nash Equilibrium is a couple of strate-

gies (h, ) € H x (]—"X|62)2 such that

h € BR(¢), and,
{ ¢ € BR(A).

When it exists, a Pure Nash Equilibrium is a state of the
game in which no player has any incentive to modify its
strategy. In our setting, this simultaneously means that no
attack could better fool the current classifier, and that the
classifier is optimal for the current attack.

Remark. All the definitions in this section assume a de-
terministic regime, i.e. that neither the Defender nor the
Adversary use randomization, hence the notion of Pure
Nash Equilibrium in the game theory terminology. The
randomized regime will be studied in Section 5.

3.2. Trivial solution and Regularized Adversary

Trivial Nash equilibrium. Our current definition of the
problem implies that the Adversary has perfect information
on the dataset distribution and the classifier. It also has
unlimited computational power and no constraint on the
attack except on the size of the perturbation. Going back to
the example of the autonomous car, this would mean that the
Adversary can modify every single image that the camera
may receive during any trip, which is highly unrealistic. The
Adversary has no downside to attacking, even when the
attack is unnecessary, e.g. if the attack cannot work or if the
point is already misclassified.

This type of behavior for the Adversary can lead to the
existence of a pathological (and trivial) Nash Equilibrium
as demonstrated in Figure 1 for the uni-dimensional set-
ting with Gaussian distributions. The unbounded Adversary
moves every point toward the decision boundary (each time
maximizing the perturbation budget), and the Defender can-
not do anything to mitigate the damage. In this case the
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decision boundary for the Optimal Bayes Classifier remains
unchanged, even though both curves have been moved to-
ward the center, hence a trivial equilibrium. In the remaining
of this work, we show that such an equilibrium does not
exist as soon as there is a small restraint on the Adversary’s
strength, i.e. as soon as it is not perfectly indifferent to
produce unnecessary perturbations.

Regularized Adversary. To mitigate the Adversary
strength, we introduce a penalization term:

inf  sup  [Raav(h, @) —AQ(P)]. (4
hEthE(}—X\Q)z d o
Radv(h’ ¢)

The penalty function {2 represents the limitations on the Ad-
versary’s budget, be it because of computational resources
or to avoid being detected. A € (0, 1) is some regularization
weight. In this paper, we study two types of penalties: the
mass penalty Quass, and the norm penalty Quorm.

From a computer-security point of view, the first limitation
that comes to mind is to limit the number of queries the
Adversary can send to the classifier. In our distributional
setting, this boils down to penalizing the mass of points that
the function ¢ moves. Hence we define the mass penalty as:

Qmass(¢) = Y]EV |:XLEHY

mw¢waﬂ.w>

The mass penalty discourages the Adversary from attacking
too many points by penalizing the overall mass of trans-
ported points. The second limitation we consider penalizes
the expected norm under ¢:

Yov | Xvpy

Onrn(@) = B | B IX = (O] ©)

This regularization is very common in both the optimization
and adversarial example communities. In particular, it is
used by Carlini & Wagner (Carlini & Wagner, 2017) to com-
pute the eponymous attack'. In the following, we denote
BRQ,.. (Tesp. BRg, .. ) the best responses for the Adver-
sary w.r.t the mass (resp. norm) penalty. Section 4 shows
that whatever penalty the Adversary has, no Pure Nash Equi-
librium exists. We characterize the best responses for each
player, and show that they can never satisfy Definition 2.

norm

4. Deterministic regime

Notations. Let h € H, we denote P, =
{zx € X| h(x) =1}, and Ny, := {x € X | h(z) = -1} re-
spectively the set of positive and negative outputs of h. We

'Qnorm is not limited to £ norm. The results we present hold

as long as the norm used to compare X and ¢y (X ) comes from a
scalar product on X.

also denote the set of attackable points from the positive
outputs P, (0) := {x € P, | 3z € Np and ||z — z||2 < 0},
and N, () likewise.

Adversary’s best response. Let us first present the best
responses of the Adversary under respectively the mass
penalty and the norm penalty. Both best responses share a
fundamental behavior: the optimal attack will only change
points that are close enough to the decision boundary. This
means that, when the Adversary has no chance of making
the classifier change its decision about a given point, it will
not attack it. However, for the norm penalty all attacked
points are projected on the decision boundary, whereas with
the mass penalty the attack moves the points across the
border.

