
Stochastic Batch Mechanism: Scalable Differential Privacy with Certified Robustness in Adversarial Learning

A. Notations and Terminologies

Table 1. Notations and Terminologies.
D and x Training data with benign examples x ∈ [−1, 1]d

y = {y1, . . . , yK} One-hot label vector of K categories

f : Rd → RK Function/model f that maps inputs x
to a vector of scores f(x) = {f1(x), . . . , fK(x)}

yx ∈ y A single true class label of example x
y(x) = maxk∈K fk(x) Predicted label for the example x given the function f

xadv = x+ α Adversarial example where α is the perturbation
lp(µ) = {α ∈ Rd : ‖α‖p ≤ µ} The lp-norm ball of attack radius µ

(εr, δr) Robustness budget εr and broken probability δr
Efk(x) The expected value of fk(x)

Êlb and Êub
Lower and upper bounds of
the expected value Êf(x) = 1

n

∑
n f(x)n

a(x, θ1) Feature representation learning model with x and parameters θ1

Bt A batch of benign examples xi
RBt(θ1) Data reconstruction function given Bt in a(x, θ1)

h1Bt = {θT1 xi}xi∈Bt
The values of all hidden neurons in the hidden layer h1

of a(x, θ1) given the batch Bt
R̃Bt(θ1) andRBt(θ1) Approximated and perturbed functions ofRBt(θ1)

xi and x̃i Perturbed and reconstructed inputs xi
∆R = d(β + 2) Sensitivity of the approximated function R̃Bt(θ1)

h1Bt Perturbed affine transformation h1Bt

xadv
j = xadv

j + 1
mLap(

∆R
ε1

) DP adversarial examples crafting from benign example xj
Bt and B

adv
t Sets of perturbed inputs xi and DP adversarial examples xadv

j

LBt
(
θ2

)
Loss function of perturbed benign examples in Bt, given θ2

Υ
(
f(xadv

j , θ2), yj
)

Loss function of DP adversarial examples xadv
j , given θ2

LBt
(
θ2

)
DP loss function for perturbed benign examples Bt

L2Bt
(θ2) A part of the loss function LBt

(
θ2

)
that needs to be DP

f(M1, . . . ,Ms|x)
Composition scoring function given
independent randomizing mechanismsM1, . . . ,Ms

∆x
r and ∆h

r Sensitivities of x and h, given the perturbation α ∈ lp(1)
(ε1 + ε1/γx + ε1/γ + ε2) Privacy budget to protect the training data D

(κ+ ϕ)max Robustness size guarantee given an input x at the inference time

B. Functional Mechanism (Zhang et al., 2012)
Functional mechanism (Zhang et al., 2012) achieves ε-DP by perturbing the objective function LD(θ) and then releasing the
model parameter θ minimizing the perturbed objective function LD(θ) instead of the original θ, given a private training
dataset D. The mechanism exploits the polynomial representation of LD(θ). The model parameter θ is a vector that contains
d values θ1, . . . , θd. Let φ(θ) denote a product of θ1, . . . , θd, namely, φ(θ) = θc11 · θ

c2
2 · · · θ

cd
d for some c1, . . . , cd ∈ N. Let

Φj(j ∈ N) denote the set of all products of θ1, . . . , θd with degree j, i.e., Φj =
{
θc11 · θ

c2
2 · · · θ

cd
d

∣∣∣∑d
a=1 ca = j

}
. By the

Stone-Weierstrass Theorem (Rudin, 1976), any continuous and differentiable L(xi, θ) can always be written as a polynomial
of θ1, . . . , θd, for some J ∈ [0,∞], i.e., L(xi, θ) =

∑J
j=0

∑
φ∈Φj

λφxiφ(θ) where λφxi ∈ R denotes the coefficient of
φ(θ) in the polynomial.

For instance, the polynomial expression of the loss function in the linear regression is as follows: L(xi, θ) = (yi− x>i θ)2 =

y2
i −

∑d
j=1(2yixij)θj +

∑
1≤j,a≤d(xijxia)θjθa, where d (= d) is the number of features in xi. In fact, L(xi, θ) only

involves monomials in Φ0 = {1},Φ1 = {θ1, . . . , θd}, and Φ2 = {θiθa
∣∣i, a ∈ [1, d]}. Each φ(θ) has its own coefficient,
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e.g., for θj , its polynomial coefficient λφxi = −2yixij . Similarly, LD(θ) can be expressed as a polynomial of θ1, . . . , θd, as

LD(θ) =
∑
xi∈D

L(xi, θ) =

J∑
j=0

∑
φ∈Φj

∑
xi∈D

λφxiφ(θ) (14)

To achieve ε-DP, LD(θ) is perturbed by injecting Laplace noise Lap(∆
ε ) into its polynomial coefficients λφ, and

then the model parameter θ is derived to minimize the perturbed function LD(θ), where the global sensitivity ∆ =

2 maxx
∑J
j=1

∑
φ∈Φj

‖λφx‖1 is derived given any two neighboring datasets. To guarantee that the optimization of
θ = arg minθ LD(θ) achieves ε-DP without accessing the original data, i.e., that may potentially incur additional privacy
leakage, grid search-based approaches are applied to learn the ε-DP parameters θ with low loss LD(θ). Although this
approach works well in simple tasks, i.e., logistic regression, it may not be optimal in large models, such as DNNs.

