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Abstract
We develop exact representations of training two-
layer neural networks with rectified linear units
(ReLUs) in terms of a single convex program with
number of variables polynomial in the number
of training samples and the number of hidden
neurons. Our theory utilizes semi-infinite duality
and minimum norm regularization. We show that
ReLU networks trained with standard weight de-
cay are equivalent to block `1 penalized convex
models. Moreover, we show that certain standard
convolutional linear networks are equivalent semi-
definite programs which can be simplified to `1
regularized linear models in a polynomial sized
discrete Fourier feature space.

1. Introduction
In this paper, we introduce a finite dimensional, polynomial-
size convex program that globally solves the training prob-
lem for two-layer neural networks with rectified linear unit
(ReLU) activation functions. The key to our analysis is a
generic convex duality method we introduce, and is of inde-
pendent interest for other non-convex problems. We further
prove that strong duality holds in a variety of architectures.

1.1. Related work and overview

Convex neural network training was considered in the litera-
ture (Bengio et al., 2006; Bach, 2017). However, convexity
arguments in the existing work are restricted to infinite width
networks, where infinite dimensional optimization problems
need to be solved. In fact, adding even a single neuron to the
model requires the solution of a non-convex problem where
no efficient algorithm is known (Bach, 2017). In this work,
we develop a novel duality theory and introduce polynomial-
time finite dimensional convex programs, which are exact
and computationally tractable.
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Several recent studies considered over-parameterized neural
networks, where the width approaches infinity by leveraging
connections to kernel methods, and showed that randomly
initialized gradient descent can fit all the training samples
(Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019).
However, in this kernel regime, the analysis shows that
almost no hidden neurons move from their initial values
to actively learn useful features (Chizat & Bach, 2018).
Experiments also confirm that the kernel approximation as
the width tends to infinity is unable to fully explain the
success of non-convex neural network models (Arora et al.,
2019). On the contrary, our work precisely characterizes the
mechanism behind extraordinary modeling capabilities of
neural networks for any finite number of hidden neurons.
We prove that networks with ReLU are identical to convex
regularization methods in a finite higher dimensional space.

Consider a two-layer network f : Rd → R with m neurons

f(x) =

m∑
j=1

φ(xTuj)αj , (1)

where uj ∈ Rd and αj ∈ R are the weights for hidden and
output layers, respectively, and φ(t) = (t)+ := max(t, 0)
is the ReLU activation. We extend the definition of scalar
functions to vectors/matrices entry-wise. We use Bp to
denote the unit `p ball in Rd. We denote the set of integers
from 1 to n as [n]. We also use σ to denote singular values.

In order to keep the notation simple and clearly convey the
main idea, we will restrict our attention to two-layer ReLU
networks with scalar output trained with squared loss. All
of our results immediately extend to vector outputs, tensor
inputs, arbitrary convex classification and regression loss
functions, and other network architectures (see Appendix).

Given a data matrix X ∈ Rn×d, a label vector y ∈ Rn, and
a regularization parameter β > 0, consider minimizing the
squared loss objective and squared `2-norm of all parameters

p∗ := min
{αj ,uj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

(2)

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) .



Neural Networks are Convex Regularizers

(a) Ellipsoidal set:
{Xu : u ∈ Rd, ‖u‖2 ≤ 1}

(b) Rectified ellipsoidal setQX :{(
Xu

)
+
: u ∈ Rd, ‖u‖2 ≤ 1

} (c) Polar set (QX ∪ −QX)◦:
{v : | vTw| ≤ 1 , ∀w ∈ QX}

Figure 1: Sets involved in the construction of the Neural Gauge. Ellipsoidal set, rectified ellipsoid QX and the polar of
QX ∪ −QX .

The above objective is highly non-convex due to non-linear
ReLU activations and product between hidden and outer
layer weights. The best known algorithm for globally mini-
mizing the above objective is a brute-force search over all
possible piece-wise linear regions of ReLU activations of m
neurons and output layer sign patterns (Arora et al., 2018).
This algorithm has complexity O(2mndm) (see Theorem
4.1 in (Arora et al., 2018)). In fact, known algorithms for
approximately learning m hidden neuron ReLU networks
have complexity O(2

√
m) (see Theorem 5 of (Goel et al.,

2017)) due to similar combinatorial explosion with m.

