Stochastic Batch Mechanism: Scalable Differential Privacy with Certified Robustness in Adversarial Learning

A. Notations and Terminologies

Table 1. Notations and Terminologies.

D and = Training data with benign examples = € [—1,1]7
y=A{y1,.-,yx} One-hot label vector of K categories
FiRe 5 RE Function/model f that maps inputs x
' to a vector of scores f(z) = {f1(z),..., fx(z)}
Yz €Y A single true class label of example x
y(z) = maxgex fr(x) Predicted label for the example x given the function f
PV =2+a Adversarial example where « is the perturbation
(1) = {a € R?: |la]l, < u} | The l,-norm ball of attack radius
(€ry 0r) Robustness budget ¢, and broken probability 4,
Efr(z) The expected value of fi(x)
- -~ Lower and upper bounds of
Bup and Bup the expected value Ef(z) = L 3= (),
a(z,6q) Feature representation learning model with = and parameters 6,
B, A batch of benign examples x;
Rz, (01) Data reconstruction function given By in a(z, 0;)

The values of all hidden neurons in the hidden layer h;

9T
hup, = {01 wi}icn, of a(x,6,) given the batch B;

Rp,(01) and ﬁgt (01) Approximated and perturbed functions of R, (61)
z; and T; Perturbed and reconstructed inputs x;
Ar =d(f+2) Sensitivity of the approximated function R 5, (61)
h;p, Perturbed affine transformation h; g,
f;‘-d" = xjd" + %Lap(%z) DP adversarial examples crafting from benign example
By and Eidv Sets of perturbed inputs Z; and DP adversarial examples f'jdv
Ly, (02) Loss function of perturbed benign examples in B, given 6,
T(f (f*j‘-dv, 02),y;) Loss function of DP adversarial examples E';‘-dv, given 6
ZE (92) DP loss function for perturbed benign examples B;
Ly5,(62) A part of the loss function L, (62) that needs to be DP
Composition scoring function given
FMa, - M) inde;)endent randorr%izing mecl%anisms My, ..., Mg
A% and AP Sensitivities of = and h, given the perturbation « € [,,(1)
(e1 +€1/vx +€1/v + €2) Privacy budget to protect the training data D
(k + ) maz Robustness size guarantee given an input x at the inference time

B. Functional Mechanism (Zhang et al., 2012)

Functional mechanism (Zhang et al., 2012) achieves e-DP by perturbing the objective function Lp (#) and then releasing the
model parameter § minimizing the perturbed objective function L () instead of the original 6, given a private training
dataset D. The mechanism exploits the polynomial representation of L (6). The model parameter 6 is a vector that contains
d values 61, ..., 0q4. Let $() denote a product of 61, . .., 04, namely, ¢(0) = 67* - 052 - - - 03 for some c1,...,cq € N. Let
®;(j € N) denote the set of all products of 61, ..., 0q with degree j, i.e., ®; = {6 - 652 - - - 03“’ 23:1 ca =j}. By the
Stone-Weierstrass Theorem (Rudin, 1976), any continuous and differentiable L(x;, 6) can always be written as a polynomial
of 61,...,04, for some J € [0,0¢], i.e., L(z;,0) = ijo > pew, Ao, O(0) Where Ay, € R denotes the coefficient of
¢(0) in the polynomial.

For instance, the polynomial expression of the loss function in the linear regression is as follows: L(z;,0) = (y; — z,; 0)? =
Y — 2?21(2%%]‘)9]‘ + > 1<ja<a(TijTia)0;0q, where d (= d) is the number of features in ;. In fact, L(z;,6) only
involves monomials in &y = {1}, ®; = {0;,...,6,4}, and P = {6;0,|i,a € [1,d]}. Each ¢(0) has its own coefficient,
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e.g., for 0;, its polynomial coefficient Ay, = —2y;x;;. Similarly, Lp (0) can be expressed as a polynomial of 61, ..., 0,4, as
J
Lp0)= > L(xi0) =Y > > A d(0) (14)
z,€D j=0 ¢€®; z;€D

To achieve ¢-DP, Lp(6) is perturbed by injecting Laplace noise Lap(%) into its polynomial coefficients A4, and
then the model parameter 6 is derived to minimize the perturbed function Lp(6), where the global sensitivity A =
2max, Z}]:1 > $ed, [Apz|l1 is derived given any two neighboring datasets. To guarantee that the optimization of

0 = argming Lp(#) achieves e-DP without accessing the original data, i.e., that may potentially incur additional privacy
leakage, grid search-based approaches are applied to learn the e-DP parameters 6 with low loss Lp (). Although this
approach works well in simple tasks, i.e., logistic regression, it may not be optimal in large models, such as DNNs.

C. Pseudo-code of Adversarial Training (Kurakin et al., 2016b)

Letl,(1) = {a € R?: ||, < p} be the I,-norm ball of radius 1. One of the goals in adversarial learning is to minimize
the risk over adversarial examples: 0* = argming E(, ,..)~p [ max|a|, <, L(f(z + @, 0), )], where an attack is used
to approximate solutions to the inner maximization problem, and the outer minimization problem corresponds to training the
model f with parameters 6 over these adversarial examples 2% = 2 + a.. There are two basic adversarial example attacks.
The first one is a single-step algorithm, e.g., FGSM algorithm (Goodfellow et al., 2014), in which only a single gradient
computation is required to find adversarial examples by solving the inner maximization max |, <, L ( fle+a,0), ym) The
second one is an iterative algorithm, e.g., Iterative-FGSM algorithm (Kurakin et al., 2016a), in which multiple gradients
are computed and updated in 7}, small steps, each of which has a size of p/T),.

Given a loss function:

B 1

LO) = e (2 LU0 ) 16 3 T(E"0),59)) (1s)

z; EBy ' e B

where m; and my correspondingly are the numbers of examples in B; and B2Y at each training step. Algorithm 2 presents
the vanilla adversarial training.