C. Pseudo-code of Adversarial Training (Kurakin et al., 2016b)
Let lp(µ) = {α ∈ Rd : ‖α‖p ≤ µ} be the lp-norm ball of radius µ. One of the goals in adversarial learning is to minimize
the risk over adversarial examples: θ∗ = arg minθ E(x,ytrue)∼D

[
max‖α‖p≤µ L

(
f(x+ α, θ), yx

)]
, where an attack is used

to approximate solutions to the inner maximization problem, and the outer minimization problem corresponds to training the
model f with parameters θ over these adversarial examples xadv = x+ α. There are two basic adversarial example attacks.
The first one is a single-step algorithm, e.g., FGSM algorithm (Goodfellow et al., 2014), in which only a single gradient
computation is required to find adversarial examples by solving the inner maximization max‖α‖p≤µ L

(
f(x+α, θ), yx

)
. The

second one is an iterative algorithm, e.g., Iterative-FGSM algorithm (Kurakin et al., 2016a), in which multiple gradients
are computed and updated in Tµ small steps, each of which has a size of µ/Tµ.

Given a loss function:

L(θ) =
1

m1 + ξm2

( ∑
xi∈Bt

L
(
f(xi, θ), yi

)
+ ξ

∑
xadv
j ∈Badv

t

Υ
(
f(xadv

j , θ), yj
))

(15)

where m1 and m2 correspondingly are the numbers of examples in Bt and Badv
t at each training step. Algorithm 2 presents

the vanilla adversarial training.

Algorithm 2 Adversarial Training (Kurakin et al., 2016b)
Input: DatabaseD, loss functionL, parameters θ, batch sizesm1 andm2, learning rate %t, parameter ξ

1: Initialize θ randomly
2: for t ∈ [T ] do
3: Take a random batch Bt with the size m1, and a random batch Ba with the size m2

4: Craft adversarial examples Badv
t = {xadv

j }j∈[1,m2] from corresponding benign examples xj ∈ Ba
5: Descent: θ ← θ − %t∇θL(θ)

D. Pseudo-code of Verified Inferring and StoBatch Training

Algorithm 3 Verified Inferring
Input: (an input x, attack size µa)

1: Compute robustness size (κ+ ϕ)max in Eq. 13 of x
2: if (κ+ ϕ)max ≥ µa then
3: Return isRobust(x) = True, label k, (κ+ ϕ)max
4: else
5: Return isRobust(x) = False, label k, (κ+ ϕ)max
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Algorithm 4 StoBatch Training
Input: Database D, loss function L, parameters θ, batch size m, learning rate %t, privacy budgets: ε1 and ε2, robustness
parameters: εr, ∆x

r , and ∆h
r , adversarial attack size µa, the number of invocations n, ensemble attacks A, parameters ψ and

ξ, the size |hπ| of hπ , a number of N random local trainers (N ≤ N/(2m))
1: Draw Noise χ1 ← [Lap(∆R

ε1
)]d, χ2 ← [Lap(∆R

ε1
)]β , χ3 ← [Lap(∆L2

ε2
)]|hπ|

2: Randomly Initialize θ = {θ1, θ2}, B = {B1, . . . , BN/m} s.t. ∀B ∈ B : B is a batch with the size m, B1 ∩ . . . ∩
BN/m = ∅, and B1 ∪ . . . ∪BN/m = D, B = {B1, . . . , BN/m} where ∀i ∈ [1, N/m] : Bi = {x← x+ χ1

m }x∈Bi
3: Construct a deep network f with hidden layers {h1 + 2χ2

m , . . . ,hπ}, where hπ is the last hidden layer
4: Distribute fixed and disjoint batches B to N/(2m) local trainers, each of which have two batches {Bi1, Bi2} randomly

picked from B with i ∈ [1, N/(2m)]
5: for t ∈ [T ] do
6: Randomly Pick N local trainers, each of which Gets the latest global parameters θ from the parameter server
7: for i ∈ [1,N] do
8: Assign Bt,i ← Bi1
9: Ensemble DP Adversarial Examples:

10: Draw Random Perturbation Value µt ∈ (0, 1], Assign Badv
t,i ← ∅

11: for l ∈ A do
12: Take the next batch Ba ⊂ Bi2 with the size m/|A|
13: ∀xj ∈ Ba: Craft xadv

j by using attack algorithm A[l] with l∞(µt), B
adv
t,i ← B

adv
t,i ∪ xadv

j

14: Compute∇iθ1 ← ∇θ1RBt,i∪Badv
t,i

(θ1),∇iθ2 ← ∇θ2LBt,i∪Badv
t,i

(θ2) with the noise χ3

m

15: Send ∇iθ1 and∇iθ2 to the parameter server
16: Descent: θ1 ← θ1 − %t 1

N
∑
i∈[1,N]∇iθ1; θ2 ← θ2 − %t 1

N
∑
i∈[1,N]∇iθ2, on the parameter server

Output: ε = (ε1 + ε1/γx + ε1/γ + ε2)-DP parameters θ = {θ1, θ2}, robust model with an εr budget

E. Proof of Lemma 2
Proof 1 Assume that Bt and B′t differ in the last tuple, xm (x′m). Then,

∆R =

d∑
j=1

[∥∥ ∑
xi∈Bt

1

2
hi −

∑
x′i∈B′t

1

2
h′i
∥∥

1
+
∥∥ ∑
xi∈Bt

xij −
∑
x′i∈B′t

x′ij
∥∥

1

]

≤ 2 max
xi

d∑
j=1

(‖1

2
hi‖1 + ‖xij‖1) ≤ d(β + 2)

F. Proof of Lemma 3
Proof 2 Regarding the computation of h1Bt

= {θT1 xi}xi∈Bt , we can see that hi = θ
T

1 xi is a linear function of x. The
sensitivity of a function h is defined as the maximum change in output, that can be generated by a change in the input
(Lecuyer et al., 2018). Therefore, the global sensitivity of h1 can be computed as follows:

∆h1
=
‖
∑
xi∈Bt θ

T

1 xi −
∑
x′i∈B

′
t
θ
T

1 x
′
i‖1

‖
∑
xi∈Bt xi −

∑
x′i∈B

′
t
x′i‖1

≤ max
xi∈Bt

‖θT1 xi‖1
‖xi‖1

≤ ‖θT1 ‖1,1

following matrix norms (Operator norm, 2018): ‖θT1 ‖1,1 is the maximum 1-norm of θ1’s columns. By injecting Laplace

noise Lap(∆h1

ε1
) into h1Bt , i.e., h1Bt

= {θT1 xi + Lap(
∆h1

ε1
)}xi∈Bt , we can preserve ε1-DP in the computation of h1Bt

.

Let us set ∆h1
= ‖θT1 ‖1,1, γ = 2∆R

m∆h1
, and χ2 drawn as a Laplace noise [Lap(∆R

ε1
)]β , in our mechanism, the perturbed



Stochastic Batch Mechanism: Scalable Differential Privacy with Certified Robustness in Adversarial Learning

affine transformation h1Bt
is presented as:

h1Bt
= {θT1 xi +

2χ2

m
}xi∈Bt = {θT1 xi +

2

m
[Lap(

∆R
ε1

)]β}xi∈Bt

= {θT1 xi + [Lap(
γ∆h1

ε1
)]β}xi∈Bt = {θT1 xi + [Lap(

∆h1

ε1/γ
)]β}xi∈Bt

This results in an (ε1/γ)-DP affine transformation h1Bt = {θT1 xi + [Lap(
∆h1

ε1/γ
)]β}xi∈Bt .

Similarly, the perturbed inputs Bt = {xi}xi∈Bt = {xi + χ1

m }xi∈Bt = {xi + [Lap( ∆x

ε1/γx
)]d}xi∈Bt , where ∆x is the

sensitivity measuring the maximum change in the input layer that can be generated by a change in the batch Bt and

γx = ∆R
m∆x

. Following (Lecuyer et al., 2018), ∆x can be computed as follows: ∆x =
‖
∑
xi∈Bt

xi−
∑
x′
i
∈B′t

x′i‖1
‖
∑
xi∈Bt

xi−
∑
x′
i
∈B′t

x′i‖1
= 1. As a

result, the computation of Bt is (ε1/γx)-DP. Consequently, Lemma 3 does hold.

G. Proof of Theorem 1
Proof 3 Given χ1 drawn as a Laplace noise [Lap(∆R

ε1
)]d and χ2 drawn as a Laplace noise [Lap(∆R

ε1
)]β , the perturbation

of the coefficient φ ∈ Φ = { 1
2hi, xi}, denoted as φ, can be rewritten as follows:

for φ ∈ {xi} : φ =
∑
xi∈B

(φxi +
χ1

m
) =

∑
xi∈B

φxi + χ1 =
∑
xi∈B

φxi + [Lap(
∆R
ε1

)]d (16)

for φ ∈ {1

2
hi} : φ =

∑
xi∈B

1

2
(hi +

2χ2

m
) =

∑
xi∈B

(φxi +
χ2

m
) =

∑
xi∈B

φxi + χ2 =
∑
xi∈B

φxi + [Lap(
∆R
ε1

)]β (17)

we have

Pr
(
RBt(θ1)

)
=

d∏
j=1

∏
φ∈Φ

exp
(
−
ε1‖
∑
xi∈Bt φxi − φ‖1

∆R

)
∆R is set to d(β + 2), we have that:

Pr
(
RBt(θ1)

)
Pr
(
RB′t(θ1)

) =

∏d
j=1

∏
φ∈Φ exp

(
−

ε1‖
∑
xi∈Bt

φxi−φ‖1
∆R

)
∏d
j=1

∏
φ∈Φ exp

(
−

ε1‖
∑
x′
i
∈B′t

φx′
i
−φ‖1

∆R

)
≤

d∏
j=1

∏
φ∈Φ

exp(
ε1

∆R

∥∥∥ ∑
xi∈Bt

φxi −
∑
x′i∈B′t

φx′i

∥∥∥
1
)

≤
d∏
j=1

∏
φ∈Φ

exp(
ε1

∆R
2 max
xi∈Bt

∥∥φxi∥∥1
) ≤ exp(

ε1d(β + 2)

∆R
) = exp(ε1) (18)

Consequently, the computation of RBt(θ1) preserves ε1-DP in Alg. 1 (Result 1). To show that gradient descent-based
optimizers can be used to optimize the objective functionRBt(θ1) in learning private parameters θ1, we prove that all the
computations on top of the perturbed data Bt, including hi, hi, x̃i, gradients and descent, are DP without incurring any
additional information from the original data, as follows.