2. Convex Duality for Two-layer Networks
Now we introduce our main technical tool for deriving con-
vex representations of the non-convex objective function
(2). We start with the `1 penalized representation, which is
equivalent to (2) (see Appendix A.3),

p∗ = min
‖uj‖2≤1
∀j∈[m]

min
{αj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∑
j=1

|αj | .

(3)

Replacing the inner minimization problem with its convex
dual, we obtain (see Appendix A.4)

p∗ = min
‖uj‖2≤1
∀j∈[m]

max
v∈Rn s.t.

|vT (Xuj)+|≤β, ∀j∈[m]

−1

2
‖y − v‖22 +

1

2
‖y‖22 .

Interchanging the order of min and max, we obtain the
lower-bound d∗ via weak duality

p∗ ≥ d∗ := max
v∈Rn s.t.

|vT (Xu)+|≤β ∀u∈B2

−1

2
‖y − v‖22 +

1

2
‖y‖22 . (4)

The above problem is a convex semi-infinite optimization
problem with n variables and infinitely many constraints.

We will show that strong duality holds, i.e., p∗ = d∗, as
long as the number of hidden neurons m satisfies m ≥ m∗
for some m∗ ∈ N, 1 ≤ m∗ ≤ n, which will be defined
in the sequel. As it will be shown, m∗ can be smaller
than n. The dual of the dual program (4) can be derived
using standard semi-infinite programming theory (Goberna
& López-Cerdá, 1998), and corresponds to the bi-dual of
the non-convex problem (2).

Now we briefly introduce basic properties of signed mea-
sures that are necessary to state the dual of (4) and refer
the reader to (Rosset et al., 2007; Bach, 2017) for further
details. Consider an arbitrary measurable input space X
with a set of continuous basis functions φu : X → R
parameterized by u ∈ B2. We then consider real-valued
Radon measures equipped with the uniform norm (Rudin,
1964). For a signed Radon measure µ, we can define an
infinite width neural network output for the input x ∈ X
as f(x) =

∫
u∈B2

φu(x)dµ(u) . The total variation norm
of the signed measure µ is defined as the supremum of∫
u∈B2

q(u)dµ(u) over all continuous functions q(u) that
satisfy |q(u)| ≤ 1. Consider the ReLU basis functions
φu(x) =

(
xTu

)
+

. We may express networks with finitely
many neurons as in (1) by

f(x) =

m∑
j=1

φuj (x)αj ,

which corresponds to µ =
∑m
j=1 αjδ(u−uj) where δ is the

Dirac delta measure. And the total variation norm ‖µ‖TV
of µ reduces to the `1 norm ‖α‖1.

We state the dual of (4) (see Section 2 of (Shapiro, 2009) and
Section 8.6 of (Goberna & López-Cerdá, 1998)) as follows

d∗ ≤ p∗∞ = min
µ

1

2

∥∥∥∥∫
u∈B2

(
Xu
)
+
dµ(u)− y

∥∥∥∥2
2

+ β ‖µ‖TV .

(5)
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Furthermore, an application of Caratheodory’s theorem
shows that the infinite dimensional bi-dual (5) always has
a solution that is supported with m∗ Dirac deltas, where
m∗ ≤ n+ 1 (Rosset et al., 2007). Therefore we have

p∞∗ = min
‖uj‖2≤1
{αj ,uj}m

∗
j=1

1

2

∥∥∥ m∗∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∗∑
j=1

|αj | ,

= p∗ ,

as long as m ≥ m∗. We show that strong duality holds,
i.e., d∗ = p∗ in Appendix A.8 and A.11. In the sequel, we
illustrate howm∗ can be determined via a finite-dimensional
parameterization of (4) and its dual.

2.1. A geometric insight: Neural Gauge Function

An interesting geometric insight can be provided in the
weakly regularized case where β → 0. In this case, mini-
mizers of (3) and hence (2) approach minimum norm inter-
polation p∗β→0 := limβ→0 β

−1p∗ given by

p∗β→0 = min
{uj ,αj}mj=1

m∑
j=1

|αj | (6)

s.t.
m∑
j=1

(Xuj)+αj = y, ‖uj‖2 ≤ 1∀j.