Algorithm 2 Adversarial Training (Kurakin et al., 2016b)
Input: Database D, loss function L, parameters 6, batch sizes m; and mg, learning rate g;, parameter £

1: Initialize 6 randomly

2: fort € [T] do

3:  Take a random batch B; with the size m, and a random batch B, with the size ms

4:  Craft adversarial examples B = {x‘j‘-dv} j€[1,m5] from corresponding benign examples z; € B,
5:  Descent: 0« 0 — 0;VyL(0)

D. Pseudo-code of Verified Inferring and StoBatch Training

Algorithm 3 Verified Inferring
Input: (an input z, attack size u,)

1: Compute robustness size (k + ¢©)maz in Eq. 13 of
2: if (K + ©)maz > [io then

3:  Return isRobust(x) = True,label k, (k + ©)max
4: else

5:  Return isRobust(z) = False, label k, (5 + ¢©)max
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Algorithm 4 StoBatch Training
Input: Database D, loss function L, parameters 6, batch size m, learning rate g;, privacy budgets: ¢; and €5, robustness
parameters: €., A¥, and Af}, adversarial attack size p,, the number of invocations n, ensemble attacks A, parameters 1) and
&, the size |h| of h,, a number of N random local trainers (N < N/(2m))
1: Draw Noise y; + [Lap( =9, yo [Lap( )]ﬁ X3 [Lap(Am)]““"'
2: Randomly Initialize 6 = {91, 02}, B = {Bl, ...y Bn/m} sit. VB € B : B is a batch with the size m, By N ... N
BN/m—w and By U.. UBN/m—D B= {Bl,.. FN/m}WhCI‘CViE[17N/m]:§i:{f<—$+%}w63i
3: Construct a deep network f with hidden layers {h; + 2X2 ..., h}, where h; is the last hidden layer
4: Distribute fixed and disjoint batches B to N/(2m) local tralners, each of which have two batches { B;;, B;2} randomly
picked from B with i € [1, N/(2m)]
5: fort € [T] do
6 Randomly Pick N local trainers, each of which Gets the latest global parameters 6 from the parameter server
7. fori e [1,N] do
. B _
9

Assign B; ; < Bj;
Ensemble DP Adversarial Examples:

10: Draw Random Perturbation Value 1, € (0, 1], Assign E:i-v «—0

11: for! € Ado

12: Take the next batch B, C B, with the size m/|A|

13: VZ; € B,: Craft f"dv by using attack algorithm A[l] with oo (f21), B L BadV Uz *‘*d"
14: Compute V,0; V(MRB B, (1), Vifa < Vg, L B, ,UB (62) with the noise X2

15: Send V ;60 and V ;05 to the parameter server

16:  Descent: 01 < 01 — o Yienn Vibi; 02 < 05 — 0% >icr.ny Vifo, on the parameter server
Output: € = (1 + €1 /7x + €1/7 + €2)-DP parameters § = {61, 05}, robust model with an ¢, budget

E. Proof of Lemma 2

Proof 1 Assume that B; and B, differ in the last tuple, ., (x),). Then,

¢ 1 1
I [DIEED S RN DTS SN
J=1

z;€By z;€B] z;€EBy z;€B]

d
1
< 2max E 1(H§h¢||1 +llzizll1) < d(B+2)
]:

F. Proof of Lemma 3

—T T
Proof 2 Regarding the computation of h,5, = {0, T} .5, we can see that h; = 0, T; is a linear function of x. The
sensitivity of a function h is defined as the maximum change in output, that can be generated by a change in the input
(Lecuyer et al., 2018). Therefore, the global sensitivity of hy can be computed as follows:

—T__ =T _ =
||Zf,€§f 91 Ti— ZI;EE; 91 J];”l ||0ff1”1 9.

A =
. 1> 05, Ti — Sowem Tt =B [Tk
i€B¢ T €5,

—T
following matrix norms (Operator norm, 2018): 1|07 ||1, 1 is the maximum 1-norm of 01’s columns. By injecting Laplace

L) into hlB,, ie., hlB = {01 Z; + Lap(

2AR
mAh

noise Lap(

- )}ELEE , we can preserve €1-DP in the computation ofﬁlg .

Let us set Ahl = ||91 i1, v = and X2 drawn as a Laplace noise [Lap( )]5 in our mechanism, the perturbed
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dffine transformation h, g is presented as:

A
~ W sem,

h, ﬂ
)l }Ev B
~y €8¢

T ~T_ 2 T2
hlEt = {01 T+ %}fiegt = {91 Ti + [Lap(

T ’yA N —T_ A
= (007 + [Lap( ") e, = 1007+ [Lan(

This results in an (€1 /7)-DP affine transformation h,p, = {5{@ [Lap( eI L)1} 5. B,

Similarly, the perturbed inputs B, = {Tits,c5, = {zi + 2 tuen, = {7 + [Lap(gl/,Y V%Y e,eB,, Where Ay is the
sensitivity measuring the maximum change in the input layer that can be generated by a change in the batch B, and

1222, i=2aren! Till
Vx = W?—gx. Following (Lecuyer et al., 2018), Ax can be computed as follows: Ay = = zz z ZTCZ z/\li =1.Asa

result, the computation of By is (€1 /7x)-DP. Consequently, Lemma 3 does hold.

G. Proof of Theorem 1

Proof 3 Given x1 drawn as a Laplace noise [Lap(é—f)]d and x2 drawn as a Laplace noise [Lap(%z)]ﬁ, the perturbation
of the coefficient p € ® = {%hi, x;}, denoted as ¢, can be rewritten as follows:

AR g

foro ezt d=3 (b + )= du+x1= Y. bu, + [Lap(=2)] (16)
z;€B m z.€B z;€B €1
1 - 1 2x2 AR\
foro € {ghitio =3 S+ T2 =3 (Gn+ 2= 3 butxe= Y bu+[Lap(H) (D)
x,€EB z,€EB zr;,€EB z;,EB
we have
4 _
ellX g, en, Pz — ¢l
500) =11 - e )
j=1¢€?
Ax is set to d(B + 2), we have that:
Pr(Rp, (00) Iy Tyeq exp (- gt
Pr(R+ B IS, en 6ar—dlh
T(RBtwlD H?—l deeq) exp ( _ i A; 4 )
HHeXp 7” > - Z o
j=1 z;EB: z;€B]
d
= 1:[ 1;[ exp( 52 ma [[6..|,) < eXP(iqd(f; %) — explen) (1)

Consequently, the computation of ﬁgt (61) preserves €1-DP in Alg. I (Result 1). To show that gradient descent-based
optimizers can be used to optimize the objective function ﬁﬁt (61) in learning private parameters 61, we prove that all the

computations on top of the perturbed data By, including h;, h;, T;, gradients and descent, are DP without incurring any
additional information from the original data, as follows.