Lemma 1. Let h € H and ¢ € BRq,,, (h)
following assertion holds:

{ ¢1(z) € (Py)®
d1(x) ==

Where (Ph)c, the complement of Py, in X. ¢_1 is character-
ized symmetrically.

Lemma 2. Let h € H and ¢ € BRq,,, (h).
following assertion holds:

b1 (x) = { w(xz) ifx € Pp(ea)

T otherwise.

Then the

lf.%‘ € Ph(EQ)
otherwise.

Then the

Where 7 is the orthogonal projection on (Ph)c. ¢.1 is char-
acterized symmetrically.

These best responses are illustrated in Figure 1 with two uni-
dimensional Gaussian distributions. For the mass penalty,
1 is set to 0 in Py (e2), and this mass is transported into
Np(e2). The symmetric holds for ;. After attack, we now
have 11 (Pr(e2)) = 0, so a small value of .1 in Py (e3)
suffices to make it dominant, and that zone will now be
classified -1 by the Optimal Bayes Classifier. For the norm
penalty, the part of u4 that was in P (e2) is transported on
a Dirac distribution at the decision boundary. Similarly to
the mass penalty, the best response now predicts -1 for the
zone P, (e2).

Remark. In practice, it might be computationally hard to
generate the exact best response for the norm penalty, i.e.
the projection on the decision boundary. That will happen
for example if this boundary is very complex (e.g. highly
non-smooth), or when X" is in a high dimensional space.
To keep the attack tractable, the Adversary will have to
compute an approximated best response by allowing the
projection to reach the point within a small ball around the
boundary. This means that the best responses of the norm
penalty and the mass penalty problems will often match.

Defender’s best response. At a first glance, one would
suspect that the best response for the Defender ought to be
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Figure 1. Representation of the p.1 (blue dotted line) and 1 (red plain line) distributions, without attack (left) and with three different
attacks: no penalty (second drawing), with mass penalty (third) and with norm penalty (fourth). On all figures blue area on the left of the

axis is Pp(e2) and red area on the right is Ny (e2).

the Optimal Bayes Classifier for the transported distribution.
However, it is only well defined if the conditional distribu-
tions admit a probability density function. This might not
always hold here for the transported distribution. Neverthe-
less, we show that there is a property, shared by the Optimal
Bayes Classifier when defined, that always holds for the
Defender’s best response.

Lemma 3. Let us consider ¢ € (]:X‘EQ)Q. If we take h €
BR(¢), then fory = 1 (resp. y = -1), and forany B C P,
(resp. B C Npy) one has

P(Y = y|X € B) > P(Y = —y|X € B)
withY ~vandforally € Y, X|(Y =y) ~ ¢y#iy.

In particular, when ¢1#pu, and ¢.#p., admit proba-
bility density functions, Lemma 3 simply means that
h is the Optimal Bayes Classifier for the distribution
(v, p1#-p1, b1 #-11-1)>. We can now state our main theo-
rem, as well as two of its important consequences.

Theorem 1 (Non-existence of a pure Nash equilibrium).
In the zero-sum game (Eq. 4) with A € (0, 1) and penalty
Q € {Qnass, Qnorm }» there is no Pure Nash Equilibrium.

Consequence 1. (No free lunch for transferable attacks)
To understand this statement, remark that, thanks to weak
duality, the following inequality always holds:

. Q .
sup  inf R, (h,¢) < inf  sup
¢€(]:X|62)2 ner nen ¢€(}-X|62)

On the left side problem (sup-inf), the Adversary looks for
the best strategy ¢ against any unknown classifier. This
is tightly related to the notion of transferable attacks (see
e.g. (Tramer et al., 2017)), which refers to attacks success-
ful against a wide range of classifiers. On the right side
(our) problem (inf-sup), the Defender tries to find the best
classifier under any possible attack, whereas the Adversary
plays in second and specifically attacks this classifier. As a

2We prove this result in the supplementary material.