We show that p∗β→0 is the gauge function of the convex hull
of QX ∪ −QX where QX := {(Xu)+ : u ∈ B2} (see
Appendix A.10), i.e.,

p∗β→0 = inf
t:t≥0

t s.t. y ∈ tConv{QX ∪ −QX} ,

which we call Neural Gauge due to the connection to the
minimum norm interpolation problem. Using classical polar
gauge duality (see e.g. (Rockafellar, 1970), it holds that

p∗β→0 = max yT z s.t. z ∈ (QX ∪ −QX)◦ , (7)

where (QX ∪ −QX)◦ is the polar of the set QX ∪ −QX .
Therefore, evaluating the support function of this polar set
is equivalent to solving the neural gauge problem, i.e., min-
imum norm interpolation p∗β→0. These sets are illustrated
in Figure 1. Note that the polar set (QX ∪ −QX)◦ is al-
ways convex (see Figure 1c), which also appears in the dual
problem (4) as a constraint. In particular, limβ→0 β

−1d∗ is
equal to the support function. Our finite dimensional convex
program leverages the convexity and an efficient description
of this set as we discuss next.

3. An Exact Finite Dimensional Convex
Program

Consider diagonal matrices Diag(1[Xu ≥ 0]) where u ∈
Rd is arbitrary and 1[Xu ≥ 0] ∈ {0, 1}n is an indicator

vector with Boolean elements [1[xT1 u ≥ 0], . . . , 1[xTnu ≥
0]]. Let us enumerate all such distinct diagonal matrices that
can be obtained for all possible u ∈ Rd, and denote them
as D1, ..., DP . P is the number of regions in a partition
of Rd by hyperplanes passing through the origin, and are
perpendicular to the rows of X . It is well known that

P ≤ 2

r−1∑
k=0

(
n− 1

k

)
≤ 2r

(e(n− 1)

r

)r
for r ≤ n, where r := rank(X) (Ojha, 2000; Stanley et al.,
2004; Winder, 1966; Cover, 1965) (see Appendix A.2).

Consider the finite dimensional convex problem

min
{vi,wi}Pi=1

1

2

∥∥∥ P∑
i=1

DiX(vi − wi)− y
∥∥∥2
2

+ β

P∑
i=1

(‖vi‖2 + ‖wi‖2)

s.t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i. (8)

Theorem 1. The convex program (8) and the non-convex
problem (2) where m ≥ m∗ have identical optimal values1.
Moreover, an optimal solution to (2) with m∗ neurons can
be constructed from an optimal solution to (8) as follows

(u∗j1i , α
∗
j1i) =

(
v∗i√
‖v∗i ‖2

,
√
‖v∗i ‖2

)
if v∗i 6= 0

(u∗j2i , α
∗
j2i) =

(
w∗i√
‖w∗i ‖2

,−
√
‖w∗i ‖2

)
if w∗i 6= 0 ,

where {v∗i , w∗i }Pi=1 are the optimal solutions to (8). Thus,
we have m∗ =

∑P
i:v∗i 6=0 1 +

∑P
i:w∗i 6=0 1.

Remark 3.1. Note that optimal solutions of (8) may not be
unique. As an example, merging positively colinear neurons
does not change the objective value. Particularly, if there
exist positively colinear solutions such as v∗i1 = c1vi and
v∗i2 = c2vi, where vi ∈ Rd and c1, c2 ∈ R+, then merging
these solutions as v∗i = (c1+c2)vi yields the same objective.

Remark 3.2. Theorem 1 shows that two-layer ReLU net-
works with m hidden neurons can be globally optimized
via the second order cone program (8) with 2dP variables

and 2nP linear inequalities where P = 2r
(
e(n−1)

r

)r
, and

r = rank(X). The computational complexity is at most

O
(
d3r3

(
n
r

)3r)
using standard interior-point solvers. For

fixed rank r (or dimension d), the complexity is polynomial
in n and m, which is an exponential improvement over the