First, by following the post-processing property in DP (Dwork & Roth, 2014), it is clear that the computations of h 5 =
{hi}z.em, = 01 {Ti}z, 5, is (e1/7x)-DP. As in Lemma 3, we also have that h,5, = {hi+ %}Eiegt is (€1/7)-DP. Given
this, it is obvious that X; = jfi}fﬁE = 01{hi}z,cp, is (€1/7)-DP, i.e., the post-processing property in DP. In addition,
the computations of h g, h 5, , and X; do not access the original data By. Therefore, they do not incur any additional

information from the private data, except the privacy loss measured by (€1/7x)-DP, since the computations of ElE and X;
are based on the (¢1/7x)-DP h, 5 . (Result 2)
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Second, the gradient of a particular parameter 0+, withVj € [1,d|, can be computed as follows:

_ R+ (6 mo_1q

Vj € [L,d]: Vg, R, (01) = (591(1) = Zhi(§ — Tij) (19)

J i=1

" 2 1
= (hi+ 22)(5 —7) (20)

=1
LR | 2X2 o= _

= [Zhi(2 —Ti)] + x2 — [sziﬂ (21)

i=1 i=1
In Eq. 21, we have that > Ti; = (Doim @ij) + Lap( R) (Eq. 16), which is (e1/vx)-DP. Therefore, the term
2% it Ty also is (€1/vx)-DP (the post-processing property in DP). (Result 3)

Regarding the term Y. | hl(% — T;;) in Eq. 21, its global sensitivity given two arbitrary neighboring batches, denoted as
Ayg, can be bounded as follows: Ay < 2maxz, ||hi(3 — Zij)|l1 = 38. As a result, we have that:

m m

[th(% —Tij)] +x2 = [Zhi(% —Ti;)] + [Lap( 2y )P (22)

Ar
i=1 i=1 a/5

which is (€, gﬂ )-DP. (Result 4)

From Results 3 and 4, the computation of gradients Vg, 'R 5,(01) is (el/AR + €1/7vx)-DP, since: (1) The computations
of the two terms in Eq. 21 can be treated as two mdependent DP -preserving mechanzsms applied on the perturbed batch
By; and (2) This is true for every dimension j € [1,d], each of which Ve, is independently computed and bounded. It
is important to note that this result is different from the traditional DPSGD (Abadi et al., 2016), in which the parameter
gradients are jointly clipped by a l2-norm constant bound, such that Gaussian noise can be injected to achieve DP. In
addition, as in Eq. 19, the computation of Vg, R, (01) only uses (el/vx)-D7P By = {%i}5,cp, and (e1/7)-DP h 3,
without accessing the original data. Basically, h 5 is computed on top of By, without touching any benign example.
Therefore, it does not incur any additional information from the private data, except the privacy loss (e1/ AA—? + €1/7vx)-DP.
In practice, we observed that €1 /yx >> el/A—R = €1 X le — 3, which is tiny. We can simply consider that the computation of

gradients Vg, R i (91) is (€1/vx)-DP wzthout affecting the general DP protection. In addition to the gradient computation,
the descent operatzons are simply post-processing steps without consuming any further privacy budget. (Result 5)

From Results 1, 2, and 5, we have shown that all the computations on top of (€1 /vx)-DP By, including parameter gradients
and gradient descents, clearly are DP without accessing the original data; therefore, they do not incur any additional
information from the private data (the post-processing property in DP). As a result, gradient descent-based approaches can
be applied to optimize ﬁgt (6,) in Alg. 1. The total privacy budget to learn the perturbed optimal parameters 0, in Alg. 1 is
(e1/vx + €1)-DP, where the €1 [~ is counted for the perturbation on the batch of benign examples B;.

Consequently, Theorem 1 does hold.

H. Proof of Lemma 4

Proof 4 Assume that By and E; differ in the last tuple, and T, (Z.,,) be the last tuple in B, (F;) we have that

ALQ Z H Z 7”'%"7 Z wzyzk H Z ||h7rmymk Trmy'lmkHl

= T;€EB: atEB
Since Yy and y,., are one-hot encoding, we have that Ao < 2maxz, ||hqll1. Given hy,; € [—1,1], we have
Ars < 2/hy| (23)

Lemma 4 does hold.
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I. Proof of Theorem 3

Proof 5 Let B, and Ei be neighboring batches of benign examples, and x5 drawn as Laplace noise [Lap( Aﬁf )] bl the
perturbations of the coefficients h;y;i can be rewritten as:

_ X A
Bril = D _(bmigie + ) = D (higa) + [Lap(=2))™

Since all the coefficients are perturbed, and given Ao = 2|h,|, we have that

PT(EEt (92)) . PT(ElEt (92)) PT’(,CQEt (92))

Pr(Lp(62) ~ Pr(L5(82)) " Pr(Cyp (02))

X e2l| X, Rriyir—hai¥i
"y exp(— A )
< et Y § £2 —
- P 62”ng hoiyik—hri¥lh
=1 exp(— A )

K
€
<er/1y exp(ﬁu D by — Y beiyir),)
k=1 £z g z
< /7 exp( o2 max by 1) = e/
Apy

The computation of ZZE (92) preserves (€1 /v + e2)-differential privacy. Similar to Theorem 1, the gradient descent-based
optimization of Z2§t (92) does not access additional information from the original input x; € By;. It only reads the
; +
(3

(€1/7)-DP hyg, = {h; + 22

o ) W}i cB,- Consequently, the optimal perturbed parameters 0 derived from Z2E (92) are
€1/7 + €2)-DP.

J. Proofs of Theorem 2 and Theorem 4

Proof 6 First, we optimize for a single draw of noise during training (Line 3, Alg. 1) and all the batches of perturbed benign
examples are disjoint and fixed across epochs. As a result, the computation of T; is equivalent to a data preprocessing
step with DP, which does not incur any additional privacy budget consumption over T training steps (the post-processing
property of DP) (Result 1). That is different from repeatedly applying a DP mechanism on either the same or overlapping
datasets causing the accumulation of the privacy budget.