First, by following the post-processing property in DP (Dwork & Roth, 2014), it is clear that the computations of h1Bt
=

{hi}xi∈Bt = θT1 {xi}xi∈Bt is (ε1/γx)-DP. As in Lemma 3, we also have that h1Bt
= {hi+ 2χ2

m }xi∈Bt is (ε1/γ)-DP. Given
this, it is obvious that x̃i = {x̃i}xi∈Bt = θ1{hi}xi∈Bt is (ε1/γ)-DP, i.e., the post-processing property in DP. In addition,
the computations of h1Bt

, h1Bt
, and x̃i do not access the original data Bt. Therefore, they do not incur any additional

information from the private data, except the privacy loss measured by (ε1/γx)-DP, since the computations of h1Bt
and x̃i

are based on the (ε1/γx)-DP h1Bt
. (Result 2)
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Second, the gradient of a particular parameter θ1j , with ∀j ∈ [1, d], can be computed as follows:

∀j ∈ [1, d] : ∇θ1jRBt(θ1) =
δRBt(θ1)

δθ1j
=

m∑
i=1

hi(
1

2
− xij) (19)

=

m∑
i=1

(hi +
2χ2

m
)(

1

2
− xij) (20)

=
[ m∑
i=1

hi(
1

2
− xij)

]
+ χ2 −

[2χ2

m

m∑
i=1

xij
]

(21)

In Eq. 21, we have that
∑m
i=1 xij = (

∑m
i=1 xij) + Lap(∆R

ε1
) (Eq. 16), which is (ε1/γx)-DP. Therefore, the term

2χ2

m

∑m
i=1 xij also is (ε1/γx)-DP (the post-processing property in DP). (Result 3)

Regarding the term
∑m
i=1 hi(

1
2 − xij) in Eq. 21, its global sensitivity given two arbitrary neighboring batches, denoted as

∆g , can be bounded as follows: ∆g ≤ 2 maxxi‖hi( 1
2 − xij)‖1 = 3β. As a result, we have that:

[ m∑
i=1

hi(
1

2
− xij)

]
+ χ2 =

[ m∑
i=1

hi(
1

2
− xij)

]
+ [Lap(

∆g

ε1/
∆R
∆g

)]β (22)

which is (ε1/
∆R
∆g

)-DP. (Result 4)

From Results 3 and 4, the computation of gradients ∇θ1jRBt(θ1) is (ε1/
∆R
∆g

+ ε1/γx)-DP, since: (1) The computations
of the two terms in Eq. 21 can be treated as two independent DP-preserving mechanisms applied on the perturbed batch
Bt; and (2) This is true for every dimension j ∈ [1, d], each of which ∇θ1j is independently computed and bounded. It
is important to note that this result is different from the traditional DPSGD (Abadi et al., 2016), in which the parameter
gradients are jointly clipped by a l2-norm constant bound, such that Gaussian noise can be injected to achieve DP. In
addition, as in Eq. 19, the computation of ∇θ1jRBt(θ1) only uses (ε1/γx)-DP Bt = {xi}xi∈Bt and (ε1/γ)-DP h1Bt

,
without accessing the original data. Basically, h1Bt

is computed on top of Bt, without touching any benign example.
Therefore, it does not incur any additional information from the private data, except the privacy loss (ε1/

∆R
∆g

+ ε1/γx)-DP.

In practice, we observed that ε1/γx � ε1/
∆R
∆g

u ε1× 1e− 3, which is tiny. We can simply consider that the computation of

gradients∇θ1jRBt(θ1) is (ε1/γx)-DP without affecting the general DP protection. In addition to the gradient computation,
the descent operations are simply post-processing steps without consuming any further privacy budget. (Result 5)

From Results 1, 2, and 5, we have shown that all the computations on top of (ε1/γx)-DP Bt, including parameter gradients
and gradient descents, clearly are DP without accessing the original data; therefore, they do not incur any additional
information from the private data (the post-processing property in DP). As a result, gradient descent-based approaches can
be applied to optimizeRBt(θ1) in Alg. 1. The total privacy budget to learn the perturbed optimal parameters θ1 in Alg. 1 is
(ε1/γx + ε1)-DP, where the ε1/γx is counted for the perturbation on the batch of benign examples Bt.

Consequently, Theorem 1 does hold.

H. Proof of Lemma 4
Proof 4 Assume that Bt and B

′
t differ in the last tuple, and xm (x′m) be the last tuple in Bt (B

′
t), we have that

∆L2 =

K∑
k=1

∥∥∥ ∑
xi∈Bt

(hπiyik)−
∑
x′i∈B

′
t

(h′πiy
′
ik)
∥∥∥

1
=

K∑
k=1

∥∥hπmymk − h′πmy
′
mk

∥∥
1

Since ymk and y′mk are one-hot encoding, we have that ∆L2 ≤ 2 maxxi‖hπi‖1. Given hπi ∈ [−1, 1], we have

∆L2 ≤ 2|hπ| (23)

Lemma 4 does hold.
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I. Proof of Theorem 3
Proof 5 Let Bt and B

′
t be neighboring batches of benign examples, and χ3 drawn as Laplace noise [Lap(∆L2

ε2
)]|hπ|, the

perturbations of the coefficients hπiyik can be rewritten as:

hπiyik =
∑
xi

(hπiyik +
χ3

m
) =

∑
xi

(hπiyik) + [Lap(
∆L2

ε2
)]|hπ|

Since all the coefficients are perturbed, and given ∆L2 = 2|hπ|, we have that

Pr(LBt(θ2))

Pr(LB′t(θ2))
=
Pr(L1Bt

(θ2))

Pr(L1B
′
t
(θ2))

×
Pr(L2Bt

(θ2))

Pr(L2B
′
t
(θ2))

≤ eε1/γ
K∑
k=1

exp(−
ε2‖

∑
xi

hπiyik−hπiyik‖1
∆L2

)

exp(−
ε2‖

∑
x′
i
hπiyik−hπiyik‖1

∆L2
)

≤ eε1/γ
K∑
k=1

exp(
ε2

∆L2

∥∥∑
xi

hπiyik −
∑
x′i

hπiyik
∥∥

1
)

≤ eε1/γ exp(
ε2

∆L2
2 max

xi
‖hπi‖1) = eε1/γ+ε2

The computation of L2Bt

(
θ2

)
preserves (ε1/γ + ε2)-differential privacy. Similar to Theorem 1, the gradient descent-based

optimization of L2Bt

(
θ2

)
does not access additional information from the original input xi ∈ Bt. It only reads the

(ε1/γ)-DP h1Bt
= {hi + 2χ2

m }xi∈Bt . Consequently, the optimal perturbed parameters θ2 derived from L2Bt

(
θ2

)
are

(ε1/γ + ε2)-DP.