1m∗ is defined as the number of Dirac deltas in the optimal
solution to (5). If the optimum is not unique, we may pick the
minimum cardinality solution.
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state of the art (Arora et al., 2018; Bienstock et al., 2018).
Note that d is a small number that corresponds to the filter
size in CNNs as we illustrate in the next section. However,
for fixed n and rank(X) = d, the complexity is exponential
in d, which can not be improved unless P = NP even for
m = 2 (Boob et al., 2018). It is interesting to note that
the proposed convex program trains ReLU neural networks
optimally, unlike local search heuristics such as backprop-
agation, which may converge to suboptimal solutions (see
Section 6 for numerical evidence). To the best of our knowl-
edge, our results provide the first polynomial-time algorithm
to train non-trivial neural networks with global optimality
guarantees. We also remark that further theoretical insight
as well as faster numerical solvers can be developed due
to the similarity to group Lasso (Yuan & Lin, 2006) and
related structured regularization methods. Theorem 1 im-
plies that ReLU networks are equivalent to sparse mixtures
of linear models, where sparsity is enforced by the group
`1−`2 convex regularizer. More specifically, the non-convex
neural network approach implicitly maps the data to the
higher dimensional feature matrix [D1X, ...,DPX], and
consequently seeks a group sparse model.

Remark 3.3. We note that the convex program (8) can
be approximated by sampling a set of diagonal matri-
ces D1, ..., DP̃ . For example, one can generate u ∼
N(0, Id), or from any distribution P̃ times, and let Di =
Diag(1[Xui ≥ 0]), ∀i ∈ [P̃ ] and solve the reduced convex
problem, where remaining variables are set to zero. This is
essentially a type of coordinate descent applied to (8). In
Section 6, we show that this approximation in fact works
extremely well, often better than backpropagation. In fact,
backpropagation can be viewed as a heuristic method to
solve the convex objective (8). The global optima of this
convex program (8) are among the fixed points of backprop-
agation, i.e., stationary points of (2). Moreover, we can
bound the suboptimality of any feasible solution, e.g., from
backpropagation, in the non-convex cost (2) using the dual
of (8).

The proof of Theorem 1 can be found in Section 5.

4. Convolutional Neural Networks
Here, we introduce extensions of our approach to con-
volutional neural networks (CNNs). Two-layer convo-
lutional networks with m hidden neurons (filters) of
dimension d and fully connected output layer weights
can be described by patch matrices Xk ∈ Rn×d, k =
1, ...,K. This formulation also includes image, or
tensor inputs. For flattened activations, we have
f(X1, ..., XK) =

∑m
j=1

∑K
k=1 φ(Xkuj)αjk as the net-

work output. We first present a simpler case for vector
regression, fk(X1, ..., XK) =

∑m
j=1 φ(Xkuj)αj which is

separable over the patch index k.

4.1. Separable ReLU convolutional networks

Consider the training problem

min
{αj ,uj}mj=1

1

2

K∑
k=1

∥∥∥ m∑
j=1

(Xkuj)+αj − yk
∥∥∥2
2

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) ,

where yk’s are labels. We first note that this problem is
separable over the patch indices k, therefore, do not ex-
actly correspond to classical convolutional network archi-
tectures which are not separable. The above problem can
be reduced to the fully connected case (2) by defining
X ′ = [XT

1 , ..., X
T
K ]T and y′ = [yT1 , ..., y

T
K ]T . Therefore,

the convex program (8) solves the above problem exactly
in O

(
d3r3

(
n
r

)3r)
complexity, where r is the number of

variables in a single filter. Note that typical CNNs use m
filters of size 3× 3 (r=9) in the first layer (He et al., 2016).

4.2. Linear convolutional network training as a
Semi-definite Program (SDP)

We now start with the simple case of linear activations
φ(t) = t, where the training problem becomes

min
{uj ,αj}mj=1

1

2

∥∥∥ K∑
k=1

m∑
j=1

Xkujαjk − y
∥∥∥2
2

(9)

+
β

2

m∑
j=1

(
‖uj‖22 + ‖αj‖22

)
.

The corresponding dual problem is given by

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. max

‖u‖2≤1

∑
k

(
vTXku

)2 ≤ 1.