Now, we show that our algorithm achieves DP at the dataset level D. Let us consider the computation of the first
hidden layer, given any two neighboring datasets D and D’ differing at most one tuple T, € D and T, € D’'. For any

0= Hf\;/lm 0; € Hivz/lm h,5 (€ RAX™) we have that

P(HID — O) P(H1§1 = 01).”P(h1§1\7/m = ON/m)

. = —— — (24)
P(th/ = O) P(h1§/1 201)...P(h1§;\7/m :ON/m)
By having disjoint and fixed batches, we have that:
IBeBst x. € BandIB' € B s.1. z, e B (25)
From Egqs. 24, 25, and Lemma 3, we have that
Bl 5. 5 g . PEE=0)
VBeB,B#B:B=B == ————"—2,_ =1 (26)
P(h1§’ = 0)
P(hyp =0 Ph,;=06
Egs. 25 and 26 = (hip=0) _ Plhyp=0) _ ajy 27)

P(HlD/ = O) B P(Elf}/ - 5)

As a result, the computation of hyp is (€1 /v)-DP given the data D, since the Eq. 27 does hold for any tuple x. € D. That
is consistent with the parallel composition property of DP, in which batches can be considered disjoint datasets given h, 5
as a DP mechanism (Dwork & Roth, 2014).
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This does hold across epochs, since batches B are disjoint and fixed among epochs. At each training step t € [1,T), the
computation of hy g does not access the original data. It only reads the perturbed batch of inputs By, which is (€1/x)-DP

(Lemma 3). Following the post-processing property in DP (Dwork & Roth, 2014), the computation of HlE does not incur
any additional information from the original data across T training steps. (Result 2)

Similarly, we show that the optimization of the function ﬁgt (01) is (e1/7vx + €1)-DP across T training steps. As in Theorem

I and Proof 3, we have that Pr(R- (91)) = H?Zl [Ipcoexp (- M) where B € B. Given any two

AR
perturbed neighboring datasets D and D differing at most one tuple T, € D and T, € D
Pr(R5(61)) Pr( ,(01)) ... Pr(Rg,, (01)) o8
PT‘(R (01)) Pr(’RE;(Gl)) ...Pr(ﬁglmm(ﬁl))
From Egs. 25, 28, and Theorem 1, we have that
_ — = P(R+(6
VBeB,B£B:B=8B = (fB(l)):1 (29)
P (R (61))
P(R5(0 P(Rz(0
Egs. 28 and 29 = (Rp(01) _ P(Rj(0)) < eq (30)

PRy (61) ~ P(R(01) —
As a result, the optimization of R5(01) is (€1/7vx + €1)-DP given the data D (which is €1 /x-DP (Lemma 3)), since the Eq.
30 does hold for any tuple T, € D. This is consistent with the parallel composition property in DP (Dwork & Roth, 2014),
in which batches can be considered disjoint datasets and the optimization of the function on one batch does not affect the
privacy guarantee in any other batch, even the objective function given one batch can be slightly different from the objective
function given any other batch in B. In addition, V't € [1,T), the optimization of ﬁﬁt (01) does not use any additional
information from the original data D. Consequently, the privacy budget is (¢1/vx + €1) across T training steps, following
the post-processing property in DP (Dwork & Roth, 2014) (Result 3).

Similarly, we can also prove that optimizing the data reconstruction function ﬁﬁadv (01) given the DP adversarial examples
t

crafted in Eqs. 7 and 8, i.e., T)", is also (€1 /7x + €1)-DP given t € [1,T] on the training data D. First, DP adversarial

—ad
examples T are crafted from perturbed benign examples T;. As a result, the computation of the batch B? ! of DP

adversarial examples is 1) (e1/vx)-DP (the post-processing property of DP (Dwork & Roth, 2014)), and 2) does not access
the original data ¥t € [1,T). In addition, the computation of h podr and the optimization of R—adv (01) correspondingly

are €1 /v-DP and e1-DP. In fact, the data reconstruction function REadv is presented as follows:
t

d

ﬁE?dv (01) _ Z |:Z( ollhad\/) T‘;dvfl;dv}

ad\ eBadv =1

d

= Z {Z( ehhad»)_f adv_'u s,gn(v ,C(f(fj’@),y(jj)))%?dv}

Fure Bt =1

d
d) — ~ . _ — ~ady
= Z {Z( b1ih; hi) — mjacj-dv] — Z - stgn(VEjE(f(xj79),y(xj)))x§’»d‘ 31)
adweBadv 1=1 azlveBadU

where hj-dv = GITE;‘-‘I",F;W = h;’»dv + %Lap(é—f), and 3?3’»‘” = Qlﬁ;dv. The right summation component in Eq. 31 does
not disclose any additional information, since the sign(-) function is computed from perturbed benign examples (the
post-processing property in DP (Dwork & Roth, 2014)). Meanwhile, the left summation component has the same form with
Rz, (6h) in Eq. 6. Therefore, we can employ thefroofS in Theorem 1, by replacing the coefficients & = {%hi, x; } with

= {%h;’-d", ;} to prove that the optimization of Raav (01) is (€1/7x + €1)-DP. As a result, Theorem 2 does hold. (Result

t

4)

In addition to the Result 4, by applying the same analysis in Result 3, we can further show that the optimization of
R pan (01) is (€1/7vx + €1)-DP given the DP adversarial examples DY crafted using the data D across T training steps,
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since batches used to created DP adversarial examples are disjoint and fixed across epochs. It is also straightforward to
conduct the same analysis in Result 2, in order to prove that the computation of the first affine transformation h, gaa. =
t
T —ad
{6; f?dv + %Lap(%z)}iﬁd‘,egzdv given the batch of DP adversarial examples By, is (¢1 /7)-DP with t € [1,T] training
steps. This is also true given the data level DY, (Result 5)

Regarding the output layer, the Algorithm I preserves (e1/ + €2)-DP in optimizing the adversarial objective function