) 7-\)‘gdv (ha ¢)

consequence of Theorem 1, the inequality is always strict:

sup  inf R (h,¢) < inf  sup R (h, ).
pe(Fupey)? M "R pe(Fuyey)?

This means that both problems are not equivalent. In par-
ticular, an attack designed to succeed against any classifier
(i.e. a transferable attack) will not be as good as an attack
tailored for a given classifier. Hence she has to trade-off
between effectiveness and transferability of the attack.

Consequence 2. (No deterministic defense may be proof
against every attack) Let us consider the state-of-the-art
defense which is Adversarial Training (Goodfellow et al.,
2015; Madry et al., 2018). The idea is to compute an effi-
cient attack ¢, and train the classifier on created adversarial
examples, in order to move the decision boundary and make
the classifier more robust to new perturbations by ¢.

To be fully efficient, this method requires that ¢ remains
an optimal attack on h even after training. Our theorem
shows that it is never the case: after training our classifier
h to become (h') robust against ¢, there will always be a
different optimal attack ¢’ that is efficient against h’. Hence
Adversarial Training will never achieve a perfect defense.

5. Randomization matters

As we showed that there is no Pure Nash Equilibrium, no
deterministic classifier may be proof against every attack.
We would therefore need to allow for a wider class of strate-
gies. A natural extension of the game would thus be to allow
randomization for both players, who would now choose a
distribution over pure strategies, leading to this game:

inf sup E [Rgdv(ha )] - @
TP e (Faren)?) bt

Without making further assumptions on this game (e.g. com-
pactness), we cannot apply known results from game theory
(e.g. Sion theorem) to prove the existence of an equilibrium.
These assumptions would however make the problem loose
much generality, and do not hold here.
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Randomization matters. Even without knowing if an equi-
librium exists in the randomized setting, we can prove that
randomization matters. More precisely we show that any
deterministic classifier can be outperformed by a random-
ized one in terms of the worst case adversarial risk. To do
so we simplify Equation 7 in two ways:

1. We do not consider the Adversary to be randomized, i.e.
we restrict the search space of the Adversary to (Fx)?
instead of P ((Fx)?). This condition corresponds to
the current state-of-the-art in the domain: to the best
of our knowledge, no efficient randomized adversarial
example attack has been designed (and so is used) yet.

2. We only consider a subclass of randomized classifiers,
called mixtures, which are discrete probability mea-
sures on a finite set of classifiers. We show that this
kind of randomization is enough to strictly outperform
any deterministic classifier. We will discuss later the
use of more general randomization (such as noise in-
jection) for the Defender. Let us now define a mixture
of classifiers.

Definition 3 (Mixture of classifier). Let n € N, h =
(h1y.eshpn) € H™, and q € P ({1,...,n}). A mixed classi-
fier of h by q is a mapping m;} from X to P (Y) such that
forall x € X, mj}(x) is the discrete probability distribution
that is defined for all y € Y as follows:

mp(@)(y) = E [1{hi(z) = y}].

We call such a mixture a mixed strategy of the Defender.
Given some = € X, this amounts to picking a classifier h;
from h at random following the distribution q, and use it to
output the predicted class for x, i.e. h;(x). Note that a mixed
strategy for the Defender is a non deterministic algorithm,
since it depends on the sampling one makes on q. Hence,
even if the attacks are defined in the same way as before, the
Adversary now needs to maximize a new objective function
which is the expectation of the adversarial risk under the
distribution my.. It writes as follows:

E
X~y #py

~AQ(¢).
®)

We also write R?dv to mean the left part of Equation (8),
when it is clear from context that the Defender uses a mixed
classifier. Using this new set of strategies for the Defender,
we can study whether mixed classifiers outperform deter-
ministic ones, and how to efficiently design them.

E, N taad

Mixed strategy. We demonstrate that the efficiency of any
deterministic defense can be improved using a simple mixed

strategy. This method presents similarities with the notions
of fictitious play (Brown, 1951) in game theory, and boost-
ing in machine learning (Freund & Schapire, 1995). Given
a deterministic classifier 1, we combine it (via randomiza-
tion) with the best response ho to its optimal attack.