J. Proofs of Theorem 2 and Theorem 4
Proof 6 First, we optimize for a single draw of noise during training (Line 3, Alg. 1) and all the batches of perturbed benign
examples are disjoint and fixed across epochs. As a result, the computation of xi is equivalent to a data preprocessing
step with DP, which does not incur any additional privacy budget consumption over T training steps (the post-processing
property of DP) (Result 1). That is different from repeatedly applying a DP mechanism on either the same or overlapping
datasets causing the accumulation of the privacy budget.

Now, we show that our algorithm achieves DP at the dataset level D. Let us consider the computation of the first
hidden layer, given any two neighboring datasets D and D′ differing at most one tuple xe ∈ D and x′e ∈ D′. For any
O =

∏N/m
i=1 oi ∈

∏N/m
i=1 h1Bi

(∈ Rβ×m), we have that

P
(
h1D = O

)
P
(
h1D′ = O

) =
P (h1B1

= o1) . . . P (h1BN/m
= oN/m)

P (h1B
′
1

= o1) . . . P (h1B
′
N/m

= oN/m)
(24)

By having disjoint and fixed batches, we have that:

∃!B̃ ∈ B s.t. xe ∈ B̃ and ∃!B̃′ ∈ B
′

s.t. x′e ∈ B̃′ (25)

From Eqs. 24, 25, and Lemma 3, we have that

∀B ∈ B, B 6= B̃ : B = B
′ ⇒

P
(
h1B = o

)
P
(
h1B

′ = o
) = 1 (26)

Eqs. 25 and 26⇒
P
(
h1D = O

)
P
(
h1D′ = O

) =
P
(
h1B̃ = õ

)
P
(
h1B̃′ = õ

) ≤ eε1/γ (27)

As a result, the computation of h1D is (ε1/γ)-DP given the data D, since the Eq. 27 does hold for any tuple xe ∈ D. That
is consistent with the parallel composition property of DP, in which batches can be considered disjoint datasets given h1B

as a DP mechanism (Dwork & Roth, 2014).
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This does hold across epochs, since batches B are disjoint and fixed among epochs. At each training step t ∈ [1, T ], the
computation of h1Bt

does not access the original data. It only reads the perturbed batch of inputs Bt, which is (ε1/γx)-DP
(Lemma 3). Following the post-processing property in DP (Dwork & Roth, 2014), the computation of h1Bt

does not incur
any additional information from the original data across T training steps. (Result 2)

Similarly, we show that the optimization of the functionRBt(θ1) is (ε1/γx + ε1)-DP across T training steps. As in Theorem

1 and Proof 3, we have that Pr
(
RB(θ1)

)
=
∏d
j=1

∏
φ∈Φ exp

(
−

ε1‖
∑
xi∈B

φxi−φ‖1
∆R

)
, where B ∈ B. Given any two

perturbed neighboring datasets D and D
′

differing at most one tuple xe ∈ D and x′e ∈ D
′
:

Pr
(
RD(θ1)

)
Pr
(
RD′(θ1)

) =
Pr
(
RB1

(θ1)
)
. . . P r

(
RBN/m(θ1)

)
Pr
(
RB′1(θ1)

)
. . . P r

(
RB′N/m(θ1)

) (28)

From Eqs. 25, 28, and Theorem 1, we have that

∀B ∈ B, B 6= B̃ : B = B
′ ⇒

P
(
RB(θ1)

)
P
(
RB′(θ1)

) = 1 (29)

Eqs. 28 and 29⇒
P
(
RD(θ1)

)
P
(
RD′(θ1)

) =
P
(
RB̃(θ1)

)
P
(
RB̃′(θ1)

) ≤ eε1 (30)

As a result, the optimization ofRD(θ1) is (ε1/γx + ε1)-DP given the data D (which is ε1/γx-DP (Lemma 3)), since the Eq.
30 does hold for any tuple xe ∈ D. This is consistent with the parallel composition property in DP (Dwork & Roth, 2014),
in which batches can be considered disjoint datasets and the optimization of the function on one batch does not affect the
privacy guarantee in any other batch, even the objective function given one batch can be slightly different from the objective
function given any other batch in B. In addition, ∀t ∈ [1, T ], the optimization of RBt(θ1) does not use any additional
information from the original data D. Consequently, the privacy budget is (ε1/γx + ε1) across T training steps, following
the post-processing property in DP (Dwork & Roth, 2014) (Result 3).