LEUFW(QQ) (Theorem 3). We apply the same technique to preserve (e€1/v + €2)-DP across T training steps given
2 t

disjoint and fixed batches derived from the private training data D. In addition, as our objective functions R and L are
always optimized given two disjoint batches B, and E:dv, the privacy budget used to preserve DP in these functions is
(e1 + €1/ + €2), following the parallel composition property in DP (Dwork & Roth, 2014). (Result 6)

With the Results 1-6, all the computations and optimizations in the Algorithm I are DP following the post-processing
property in DP (Dwork & Roth, 2014), by working on perturbed inputs and perturbed coefficients. The crafting and utilizing
processes of DP adversarial examples based on the perturbed benign examples do not disclose any additional information.
The optimization of our DP adversarial objective function at the output layer is DP to protect the ground-truth labels. More
importantly, the DP guarantee in learning given the whole dataset level D is equivalent to the DP guarantee in learning on
disjoint and fixed batches across epochs. Consequently, Algorithm 1 preserves (€1 + €1 /7vx + €1/ + €2)-DP in learning
private parameters 0 = {01,045} given the training data D across T training steps. Note that the €, /7y« is counted for the
perturbation on the benign examples. Theorem 4 does hold.

K. Proof of Lemma 5

Proof 7 Thanks to the sequential composition theory in DP (Dwork & Roth, 2014), f(Ma, ..., Mgl|x) is (3 €s)-DP,
since for any O = HSS:1 0s € Hsszl f2(z)(€ RE), we have that

P(f(My,...,Mslz)=0)  P(M;f(z) =o01)... P(Mgsf(z) = os)

P(J(My,..., Mgz +a) = 0) _ P(Mif(a+a)=o1)... P((Msf(z +a) = os)

S
< [Lewplen) = eZre
s=1

As a result, we have

P(f(My,...,Mg|z)) < i DP(f(My,...,Ms|z + ))

The sequential composition of the expected output is as:
1
]Ef(./\/ll,...,/\/ls|x):/ P(f(M, ..., Msla) > t)dt
0

1

Se(ZSES)/ P(f(My,...,Mglz+a) > t)dt
0

=X Ef(My, ..., Ms|z+a)

Lemma 5 does hold.

L. Proof of Theorem 5

Proof 8 Vo € ,(1), from Lemma 5, with probability > n, we have that

Efe(My, ..., Mg|z) - By fr (M, ..., Mg|z)

EfiMy,.. Msle +a) 2 e(Timr es) = o, )

(32)

In addition, we also have

Vi # ko Efpiz (M, ..., Mgl +a) < e B frin( My, ..., Mg|z)
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=>Vi#£k: I@fi(Ml, ooy Mslzr+a) < (i) mi)éﬁubfi(/\/ll, ey, Mglz) (33)

Using the hypothesis (Eq. 12) and the first inequality (Eq. 32), we have that

251 maxizn Bun fi(My, ..., M)
(25, )
> e(Xie) maxEubfZ(Ml, oo, Mglz)

Efe(My,...,Mglz +a) >

Now, we apply the third inequality (Eq. 33), we have that

Vi# k:Efu(Mi,..., Mslz+a) > Efi(My,..., Ms|z + a)
@IAEfk(Ml,...7Ms\m+a) > m;ié)]:IAEfi(Ml,...,MS\x—i—a)

The Theorem 5 does hold.

M. Proof of Corollary 1

Proof 9 Va € ,(1), by applying Theorem 5, we have
Eup fi (M, Mglz) > 2rerteer) m;ggﬁubfi(/\/lh,/\/lﬂﬂ

> 62(K+¢)6" m% ]Eubfz (Mh, M, \x)

Furthermore, by applying group privacy, we have that

Va € l,(k+ o) : I@lbfk(Mh,Mm\x) > e2er mi)éﬁubfi(/\/lh,/\/lﬂx)

By applying Proof 8, it is straight to have

Vo€ Ly(k + @) s BEfy(My, M|z + ) > mi)éﬁfk(/\/lh,/\/lx\x + a)
with probability > 1. Corollary 1 does hold.

N. Effective Monte Carlo Estimation of E f (x)

Recall that the Monte Carlo estimation is applied to estimate the expected value E f ( y=41 Zn f(z )n where n is the
number of invocations of f(x) with independent draws in the noise, i.e., - Lap(O SR and Lap(O £R) in our case.
When ¢, is small (indicating a strong privacy protection), it causes a notably large dtstrtbutzon shzft between training and
inference, given independent draws of the Laplace noise.

In fact, let us denote a single draw in the noise as y; = - —Lap(0, AR ) ysed to train the function f(x), the model converges
to the point that the noise x; and 25 need to be correspondlngly added into x and h in order to make correct predictions.
X1 can be approximated as Lap(x1, 0), where o — 0. It is clear that independent draws of the noise %Lap((), Aﬁ—f) have
distribution shifts with the fixed noise x1 & Lap(x1, ). These distribution shifts can also be large, when noise is large. We
have experienced that these distribution shifts in having independent draws of noise to estimate 1) f(x) can notably degrade
the inference accuracy of the scoring function, when privacy budget €; is small resulting in a large amount of noise injected
to provide strong privacy guarantees.

To address this, one solution is to increase the number of invocations of f(z), i.e., n, to a huge number per prediction.

However, this is impractical in real-world scenarios. We propose a novel way to draw independent noise following
A A :

the distribution of x1 + -- Lap(0, £% /1) for the input 2 and 2x2 + 2 Lap(0, =& [4) for the affine transformation h,

where v is a hyper-parameter to control the distribution shifts. This approach works well and does not affect the DP

bounds and the certified robustness condition, since: (1) Our mechanism achieves both DP and certiﬁed robustness in the

training process; and (2) It is clear that Ef(z) = L 3" f(2),, = 1 3 g(a(z + x1 + L Lap, (0, 2= /1), 01) + 2x2 +
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2 Lap, (0, Ae—f/z[;), 62), where Lapy, (0, Ag—:‘/dz) is the n-th draw of the noise. When n — oo, Ef(z) will converge to
L5 g(a(z + x1,61) + 2x2,62), which aliAgns well with the convergence point of the scoring function f(x). Injecting x1
and 2 to x and h during the estimation of IE f () yields better performance, without affecting the DP and the composition

robustness bounds.