The rational behind this idea is that, by construction, effi-
cient attacks on one of these two classifiers will not work on
the other. Mixing h; with hs has two opposite consequences
on the adversarial risk. On one hand, where we only had
to defend against attack on A1, we are now also vulnerable
to attacks on ho, so the total set of possible attacks is now
bigger. On the other hand, each attack will only work part of
the time, depending on the probability distribution q. If we
can calibrate the weights so that attacks on important zones
have a low probability of succeeding, then the average risk
under attack on the mixture will be low.

Toy example where a mixture outperforms AT. To better
understand how randomization can work, let us look at a sim-
ple toy example. Figure 2 illustrates a binary classification
setting between two set of points. Attacking the Optimal
Bayes Classifier (bold straight line) consists in moving all
the points that lie between the dotted lines to the opposite
side of the decision boundary (Figure 2, left). The general
tactic to defend against an attack is to change the classifier’s
output for points that are too close to the boundary. This
can be done all the time, as in Adversarial Training (where
we move the decision boundary to incorporate adversarial
examples), or part of the time as in a randomized algorithm
(so that the attack only works with a given probability).

When we use Adversarial Training for the star points (Fig-
ure 2, middle), we change the output on the blue zone, so
that 2 of the star (squared) points cannot be successfully
attacked anymore. But in exchange, the dilation of the new
boundary can now be attacked. For Adversarial Training
to work, we need the number of new potential attacks (i.e.
the points that are circled, 2 crosses in the dilation and 2
stars that are close to the new boundary) to be smaller than
the number of attacks we prevent (the squared points, 2
blue ones that an attack would send in the blue zone, and
3 red points that are far from the new decision boundary).
Here we prevent 5 attacks at the cost of 4 new ones, so the
Adpversarial Training improves the total score from 8 to 7.

Similarly, we observe what happens for the randomized de-
fense (Figure 2, right). We mix the Optimal Bayes Classifier
with the best response to attacking all the points. We get
a classifier that is determinsitic outside the gray area, and
random inside it>. If the first classifier has a weight o = 0.5,
6 of the old attacks now succeed only with probability 0.5

3The grey area should actually be bigger since the best response
to the attack would also change the decision on the upper part
between the OBC and the doted line. We focus on what happens
on the star points for simplicity.
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Figure 2. Illustration of adversarial examples (only on class 1 for more readability) crossing the decision boundary (left), adversarially
trained classifier for the class 1 (middle), and a randomized classifier that defends class 1. Stars are natural examples for class 1, and
crosses are natural examples for class -1. The straight line is the optimal Bayes classifier, and dashed lines delimit the points close enough
to the boundary to be attacked resp. for class 1 and -1. We focus the drawing on the star points. Crosses can be treated symmetrically.

(crosses between the dotted lines), whereas 3 new attacks
are created (stars outside of the gray area) that succeed with
probability 0.5 also. At the end, the average rate of suc-
cessful attacks is 6.5, where adversarial training previously
achieved 7.

More formally, Theorem 2 shows that whatever penalty we
consider, a deterministic classifier can always be outper-
formed by a randomized algorithm. We now can state our
second main result: randomization matters.

Theorem 2. (Randomization matters) Let us consider hy €
HoA € (0,1), Q = Qs & € BRe(hy) and hy €
BR(p). Then for any a € (max(\, 1 — ), 1) and for any
@' € BRq(my) one has

7zf;dv (mgv ¢/) < Rgdv(hh ¢)

Where h = (hy, hs), g = (o, 1 — ), and my} is the mixture
of h by q. A similar result holds when @ = Qo (see
supplementary materials).

Remark Note that depending on the initial hypothesis h;
and the conditional distributions p;1 and u.1, the gap be-
tween R, (m}, ¢')and REY (h1,¢) could vary. Hence,
with additional conditions on k1, p1 and p.1, we could make
the gap appear more explicitly. We keep the formulation
general to emphasize that for any deterministic classifier,
there exists a randomized one that outperforms it in terms

of worst-case adversarial score.

Based on Theorem 2 we devise a new procedure called
Boosted Adversarial Training (BAT) to construct a robust
mixture of two classifiers. It is based on three core princi-
ples: Adversarial Training, Boosting and Randomization.