(10)

Similar arguments to those used in the proof of Theorem 1,
strong duality holds. Further, the maximizers of the inner
problem are the maximal eigenvectors of

∑
kX

T
k vv

TXk,
which are optimal neurons (filters). We can express (10) as
the SDP

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22

s.t. σmax

(
[XT

1 v ...X
T
Kv]
)
≤ β. (11)

The dual of the above SDP is a nuclear norm penalized
convex optimization problem (see Appendix A.5)

min
zk∈Rd,∀k

1

2

∥∥∥ K∑
k=1

Xkzk − y
∥∥∥2
2

+ β
∥∥∥[z1, . . . , zK ]

∥∥∥
∗
, (12)

where
∥∥∥[z1, ..., zK ]

∥∥∥
∗

= ‖Z‖∗ :=
∑
i σi(Z) is the `1 norm

of singular values, i.e., nuclear norm (Recht et al., 2010).
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4.3. Linear circular convolutional networks

Now, if we assume that the patches are padded with enough
zeros and extracted with stride one, then the circular version
of (9) can be written as

min
{uj ,αj}mj=1

1

2

∥∥∥ m∑
j=1

XUjαj − y
∥∥∥2
2

+
β

2

m∑
j=1

(
‖uj‖22 + ‖αj‖22

)
,

(13)

where Uj ∈ Rd×d is a circulant matrix generated by a
circular shift modulo d using the elements uj ∈ Rh. Then,
the SDP (11) reduces to (see Appendix A.6)

min
z∈Cd

1

2

∥∥∥X̃z − y∥∥∥2
2

+ β‖z‖1, (14)

where X̃ = XF , and F ∈ Cd×d is the Discrete Fourier
Transform (DFT) matrix.

5. Proof of the Main Result (Theorem 1)
We now prove the main result two-layer ReLU networks
with squared loss2. We start with the dual representation

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 (15)

s.t. max
u: ‖u‖2≤1

|vT (Xu)+| ≤ β .

Note that the constraint (15) can be represented as{
v : max
‖u‖2≤1

vT (Xu)+ ≤ β
}
∩
{
v : max
‖u‖2≤1

−vT (Xu)+ ≤ β
}
.

We now focus on a single-sided dual constraint

max
u: ‖u‖2≤1

vT (Xu)+ ≤ β, (16)

by considering hyperplane arrangements and a convex dual-
ity argument over each partition. We first partition Rd into
the following subsets

PS := {u : xTi u ≥ 0,∀i ∈ S, xTj u ≤ 0,∀j ∈ Sc}.

Let HX be the set of all hyperplane arrangement patterns
for the matrix X , defined as the following set

HX =
⋃{
{sign(Xu)} : u ∈ Rd

}
.

It is obvious that the set H is bounded, i.e., ∃NH ∈ N <
∞ such that |H| ≤ NH . We next define an alternative
representation of the sign patterns in HX , which is the
collection of sets that correspond to positive signs for each
element inH. More precisely, let

SX :=
{
{∪hi=1{i}} : h ∈ HX

}
.

2See Appendix A.13 for generic convex loss functions.

We now express the maximization in the dual constraint in
(16) over all possible hyperplane arrangement patterns as

max
u: ‖u‖2≤1

vT (Xu)+

= max
u: ‖u‖2≤1

vTDiag(Xu ≥ 0)Xu

= max
S⊆[n]
S∈SX

max
u: ‖u‖2≤1
xT
i u≥0 ∀i∈S
xT
j u≤0 ∀j∈S

c

vTDiag(Xu ≥ 0)Xu

= max
S⊆[n]
S∈SX

max
u: ‖u‖2≤1
u∈PS

vTDiag(Xu ≥ 0)Xu

Let us define the diagonal matrix D(S) ∈ Rn×n which is a
function of the subset S ⊆ [n].

D(S)ii :=

{
1 if i ∈ S
0 otherwise.

Note that D(Sc) = In−D(S), since Sc is the complement
of the set S. With this notation, we can represent PS as

PS = {u : D(S)Xu ≥ 0, (In −D(S))u ≤ 0} ,

and the maximization in the dual constraint as

max
u: ‖u‖2≤1

vT (Xu)+ = max
S⊆[n]
S∈SX

max
u: ‖u‖2≤1
u∈PS

vTD(S)Xu .

Enumerating all hyperplane arrangements HX , or equiva-
lently SX , we index them in an arbitrary order via i ∈ [|SX |].
We denote M = |SX |. Hence, S1, ..., SM ∈ SX is the list
of all M elements of SX . Next we use the strong duality
result from Lemma 4 for the inner maximization problem.
The dual constraint (16) can be represented as

(16) ⇐⇒ ∀i ∈ [M ], it holds that

min
α,β∈Rn

α,β≥0

‖XTD(Si)
(
v + α+ β

)
−XTβ‖2 ≤ β

⇐⇒ ∀i ∈ [M ], ∃αi, βi ∈ Rn s.t.
αi, βi ≥ 0

‖XTD(Si)
(
v + αi + βi

)
−XTβi‖2 ≤ β .