O. Approximation Error Bounds

To compute how much error our polynomial approximation approaches (i.e., truncated Taylor expansions), R B,(01) (Eq. 5)
and L5 (62), incur, we directly apply Lemma 4 in (Phan et al., 2016), Lemma 3 in (Zhang et al., 2012), and the well-known

error bound results in (Apostol, 1967). Note that R B, (01) is the Ist-order Taylor series and L, (92) is the 2nd-order Taylor

series following the implementation of (TensorFlow). Let us closely follow (Phan et al., 2016; Zhang et al., 2012; Apostol,

1967) to adapt their results into our scenario, as follows:

Fi;(0)
r!

Given the truncated function Rp, (6;) = Y eieB, E?Zl S,

oA F{(0 T
function Rp, (01) = >, cp, Z?Zl Yoy Ei:o “T!( ) (61, hi)r, the average error of the approximation is bounded as

(Glj hi)r, the original Taylor polynomial

1 = = ~ A de x d
—1RpB,(01) —Rp,(01) < 34
|Bt|| B,(01) = Rp, (0h)] < (EE (34)
1~ = ~ o~ e +2e—1
——|Lp,(02) — Lp,(02)] < ———— % 35
|Bt|| Bt( 2) Bt( 2)‘— 6(1+€)2 (35)
where 6, = arg ming, ﬁgt (61). 6, = argming, Rp,(6:). EBt (f2) is the original Taylor polynomial function of
Y e.eB, L(f(Ti,02),y;), 0> = argming, Lp, (62), 62 = arg ming, Lp, (62).
Proof 10 Let U = maxeg, (ﬁBt (91) — ,ﬁ/Bt (91)) and S = mingl (ﬁBt ((91) — ,ﬁ/Bt (91))
We have that U > Rp,(61) — R, (61) and V05 : S < 7%3,, (07) — R, (07). Therefore, we have
R, (1) = R, (01) = R, (07) + R, (07) <U =S (36)
&Ry, (01) = Ry, (07) < U = S+ (Rp,(01) - R, (0]) (37)
In addition, Rp,(61) — R, (07) < 0, it is straightforward to have:
Rp,(01) — Rp, (0;) <U -8 (38)
IfU > 0and S < 0 then we have: o R
Rp,(61) —Rp,(07)| <U -5 (39)

Eq. 39 holds for every 07, including 51. Eq. 39 shows that the error incurred by truncating the Taylor series approximate
function depends on the maximum and minimum values of R, (01) — Rp, (01). This is consistent with (Phan et al., 2016;
Zhang et al., 2012). To quantify the magnitude of the error, we rewrite R, (01) — Rp,(01) as:

d
Rp,(01) — Ry, (01) = (R, (01;) — R, (617)) (40)

d 00 T )
= Z (Z Z UT(QU(%’, 01j) — sz')r) 41)

where glj (mi, 091]‘) = gljhi and ggj(Ii, 91]') = 91jhi.
By looking into the remainder of Taylor expansion for each j (i.e., following (Phan et al., 2016; Apostol, 1967)), with z; €

. 2 2
min, F‘l(j>(zjv)(2j—zlj)2 Z max;; ng)(zj)(zj_zlj)2:|
’ l .

[21;—1, z1;+1], ﬁ(ﬁgt (61;)—Rz, (61;)) must be in the interval [Zl 51 5]
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max, . @) (2 (25 —215)2 min, . @)y i—z15)? -~ ~
Ify, x5 Fij (2,1)( 1~ %1s) > 0 and Zl i Fis (2|,)(z, ) < 0, then we have that |ﬁ(RBt (01) — R, (61))] <

II]&XZ z zZj—Z —I‘Illnz z Zj—Z . .
Zj—l > iy (i) ey =21y’ o1 Fip G)m21) . This can be applied to the case of our auto-encoder, as follows:

For the functions F1;(z;) = z;;1og(1 + e~ %) and F9;(z;) = (1 — x;;) log(1 + €%), we have F(z)(zj) = % and
7z > 0,

Fg)(zj) =(1- x”)ﬁ It can be verified that arg min; Fg)(z]) yz < 0, argmax, Fﬁ)(zj)

(1+e (1+e

arg min,, Fg)(z]) = 0, and arg max, Fg) (z5) = ez > 0. Thus, the average error of the approximation is at most:

(1+e
~ o~ e —e 2e de x d
|B ||RBt(91) RBt(el)‘ S |:((1 +6)2 - (1 +6)2) + (1+6>2:| = (1+6)2 (42)

Consequently, Eq. 34 does hold. Similarly, by looking into the remainder of Taylor expansion for each label k, Eq.
35 can be proved straightforwardly In fact, by using the 2nd-order Taylor series with K categories, we have that:

Bl L. (02) = L, (02)] < S5+ x K.

P. Model Configurations

The MNIST database consists of handwritten digits (Lecun et al., 1998). Each example is a 28 x 28 size gray-level image.
The CIFAR-10 dataset consists of color images belonging to 10 classes, i.e., airplanes, dogs, etc. The dataset is split into
50,000 training samples and 10,000 test samples (Krizhevsky & Hinton, 2009). Tiny Imagenet (64 x 64 x 3) has 200
classes. Each class has 500 training images, 50 validation images, and 50 test images. We used the first thirty classes with
data augmented, including horizontal flip and random brightness, in the Tiny ImageNet dataset in our experiment. In general,
the dataset is split into 45,000 training samples and 1,500 test samples (TinyImageNet; Hendrycks & Dietterich, 2019). The
experiments were conducted on a server of 4 GPUs, each of which is an NVIDIA TITAN Xp, 12 GB with 3,840 CUDA
cores. All the models share the same structure, consisting of 2 and 3 convolutional layers, respectively for MNIST and
CIFAR-10 datasets, and a ResNet18 model for the Tiny ImageNet dataset.