6. Experiments: How to build the mixture

Simple mixture procedure (BAT). Given a dataset D and
a weight parameter « € [0, 1], we construct hy the first
classifier of the mixture using Adversarial Training* on D.
Then, we train the second classifier A5 on a data set D
that contains adversarial examples against /1 created from
examples of D. At the end we return the mixture constructed
with those two classifiers where the first one has a weight of
1 — « and the second one a weight of «v. The parameter « is
found by conducting a grid-search. In Table 1 we present
results for « = 0.2 under strong state-of-the-art attacks.
The procedure is summarized in Algorithm 1°

Algorithm 1 Boosted Adversarial Training

Input : D the training data set and « the weight parameter.

Create and adversarially train 3 on D
Generate the adversarial data set D against h.
Create and naturally train hs on D

g+ (1 —a,a)

h «+ (hl, h2)

return my

Comparison to fictitious play. Contrary to classical algo-
rithms such as Fictitious play that also generates mixtures
of classifiers, and whose theoretical guarantees rely on the
existence of a Mixed Nash Equilibrium, the performance of
our method is ensured by Theorem 2 to be at least as good
as the classifier it uses as a basis. Moreover, the implemen-
tation of Fictitious Play would be impractical on the high

*We use £oo-PGD with 20 iterations and e, = 0.031 to train
the first classifier and to build D.

SMore algorithmic and implementation details can be found in
the supplementary materials.
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Natural | Adaptive-/,.-PGD Adaptive-/5-C&W
Dataset Method Accuracy | e —0031 | e2=04 =06 e—=08

Natural 0.88 0.00 0.00 0.00 0.00

CIFARIO | AT (Madry et al., 2018) 0.83 0.42 0.60 0.47 0.35
Ours 0.80 0.55 0.60 0.57 0.53

Natural 0.62 0.00 0.00 0.00 0.00

CIFAR100| AT (Madry et al., 2018) 0.58 0.26 0.38 0.29 0.22
Ours 0.56 0.40 0.45 0.41 0.38

Table 1. Evaluation on CIFAR10 and CIFAR100 without data augmentation. Accuracy under attack of a single adversarially trained
classifier (AT) and the mixture formed with our method (Ours). The evaluation is made with Adaptive-/..-PGD and Adaptive-(>-C&W
attacks both computed with 100 iterations. For Adaptive-/..-PGD we use an epsilon equal to 8/255 (=~ 0.031), a step size equal to
2/255 (= 0.008) and we allow random initialization. For Adaptive-/>-C&W we use a learning rate equal to 0.01, 9 binary search steps,
the initial constant to 0.001, we allow the abortion when it has already converged and we give the results for the different values of
rejection threshold ez € {0.4,0.6,0.8}. As for EOT, we don’t need to estimate the expected accuracy of the mixture through Monte
Carlo sampling since we have the exact weight of each classifier of the mixture. Thus we give the exact expected accuracy.

dimensional datasets we consider, due to its computational
Costs.

Evaluating against strong adversarial attacks. When
evaluating a defense against adversarial examples, it is cru-
cial to test the robustness of the method against the best
possible attack. Accordingly, the defense method should be
evaluated against attacks that were specifically tailored to
it (a.k.a. adaptive attacks). In particular, when evaluating
randomized algorithms, one should use Expectation over
Transformation (EOT) to avoid gradient masking as pointed
out by (Athalye et al., 2018) and (Carlini et al., 2019). More
recently, (Tramer et al., 2020) emphasized that one should
also make sure that EOT is computed properly®. Previ-
ous works such as (Dhillon et al., 2018) and (Pinot et al.,
2019) estimate the EOT through a Monte Carlo sampling
which can introduce a bias in the attack if the sample size
is too small. Since we assume perfect information for the
Adversary, it knows the exact distribution of the mixture.
Hence it can directly compute the expectation without using
a sampling method, which avoid any bias. Table 1 eval-
uates our method against strong adaptive attacks namely
Adaptive-/,.-PGD and Adaptive-/5-C&W.