Therefore, recalling the two-sided constraint in (15), we can
represent the dual optimization problem in (15) as a finite
dimensional convex optimization problem with variables
v ∈ Rn, αi, βi, α′i, β′i ∈ Rn,∀i ∈ [M ], and 2M second
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order cone constraints as follows

max
v∈Rn

αi,βi∈Rn

αi,βi≥0, ∀i∈[M ]
α′i,β

′
i∈R

n

α′i,β
′
i≥0, ∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

s.t. ‖XTD(S1)
(
v + α1 + β1

)
−XTβ1‖2 ≤ β

...

‖XTD(SM )
(
v + αM + βM

)
−XTβM‖2 ≤ β

‖XTD(S1)
(
− v + α′1 + β′1

)
−XTβ′1‖2 ≤ β

...

‖XTD(SM )
(
− v + α′M + β′M

)
−XTβ′M‖2 ≤ β.

The above problem can be represented as a standard finite
dimensional second order cone program. Note that the par-
ticular choice of parameters v = αi = βi = α′i = β′i = 0,
∀i ∈ [M ], are strictly feasible in the above constraints
as long as β > 0. Therefore Slater’s condition and conse-
quently strong duality holds (Boyd & Vandenberghe, 2004a).
The dual problem (15) can be written as

min
λ,λ′∈RM

λ,λ′≥0

max
v∈Rn

αi,βi∈Rn

αi,βi≥0, ∀i∈[M ]
α′i,β

′
i∈R

n

α′i,β
′
i≥0, ∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

+

M∑
i=1

λi
(
β − ‖XTD(Si)

(
v + αi + βi

)
−XTβi‖2

)
+

M∑
i=1

λ′i
(
β − ‖XTD(Si)

(
− v + α′i + β′i

)
−XTβ′i‖2

)
.

Next we introduce variables r1, . . . , rM , r′1, . . . , r
′
M ∈ Rd

and represent the dual problem (15) as

min
λ,λ′∈RM

λ,λ′≥0

max
v∈Rn

αi,βi∈Rn

αi,βi≥0, ∀i
α′i,β

′
i∈R

n

α′i,β
′
i≥0, ∀i

min
ri∈Rd, ‖ri‖2≤1
r′i∈R

d, ‖r′i‖2≤1
∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

+

M∑
i=1

λi
(
β + rTi X

TD(Si)
(
v + αi + βi

)
− rTi XTβi

)
+

M∑
i=1

λ′i
(
β + r′i

T
XTD(Si)

(
− v + α′i + β′i

)
− r′i

T
XTβ′i

)
.

We note that the objective is concave in v, αi, βi and con-
vex in ri, r

′
i, ∀i ∈ [M ]. Moreover the constraint sets

‖ri‖2 ≤ 1, ‖r′i‖2 ≤ 1, ∀i are convex and compact. In-
voking Sion’s minimax theorem (Sion, 1958) for the inner
max min problem, we may express the strong dual of the
problem (15) as

min
λ,λ′∈RM

λ,λ′≥0

min
ri∈Rd, ‖ri‖2≤1
r′i∈R

d, ‖r′i‖2≤1

max
v∈Rn

αi,βi∈Rn

αi,βi≥0, ∀i
α′i,β

′
i∈R

n

α′i,β
′
i≥0, ∀i

−1

2
‖v − y‖22 +

1

2
‖y‖22

+

M∑
i=1

λi
(
β + rTi X

TD(Si)
(
v + αi + βi

)
− rTi XTβi

)
+

M∑
i=1

λ′i
(
β + r′i

T
XTD(Si)

(
− v + α′i + β′i

)
− r′i

T
XTβ′i

)
.