Both fully-connected and convolution layers can be applied in the representation learning model a(z, 61). Given convolution
layer, the computation of each feature map needs to be DP; since each of them independently reads a local region of input
neurons. Therefore, the sensitivity A can be considered the maximal sensitivity given any single feature map in the first
affine transformation layer. In addition, each hidden neuron can only be used to reconstruct a unit patch of input units. That
results in d (Lemma 2) being the size of the unit patch connected to each hidden neuron, e.g., d = 9 given a 3 X 3 unit patch,
and f is the number of hidden neurons in a feature map.

MNIST: We used two convolutional layers (32 and 64 features). Each hidden neuron connects with a 5x5 unit patch. A
fully-connected layer has 256 units. The batch size m was set to 2,499, £ = 1, ¢» = 2. [-FGSM, MIM, and MadryEtAl
were used to draft [, (i) adversarial examples in training, with 7;, = 10. Learning rate o, was set to le — 4. Given a

predefined total privacy budget e, € is set to be 0.1, and €; is computed as: €; = W This will guarantee that

(1 +€1/7x +e1/v +e2) = e Ag = (142 4+ 2) x 25 and Ay = 2 x 256. The number of Monte Carlo sampling for
certified inference n is set to 2,000.

CIFAR-10: We used three convolutional layers (128, 128, and 256 features). Each hidden neuron connects with a 4x4 unit
patch in the first layer, and a 5x5 unit patch in other layers. One fully-connected layer has 256 neurons. The batch size m
was set to 1,851, £ = 1.5, ¢ = 10, and T}, = 3. The ensemble of attacks A includes I-FGSM, MIM, and MadryEtAl. We
use data augmentation, including random crop, random flip, and random contrast. Learning rate g; was set to 5e — 2. In
the CIFAR-10 dataset, €5 is setto (1 4+ r/3.0) and e; = (1 + 2r/3.0)/(1 + 1/v + 1/7x), where r > 0 is a ratio to control
the total privacy budget € in our experiment. For instance, given r = 0, we have that € = (e1 + €1 /vx + €1/7 + €2) = 2.
Ar =3 x (142 +2) x 16 and Ay = 2 x 256. N and M are set to 1 and 4 in the distributed training. The number of
Monte Carlo sampling for certified inference n is set to 1,000.

Tiny ImageNet: We used a ResNet-18 model. Each hidden neuron connects with a 7x7 unit patch in the first layer, and 3x3
unit patch in other layers. The batch size m was set to 4,500, { = 1.5, ¢ = 10, and T}, = 10. The ensemble of attacks
A includes I-FGSM, MIM, and MadryEtAl. Learning rate o; was set to le — 2. In the Tiny ImageNet dataset, €5 is set
tolande; = (1 +7)/(1+ 1/ + 1/7«), where r > 0 is a ratio to control the total privacy budget € in our experiment.
Ar =3 x (322 +2) x 49 and Azs = 2 x 256. N and M are set to 1 and 20 in the distributed training. The number of
Monte Carlo sampling for certified inference 7 is set to 1,000.
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Q. Complete and Detailed Experimental Results

Results on the MNIST Dataset. Figure 2 illustrates the conventional accuracy of each model as a function of the privacy
budget e on the MNIST dataset under I (1, )-norm attacks, with p, = 0.2 (a pretty strong attack). It is clear that our
StoBatch outperforms AdLM, DP-SGD, SecureSGD, and SecureSGD-AGM, in all cases, with p < 1.32e — 4. On average,
we register a 22.36% improvement over SecureSGD (p < 1.32e — 4), a 46.84% improvement over SecureSGD-AGM
(p < 1.83e — 6), a 56.21% improvement over AALM (p < 2.05e — 10), and a 77.26% improvement over DP-SGD
(p < 5.20e — 14), given our StoBatch mechanism. AdLM and DP-SGD achieve the worst conventional accuracies. There
is no guarantee provided in AALM and DP-SGD. Thus, the accuracy of the AdLM and DPSGD algorithms seem to show
no effect against adversarial examples, when the privacy budget is varied. This is in contrast to our StoBatch model, the
SecureSGD model, and the SecureSGD-AGM model, whose accuracies are proportional to the privacy budget.

When the privacy budget e = 0.2 (a tight DP protection), there are significant drops, in terms of conventional accuracy, given
the baseline approaches. By contrast, our StoBatch mechanism only shows a small degradation in the conventional accuracy
(6.89%, from 89.59% to 82.7%), compared with a 37% drop in SecureSGD (from 78.64% to 41.64%), and a 32.89% drop
in SecureSGD-AGM (from 44.1% to 11.2%) on average, when the privacy budget ¢ goes from 2.0 to 0.2. Ate = 0.2,
our StoBatch mechanism achieves 82.7%, compared with 11.2% and 41.64% correspondingly for SecureSGD-AGM and
SecureSGD. This is an important result, showing the ability to offer tight DP protections under adversarial example attacks
in our model, compared with existing algorithms.

o Figure 4 presents the conventional accuracy of each model as a function of the attack size p, on the MNIST dataset, under
a strong DP guarantee, ¢ = 0.2. Our StoBatch mechanism outperforms the baseline approaches in all cases. On average, our
StoBatch model improves 44.91% over SecureSGD (p < 7.43e — 31), a 61.13% over SecureSGD-AGM (p < 2.56e — 22),
a52.21% over AALM (p < 2.81e — 23), and a 62.20% over DP-SGD (p < 2.57e — 22). More importantly, our StoBatch
model is resistant to different adversarial example algorithms with different attack sizes. When p, > 0.2, AALM, DP-SGD,
SecureSGD, and SecureSGD-AGM become defenseless. We further register significantly drops in terms of accuracy, when
11 18 increased from 0.05 (a weak attack) to 0.6 (a strong attack), i.e., 19.87% on average given our StoBatch, across all
attacks, compared with 27.76% (AdLM), 29.79% (DP-SGD), 34.14% (SecureSGD-AGM), and 17.07% (SecureSGD).

e Figure 6 demonstrates the certified accuracy as a function of y,. The privacy budget is set to 1.0, offering a reasonable
privacy protection. In PixelDP, the construction attack bound e, is set to 0.1, which is a pretty reasonable defense. With
(small perturbation) i, < 0.2, PixelDP achieves better certified accuracies under all attacks; since PixelDP does not preserve
DP to protect the training data, compared with other models. Meanwhile, our StoBatch model outperforms all the other
models when p, > 0.3, indicating a stronger defense to more aggressive attacks. More importantly, our StoBatch has a
consistent certified accuracy to different attacks given different attack sizes, compared with baseline approaches. In fact,
when 1, is increased from 0.05 to 0.6, our StoBatch shows a small drop (11.88% on average, from 84.29%(u, = 0.05)
to 72.41%(uq = 0.6)), compared with a huge drop of the PixelDP, i.e., from 94.19%(u, = 0.05) to 9.08% (. = 0.6)
on average under [-FGSM, MIM, and MadryEtAl attacks, and to 77.47%(p, = 0.6) under FGSM attack. Similarly,
we also register significant drops in terms of certified accuracy for SecureSGD (78.74%, from 86.74% to 7.99%) and
SecureSGD-AGM (81.97%, from 87.23% to 5.26%) on average. This is promising.