Hard constraint parameter. The typical value of € in the
hard constraint depends on the norm we consider in the
problem setting. In this paper, we use an /5 norm, however,
the constraint parameter for /,,-PGD attack was initially
set to be an /., constraint. In order to compare attacks of
similar strength, we choose different threshold (e5 or €)
values which result in balls of equivalent volumes. For
CIFAR10 an CIFAR100 datasets (Krizhevsky & Hinton,
2009), which are 3 x 32 x 32 dimensional spaces, this

%1n order for the attack to succeed, it it more efficient to com-
pute the expected transformation of the logits instead of taking the
expectation over the loss. More details on this in the supplementary
materials.

gives €5, = 0.03 and e = 0.8 (we also give results for €2
equal to 0.6 and 0.4 as this values are sometimes used in
the literature). Since Adaptive-/5-C&W attack creates an
unbounded perturbation on the examples, we implemented
the constraint from Equation 6 by checking at test time
whether the /5-norm of the perturbation exceeds a certain
threshold e; € {0.4,0.6,0.8}. If it does, the adversarial
example is disregarded, and we keep the natural example
instead.

Experimental results. In Table 1 we compare the accuracy,
on CIFAR10 and CIFAR100, of our method and classical
Adversarial Training under attack with Adaptive-/.,-PGD
and Adaptive-/o-C&W, both run for 100 iterations. We
used 5 times more iterations for the evaluation as we used
during training, and carefully check for convergence. the
rational behind this is that, for a classifier to be fully robust,
its loss of accuracy should be controlled when the attacks
are stronger than the ones it was trained on. For both attacks,
both datasets and all thresholds (i.e. the budget for a pertur-
bation), the accuracy under attack of our mixture is higher
than the single classifier with Adversarial Training. Our
defense is especially more robust than Adversarial Training
when the threshold is high.

Extension to more than two classifiers. In this paper we
focus our experiments on a mixture of two classifiers to
present a proof of concept of Theorem 2. Nevertheless, a
mixture of more than two classifiers can be constructed by
adding at each step ¢ a new classifier trained naturally on
the dataset D that contains adversarial examples against
the mixture at step ¢ — 1. Since D has to be constructed
from a mixture, one would have to use an adaptive attack
as Adaptive-/..-PGD. We refer the reader to the supple-
mentary material for this extended version of the algorithm
and for all the implementation details related to our ex-
periments (architecture of models, optimization settings,
hyper-parameters, etc.).
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7. Discussion & Conclusion

Finally, is there a classifier that ensures optimal robustness
against all adversarial attacks? We gave a negative answer
to this question in the deterministic regime, but part of
the question remains open when considering randomized
algorithms. We demonstrated that randomized defenses are
more efficient than deterministic ones, and devised a simple
method to implement them.

Game theoretical point of view. There remains to study
whether an Equilibrium exists in the Randomized regime.
This question is appealing from a theoretical point of view,
and requires to investigate the space of randomized Adver-
saries P((Fx)?). The characterization of this space is not
straightforward, and would require strong results in the the-
ory of optimal transport. A possible research direction is
to quotient the space (Fx)? so as to simplify the search in
P((Fx)?) and the characterization of the Adversary’s best
responses. The study of this equilibrium is tightly related
to that of the value of the game, which would be interesting
for obtaining min-max bounds on the accuracy under attack,
as well as certificates of robustness for a set of classifiers.

Advocating for more provable defenses. Although the
experimental results show that our mixture of classifiers
outperforms Adversarial Training, our algorithm does not
provide guarantees in terms of certified accuracy. As the
literature on adversarial attacks and defenses demonstrated,
better attacks always exist. This is why, more theoretical
works need to be done to prove the robustness of a mixture
created from this particular algorithm. More generally, our
work advocates for the study of mixtures as a provable de-
fense against adversarial attacks. One could, for example,
build upon the connection between mixtures and noise injec-
tion to investigate a broader range of randomized strategies
for the Defender, and devise certificates accordingly.

Improving Boosted Adversarial Training. From an algo-
rithmic point of view, BAT can be improved in several ways.
For instance, the weights can be learned while choosing
the new classifier for the mixture. This could lead to an
improved accuracy under attack, but would lack some the-
oretical justifications that still need to be set up. Finally,
tighter connections with standard boosting algorithms could
be established to improve the analysis of BAT.
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