Similarly, we can also prove that optimizing the data reconstruction functionR
B
adv
t

(θ1) given the DP adversarial examples

crafted in Eqs. 7 and 8, i.e., xadv
j , is also (ε1/γx + ε1)-DP given t ∈ [1, T ] on the training data D. First, DP adversarial

examples xadv
j are crafted from perturbed benign examples xj . As a result, the computation of the batch B

adv

t of DP
adversarial examples is 1) (ε1/γx)-DP (the post-processing property of DP (Dwork & Roth, 2014)), and 2) does not access
the original data ∀t ∈ [1, T ]. In addition, the computation of h

1B
adv
t

and the optimization ofR
B
adv
t

(θ1) correspondingly

are ε1/γ-DP and ε1-DP. In fact, the data reconstruction functionR
B
adv
t

is presented as follows:

R
B
adv
t

(θ1) =
∑

xadv
j ∈B

adv
t

[ d∑
i=1

(
1

2
θ1ih

adv
j )− xadv

j x̃adv
j

]

=
∑

xadv
j ∈B

adv
t

[ d∑
i=1

(
1

2
θ1ih

adv
j )− xj x̃adv

j − µ · sign
(
∇xjL

(
f(xj , θ), y(xj)

))
x̃adv
j

]

=
∑

xadv
j ∈B

adv
t

[ d∑
i=1

(
1

2
θ1ih

adv
j )− xj x̃adv

j

]
−

∑
xadv
j ∈B

adv
t

µ · sign
(
∇xjL

(
f(xj , θ), y(xj)

))
x̃adv
j (31)

where hadv
j = θT1 x

adv
j , h

adv
j = hadv

j + 2
mLap(

∆R
ε1

), and x̃adv
j = θ1h

adv
j . The right summation component in Eq. 31 does

not disclose any additional information, since the sign(·) function is computed from perturbed benign examples (the
post-processing property in DP (Dwork & Roth, 2014)). Meanwhile, the left summation component has the same form with
RBt(θ1) in Eq. 6. Therefore, we can employ the Proof 3 in Theorem 1, by replacing the coefficients Φ = { 1

2hi, xi} with
Φ = { 1

2h
adv
j , xj} to prove that the optimization ofR

B
adv
t

(θ1) is (ε1/γx + ε1)-DP. As a result, Theorem 2 does hold. (Result
4)

In addition to the Result 4, by applying the same analysis in Result 3, we can further show that the optimization of
RDadv(θ1) is (ε1/γx + ε1)-DP given the DP adversarial examples Dadv crafted using the data D across T training steps,
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since batches used to created DP adversarial examples are disjoint and fixed across epochs. It is also straightforward to
conduct the same analysis in Result 2, in order to prove that the computation of the first affine transformation h

1B
adv
t

=

{θT1 xadv
j + 2

mLap(
∆R
ε1

)}
xadv
j ∈B

adv
t

given the batch of DP adversarial examples B
adv

t , is (ε1/γ)-DP with t ∈ [1, T ] training

steps. This is also true given the data level Dadv. (Result 5)

Regarding the output layer, the Algorithm 1 preserves (ε1/γ + ε2)-DP in optimizing the adversarial objective function
L
Bt∪B

adv
t

(θ2) (Theorem 3). We apply the same technique to preserve (ε1/γ + ε2)-DP across T training steps given

disjoint and fixed batches derived from the private training data D. In addition, as our objective functions R and L are
always optimized given two disjoint batches Bt and B

adv
t , the privacy budget used to preserve DP in these functions is

(ε1 + ε1/γ + ε2), following the parallel composition property in DP (Dwork & Roth, 2014). (Result 6)

With the Results 1-6, all the computations and optimizations in the Algorithm 1 are DP following the post-processing
property in DP (Dwork & Roth, 2014), by working on perturbed inputs and perturbed coefficients. The crafting and utilizing
processes of DP adversarial examples based on the perturbed benign examples do not disclose any additional information.
The optimization of our DP adversarial objective function at the output layer is DP to protect the ground-truth labels. More
importantly, the DP guarantee in learning given the whole dataset level D is equivalent to the DP guarantee in learning on
disjoint and fixed batches across epochs. Consequently, Algorithm 1 preserves (ε1 + ε1/γx + ε1/γ + ε2)-DP in learning
private parameters θ = {θ1, θ2} given the training data D across T training steps. Note that the ε1/γx is counted for the
perturbation on the benign examples. Theorem 4 does hold.

K. Proof of Lemma 5
Proof 7 Thanks to the sequential composition theory in DP (Dwork & Roth, 2014), f(M1, . . . ,MS |x) is (

∑
s εs)-DP,

since for any O =
∏S
s=1 os ∈

∏S
s=1 f

s(x)(∈ RK), we have that

P
(
f(M1, . . . ,MS |x) = O

)
P
(
f(M1, . . . ,MS |x+ α) = O

) =
P (M1f(x) = o1) . . . P (MSf(x) = oS)

P (M1f(x+ α) = o1) . . . P (MSf(x+ α) = oS)

≤
S∏
s=1

exp(εs) = e(
∑S
s=1 εs)

As a result, we have
P
(
f(M1, . . . ,MS |x)

)
≤ e(

∑
i εi)P

(
f(M1, . . . ,MS |x+ α)

)
The sequential composition of the expected output is as:

Ef(M1, . . . ,MS |x) =

∫ 1

0

P
(
f(M1, . . . ,MS |x) > t

)
dt

≤ e(
∑
s εs)

∫ 1

0

P
(
f(M1, . . . ,MS |x+ α) > t

)
dt

= e(
∑
s εs)Ef(M1, . . . ,MS |x+ α)

Lemma 5 does hold.