Results on the CIFAR-10 Dataset further strengthen our observations. In Figure 3, our StoBatch clearly outperforms
baseline models in all cases (p < 6.17e — 9), especially when the privacy budget is small (¢ < 4), yielding strong privacy
protections. On average conventional accuracy, our StoBatch mechanism has an improvement of 10.42% over SecureSGD
(p < 2.59¢ — 7), an improvement of 14.08% over SecureSGD-AGM (p < 5.03e — 9), an improvement of 29.22% over
AdLM (p < 5.28¢e — 26), and a 14.62% improvement over DP-SGD (p < 4.31e — 9). When the privacy budget is increased
from 2 to 10, the conventional accuracy of our StoBatch model increases from 42.02% to 46.76%, showing a 4.74%
improvement on average. However, the conventional accuracy of our model under adversarial example attacks is still low,
i.e., 44.22% on average given the privacy budget at 2.0. This opens a long-term research avenue to achieve better robustness
under strong privacy guarantees in adversarial learning.

e The accuracy of our model is consistent given different attacks with different adversarial perturbations (i, under a rigorous
DP protection (e = 2.0), compared with baseline approaches (Figure 5). In fact, when the attack size y,, increases from 0.05
to 0.5, the conventional accuracies of the baseline approaches are remarkably reduced, i.e., a drop of 25.26% on average
given the most effective baseline approach, SecureSGD. Meanwhile, there is a much smaller degradation (4.79% on average)
in terms of the conventional accuracy observed in our StoBatch model. Our model also achieves better accuracies compared
with baseline approaches in all cases (p < 8.2e — 10). Figure 7 further shows that our StoBatch model is more accurate than
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baseline approaches (i.e., €, is set to 0.1 in PixelDP) in terms of certified accuracy in all cases, with a tight privacy budget
set to 2.0 (p < 2.04e — 18). We register an improvement of 21.01% in our StoBatch model given the certified accuracy over
SecureSGD model, which is the most effective baseline approach (p < 2.04e — 18).

Scalability under Strong Iterative Attacks. First, we scale our model in terms of adversarial training in the CIFAR-10
dataset, in which the number of iterative attack steps is increased from T}, = 3 to T}, = 200 in training, and up to T,, =
2,000 in testing. Note that the traditional iterative batch-by-batch DP adversarial training (Alg. 1) is nearly infeasible in this
setting, taking over 30 days for one training with 600 epochs. Thanks to the parallel and distributed training, our StoBatch
only takes = 3 days to finish the training. More importantly, our StoBatch achieves consistent conventional and certified
accuracies under strong iterative attacks with 7, = 1,000, compared with the best baseline, i.e., SecureSGD (Figure 8).
Across attack sizes p, € {0.05,0.1,0.2,0.3,0.4,0.5} and steps T, € {100, 500, 1000, 2000}, on average, our StoBatch
achieves 44.87+1.8% and 42.18+1.8% in conventional and certified accuracies, compared with 29.474+12.5% and 20+6.1%
of SecureSGD (p < 1.05e — 9).

e We achieve a similar improvement over the Tiny ImageNet, i.e., following (Hendrycks & Dietterich, 2019), with
a ResNetl8 model, i.e., a larger dataset on a larger network (Figure 9). On average, across attack sizes p, €
{0.05,0.1,0.2,0.3,0.4, 0.5} and steps T, € {100, 500, 1000, 2000}, our StoBatch achieves 29.78+4.8% and 28.31+1.58%
in conventional and certified accuracies, compared with 8.99£5.95% and 8.72+5.5% of SecureSGD (p < 1.55e — 42).

Key observations: (1) Incorporating ensemble adversarial learning into DP preservation, tightened sensitivity bounds, a
random perturbation size p; at each training step, and composition robustness bounds in both input and latent spaces does
enhance the consistency, robustness, and accuracy of DP model against different attacks with different levels of perturbations.
These are key advantages of our mechanism; (2) As a result, our StoBatch model outperforms baseline algorithms, in
terms of conventional and certified accuracies in most of the cases. It is clear that existing DP-preserving approaches
have not been designed to withstand against adversarial examples; and (3) Our StoBatch training can help us to scale our
mechanism to larger DP DNNs and datasets with distributed adversarial learning, without affecting the model accuracies
and DP protections.
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Figure 2. Conventional accuracy on the MNIST dataset given €, under I (1o = 0.2) and T, = 10.
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Figure 3. Conventional accuracy on the CIFAR-10 dataset given ¢, under loc (e = 0.2) and T, = 3.

Figure 4. Conventional accuracy on the MNIST dataset given 1, (¢ = 0.2, tight DP protection) and 7}, = 10.
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Figure 5. Conventional accuracy on the CIFAR-10 dataset given p, (e = 2, tight DP protection) and 7, = 3.
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Figure 6. Certified accuracy on the MNIST dataset. € is set to 1.0 (tight DP protection) and 7, = 10.
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Figure 7. Certified accuracy on the CIFAR-10 dataset. € is set to 2 (tight DP protection) and and 75, = 3.
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Figure 8. Accuracy on the CIFAR-10 dataset, under Strong Iterative Attacks (7, = 1,000; 2, 000). € is set to 2 (tight DP protection).
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Figure 9. Accuracy on the Tiny ImageNet dataset, under Strong Iterative Attacks (7, = 1, 000; 2, 000). € is set to 5.