Computing the maximum with respect to v, αi, βi, α′i, β
′
i,

∀i ∈ [M ], analytically we obtain the strong dual to (15) as

min
λ,λ′∈RM

λ,λ′≥0

min
ri∈Rd, ‖ri‖2≤1
r′i∈R

d, ‖r′i‖2≤1
(2D(Si)−In)Xri≥0
(2D(Si)−In)Xr′i≥0

1

2

∥∥∥ M∑
i=1

λiD(Si)Xr
′
i

− λ′iD(Si)Xri − y
∥∥∥2
2

+ β

M∑
i=1

(λi + λ′i).

Now we apply a change of variables and define wi = λiri
and w′i = λ′ir

′
i, ∀i ∈ [M ]. Note that we can take ri = 0

when λi = 0 without changing the optimal value. We obtain

min
wi,w

′
i∈PSi

‖wi‖2≤λi

‖w′i‖2≤λ
′
i

λ,λ′≥0

1

2

∥∥∥ M∑
i=1

D(Si)X(w′i − wi)− y
∥∥∥2
2

+ β

M∑
i=1

(λi + λ′i).

The variables λi, λ′i, ∀i ∈ [M ] can be eliminated since
λi = ‖wi‖2 and λ′i = ‖w′i‖2 are feasible and optimal.
Plugging in these expressions, we get

min
wi,w

′
i∈PSi

1

2

∥∥∥ M∑
i=1

D(Si)X(w′i − wi)− y
∥∥∥2
2

+ β

M∑
i=1

(‖wi‖2 + ‖w′i‖2) ,

which is identical to (8), and proves that the objective val-
ues are equal. Constructing {u∗j , α∗j}m

∗

j=1 as stated in the
theorem, and plugging in (2), we obtain the value

p∗ ≤1

2

∥∥∥ m∗∑
j=1

(Xu∗j )+α
∗
j − y

∥∥∥2
2

+
β

2

P∑
i=1,v∗i 6=0

(∥∥∥ v∗i√
‖v∗i ‖2

∥∥∥2
2

+
∥∥∥√‖v∗i ‖2∥∥∥2

2

)
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Figure 2: Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) on a one dimensional dataset
(d = 1), where Optimal denotes proposed convex programming approach in (8). SGD can be stuck at local minima for
small m, while the proposed approach is optimal as guaranteed by Theorem 1.

(a) Independent realizations with m = 50 (b) Decision boundaries

Figure 3: Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) on a two-dimensional
dataset, where Optimal and Approximate denote the objective value obtained by the proposed convex program in (8) and its
approximation by sampling variables, respectively. Learned decision boundaries are also depicted.

+
β

2

P∑
i=1,w∗i 6=0

(∥∥∥ w∗i√
‖w∗i ‖2

∥∥∥2
2

+
∥∥∥√‖w∗i ‖2∥∥∥2

2

)
,

which is identical to the objective value of the convex pro-
gram (8). Since the value of the convex program is equal to
the value of it’s dual d∗ in (15), and p∗ ≥ d∗, we conclude
that p∗ = d∗, which is equal to the value of the convex
program (8) achieved by the prescribed parameters.

6. Numerical Experiments
In this section, we present small scale numerical experi-
ments to verify our results in the previous sections3. We
first consider a one-dimensional dataset with n = 5, i.e.,
X = [−2 − 1 0 1 2]T and y = [1 − 1 1 1 − 1]T , where

3Additional experiments can be found in the Appendix A.1

we include the bias term by simply concatenating a column
of ones to the data matrix X . We then fit these data points
using a two-layer ReLU network trained with SGD and the
proposed convex program, where we use squared loss as
a performance metric. In Figure 2, we plot the value of
the regularized objective function with respect to the iter-
ation index. Here, we plot 10 independent realizations for
SGD and denote the convex program in (8) as “Optimal”.
Additionally, we repeat the same experiment for different
number of neurons, particularly, m = 8, 15, and 50. As
demonstrated in the figure, when the number of neurons is
small, SGD is stuck at local minima. As we increase m,
the number of trials that achieve the optimal performance
gradually increases as well, which is also consistent with the
interpretations in (Ergen & Pilanci, 2019). We also note that
Optimal achieves the smallest objective value as claimed in
the previous sections. We then compare the performances
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Figure 4: Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) on a subset of CIFAR-10
and the convex program (8) denoted as Alg1. Alg2 and Alg3, which are approximations of the convex program.
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Figure 5: Training accuracy of a two-layer linear CNN trained with SGD (5 initialization trials) on a subset of CIFAR-10,
where L1-Convex denotes the proposed convex program in (14). Filters found via SGD converge to the solution of (14).