L. Proof of Theorem 5
Proof 8 ∀α ∈ lp(1), from Lemma 5, with probability ≥ η, we have that

Êfk(M1, . . . ,MS |x+ α) ≥ Êfk(M1, . . . ,MS |x)

e(
∑s
s=1 εs)

≥ Êlbfk(M1, . . . ,MS |x)

e(
∑S
s=1 εs)

(32)

In addition, we also have

∀i 6= k : Êfi:i6=k(M1, . . . ,MS |x+ α) ≤ e(
∑S
s=1 εs)Êfi:i6=k(M1, . . . ,MS |x)
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⇒ ∀i 6= k : Êfi(M1, . . . ,MS |x+ α) ≤ e(
∑S
s=1 εs) max

i:i6=k
Êubfi(M1, . . . ,MS |x) (33)

Using the hypothesis (Eq. 12) and the first inequality (Eq. 32), we have that

Êfk(M1, . . . ,MS |x+ α) >
e2(

∑S
s=1 εs) maxi:i 6=k Êubfi(M1, . . . ,MS |x)

e(
∑S
s=1 εs)

> e(
∑S
s=1 εs) max

i:i6=k
Êubfi(M1, . . . ,MS |x)

Now, we apply the third inequality (Eq. 33), we have that

∀i 6= k : Êfk(M1, . . . ,MS |x+ α) > Êfi(M1, . . . ,MS |x+ α)

⇔ Êfk(M1, . . . ,MS |x+ α) > max
i:i 6=k

Êfi(M1, . . . ,MS |x+ α)

The Theorem 5 does hold.

M. Proof of Corollary 1
Proof 9 ∀α ∈ lp(1), by applying Theorem 5, we have

Êlbfk(Mh,Mx|x) > e2(κεr+ϕεr) max
i:i 6=k

Êubfi(Mh,Mx|x)

> e2(κ+ϕ)εr max
i:i6=k

Êubfi(Mh,Mx|x)

Furthermore, by applying group privacy, we have that

∀α ∈ lp(κ+ ϕ) : Êlbfk(Mh,Mx|x) > e2εr max
i:i 6=k

Êubfi(Mh,Mx|x)

By applying Proof 8, it is straight to have

∀α ∈ lp(κ+ ϕ) : Êfk(Mh,Mx|x+ α) > max
i:i6=k

Êfk(Mh,Mx|x+ α)

with probability ≥ η. Corollary 1 does hold.

N. Effective Monte Carlo Estimation of Êf(x)

Recall that the Monte Carlo estimation is applied to estimate the expected value Êf(x) = 1
n

∑
n f(x)n, where n is the

number of invocations of f(x) with independent draws in the noise, i.e., 1
mLap(0,

∆R
ε1

) and 2
mLap(0,

∆R
ε1

) in our case.
When ε1 is small (indicating a strong privacy protection), it causes a notably large distribution shift between training and
inference, given independent draws of the Laplace noise.

In fact, let us denote a single draw in the noise as χ1 = 1
mLap(0,

∆R
ε1

) used to train the function f(x), the model converges
to the point that the noise χ1 and 2χ2 need to be correspondingly added into x and h in order to make correct predictions.
χ1 can be approximated as Lap(χ1, %), where %→ 0. It is clear that independent draws of the noise 1

mLap(0,
∆R
ε1

) have
distribution shifts with the fixed noise χ1 u Lap(χ1, %). These distribution shifts can also be large, when noise is large. We
have experienced that these distribution shifts in having independent draws of noise to estimate Êf(x) can notably degrade
the inference accuracy of the scoring function, when privacy budget ε1 is small resulting in a large amount of noise injected
to provide strong privacy guarantees.

To address this, one solution is to increase the number of invocations of f(x), i.e., n, to a huge number per prediction.
However, this is impractical in real-world scenarios. We propose a novel way to draw independent noise following
the distribution of χ1 + 1

mLap(0,
∆R
ε1
/ψ) for the input x and 2χ2 + 2

mLap(0,
∆R
ε1
/ψ) for the affine transformation h,

where ψ is a hyper-parameter to control the distribution shifts. This approach works well and does not affect the DP
bounds and the certified robustness condition, since: (1) Our mechanism achieves both DP and certified robustness in the
training process; and (2) It is clear that Êf(x) = 1

n

∑
n f(x)n = 1

n

∑
n g
(
a(x + χ1 + 1

mLapn(0, ∆R
ε1
/ψ), θ1) + 2χ2 +
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2
mLapn(0, ∆R

ε1
/ψ), θ2

)
, where Lapn(0, ∆R

ε1
/ψ) is the n-th draw of the noise. When n → ∞, Êf(x) will converge to

1
n

∑
n g
(
a(x+ χ1, θ1) + 2χ2, θ2

)
, which aligns well with the convergence point of the scoring function f(x). Injecting χ1

and 2χ2 to x and h during the estimation of Êf(x) yields better performance, without affecting the DP and the composition
robustness bounds.

O. Approximation Error Bounds

To compute how much error our polynomial approximation approaches (i.e., truncated Taylor expansions), R̃Bt(θ1) (Eq. 5)
and LBt

(
θ2

)
, incur, we directly apply Lemma 4 in (Phan et al., 2016), Lemma 3 in (Zhang et al., 2012), and the well-known

error bound results in (Apostol, 1967). Note that R̃Bt(θ1) is the 1st-order Taylor series and LBt
(
θ2

)
is the 2nd-order Taylor

series following the implementation of (TensorFlow). Let us closely follow (Phan et al., 2016; Zhang et al., 2012; Apostol,
1967) to adapt their results into our scenario, as follows:

Given the truncated function R̃Bt(θ1) =
∑
xi∈Bt

∑d
j=1

∑2
l=1

∑1
r=0

F
(r)
lj (0)

r!

(
θ1jhi

)r
, the original Taylor polynomial

function R̂Bt(θ1) =
∑
xi∈Bt

∑d
j=1

∑∞
l=1

∑1
r=0

F
(r)
lj (0)

r!