on two-dimensional datasets with n = 50, m = 50 and
y ∈ {+1,−1}n, where we use SGD with the batch size 25
and hinge loss as a performance metric. In these experi-
ments, we also consider an approximate convex program,
i.e., denoted as “Approximate” for which we use only a
random subset of the diagonal matrices D1, ...DP of size
m. As illustrated in Figure 3, most of the SGD realiza-
tions converge to a slightly higher objective than Optimal.
Interestingly, we also observe that even Approximate can
outperform SGD in this case. In the same figure, we also
provide the decision boundaries obtained by each method.

We also evaluate the performance of the algorithms on
a small subset of CIFAR-10 for binary classification
(Krizhevsky et al., 2014). Particularly, in each experiment,
we first select two classes and then randomly under-sample

to create a subset of the original dataset. For these experi-
ments, we use hinge loss and SGD. In the first experiment,
we train a two-layer ReLU network on the subset of CIFAR-
10, where we include three different versions denoted as
“Alg1”, “Alg2”, and “Alg3”, respectively. For Alg1, we
use a random subset of the diagonal matrices D1, ..., Dp

which match the sign patterns of the optimized (by SGD)
network along with a randomly selected subset of possible
sign patterns. Similarly, for Alg2, we use the sign patterns
that match the initialized network. For Alg3, we perform a
heuristic adaptive sampling for the diagonal matrices: we
first examine the values of Xu for each neuron using the
initial weights and flip the sign pattern corresponding to
small values and use it along with the original sign pattern.
In Figure 4, we plot both the objective value and the corre-
sponding test accuracy for 10 independent realizations with
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n = 106, d = 100, m = 12, and batch size 25. We observe
that Alg1 achieves the lowest objective value and highest
test accuracy. Finally, we train a two-layer linear CNN ar-
chitecture on a subset of CIFAR-10, where we denote the
proposed convex program in (14) as “L1-Convex”. In Fig-
ure 5, we plot both the objective value and the Euclidean
distance between the filters found by GD and L1-Convex for
5 independent realizations with n = 387, m = 30, h = 10,
and batch size 60. In this experiment, all the realizations
converge to the objective value obtained by L1-Convex and
find almost the same filters.

7. Concluding Remarks
We introduced a convex duality theory for non-convex neu-
ral network objectives and developed an exact representation
via a convex program with polynomial many variables and
constraints. Our results provide an equivalent characteriza-
tion of neural network models in terms of convex regular-
ization in a higher dimensional space where the data matrix
is partitioned over all possible hyperplane arrangements.
ReLU neural networks can be precisely represented as con-
vex regularizers, where piecewise linear models are fitted
via an `1 − `2 group norm regularizer. It is well known that
two-layer networks have a quite rich representation power
thanks to their universal approximation property. However,
our results clearly show that the fitted model is parsimonious
due to the `1 − `2 group regularization, which facilitates
better generalization. Thus, we believe that our characteri-
zation sheds light into the extraordinary success of ReLU
networks. There are a multitude of open research directions.
One can obtain a better understanding of neural networks
and their generalization properties by leveraging convexity,
and high dimensional regularization theory (Wainwright,
2019). In the light of our results, one can view backpropa-
gation as a heuristic method to solve the convex program
(8) and analyze the loss landscape, since the global minima
are necessarily stationary points of the non-convex objec-
tive (2), i.e., fixed points of the update rule. Interesting
consequences in this direction are reported in (Lacotte &
Pilanci, 2020) after our work. Furthermore, one can extend
our convex approach to various architectures, e.g., modern
CNNs, recurrent networks, and autoencoders. Based on our
methods, recently (Ergen & Pilanci, 2020a) considered con-
vex programs for CNNs with various pooling strategies, and
determined several other convex regularizers implied by the
network architecture. Finally, to the best of our knowledge,
our results provide the first algorithm to train non-trivial
neural networks optimally. On the other hand, the popular
backpropagation method is a local search heuristic, which
may not find the optimal neural network and may be dra-
matically inefficient as shown in the experiments. Efficient
optimization algorithms that exactly or approximately solve
the convex program can be developed for larger scale exper-

iments, including proximal and stochastic gradient methods.
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