(
θ1jhi

)r
, the average error of the approximation is bounded as

1

|Bt|
|R̂Bt(θ̃1)− R̂Bt(θ̂1)| ≤ 4e× d

(1 + e)2
(34)

1

|Bt|
|L̂Bt(θ̃2)− L̂Bt(θ̂2)| ≤ e2 + 2e− 1

e(1 + e)2
×K (35)

where θ̂1 = arg minθ1 R̂Bt(θ1), θ̃1 = arg minθ1 R̃Bt(θ1), L̂Bt(θ2) is the original Taylor polynomial function of∑
xi∈Bt L

(
f(xi, θ2), yi

)
, θ̂2 = arg minθ2 L̂Bt(θ2), θ̃2 = arg minθ2 LBt(θ2).

Proof 10 Let U = maxθ1
(
R̂Bt(θ1)− R̃Bt(θ1)

)
and S = minθ1

(
R̂Bt(θ1)− R̃Bt(θ1)

)
.

We have that U ≥ R̂Bt(θ̃1)− R̃Bt(θ̃1) and ∀θ∗1 : S ≤ R̂Bt(θ∗1)− R̃Bt(θ∗1). Therefore, we have

R̂Bt(θ̃1)− R̃Bt(θ̃1)− R̂Bt(θ∗1) + R̃Bt(θ∗1) ≤ U − S (36)

⇔R̂Bt(θ̃1)− R̂Bt(θ∗1) ≤ U − S +
(
R̃Bt(θ̃1)− R̃Bt(θ∗1)

)
(37)

In addition, R̃Bt(θ̃1)− R̃Bt(θ∗1) ≤ 0, it is straightforward to have:

R̂Bt(θ̃1)− R̂Bt(θ∗1) ≤ U − S (38)

If U ≥ 0 and S ≤ 0 then we have:
|R̂Bt(θ̃1)− R̂Bt(θ∗1)| ≤ U − S (39)

Eq. 39 holds for every θ∗1 , including θ̂1. Eq. 39 shows that the error incurred by truncating the Taylor series approximate
function depends on the maximum and minimum values of R̂Bt(θ1)− R̃Bt(θ1). This is consistent with (Phan et al., 2016;
Zhang et al., 2012). To quantify the magnitude of the error, we rewrite R̂Bt(θ1)− R̃Bt(θ1) as:

R̂Bt(θ1)− R̃Bt(θ1) =

d∑
j=1

(
R̂Bt(θ1j)− R̃Bt(θ1j)

)
(40)

=

d∑
j=1

( |Bt|∑
i=1

2∑
l=1

∞∑
r=3

F
(r)
lj (zlj)

r!

(
glj(xi, θ1j)− zlj

)r)
(41)

where g1j(xi, θ1j) = θ1jhi and g2j(xi, θ1j) = θ1jhi.

By looking into the remainder of Taylor expansion for each j (i.e., following (Phan et al., 2016; Apostol, 1967)), with zj ∈

[zlj−1, zlj+1], 1
|Bt|
(
R̂Bt(θ1j)−R̃Bt(θ1j)

)
must be in the interval

[∑
l

minzj F
(2)
lj (zj)(zj−zlj)2

2! ,
∑
l

maxzj F
(2)
lj (zj)(zj−zlj)2

2!

]
.
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If
∑
l

maxzj F
(2)
lj (zj)(zj−zlj)2

2! ≥ 0 and
∑
l

minzj F
(2)
lj (zj)(zj−zlj)2

2! ≤ 0, then we have that | 1
|Bt|
(
R̂Bt(θ1) − R̃Bt(θ1)

)
| ≤∑d

j=1

∑
l

maxzj F
(2)
lj (zj)(zj−zlj)2−minzj F

(2)
lj (zj)(zj−zlj)2

2! . This can be applied to the case of our auto-encoder, as follows:

For the functions F1j(zj) = xij log(1 + e−zj ) and F2j(zj) = (1− xij) log(1 + ezj ), we have F
(2)
1j (zj) =

xije
−zj

(1+e−zj )2
and

F
(2)
2j (zj) = (1− xij) ezj

(1+ezj )2
. It can be verified that arg minzj F

(2)
1j (zj) = −e

(1+e)2 < 0, arg maxzj F
(2)
1j (zj) = e

(1+e)2 > 0,

arg minzj F
(2)
2j (zj) = 0, and arg maxzj F

(2)
2j (zj) = 2e

(1+e)2 > 0. Thus, the average error of the approximation is at most:

1

|Bt|
|R̂Bt(θ̃1)− R̂Bt(θ̂1)| ≤

[( e

(1 + e)2
− −e

(1 + e)2

)
+

2e

(1 + e)2

]
× d =

4e× d
(1 + e)2

(42)

Consequently, Eq. 34 does hold. Similarly, by looking into the remainder of Taylor expansion for each label k, Eq.
35 can be proved straightforwardly. In fact, by using the 2nd-order Taylor series with K categories, we have that:

1
|Bt| |L̂Bt(θ̃2)− L̂Bt(θ̂2)| ≤ e2+2e−1

e(1+e)2 ×K.

P. Model Configurations
The MNIST database consists of handwritten digits (Lecun et al., 1998). Each example is a 28 × 28 size gray-level image.
The CIFAR-10 dataset consists of color images belonging to 10 classes, i.e., airplanes, dogs, etc. The dataset is split into
50,000 training samples and 10,000 test samples (Krizhevsky & Hinton, 2009). Tiny Imagenet (64 × 64 × 3) has 200
classes. Each class has 500 training images, 50 validation images, and 50 test images. We used the first thirty classes with
data augmented, including horizontal flip and random brightness, in the Tiny ImageNet dataset in our experiment. In general,
the dataset is split into 45,000 training samples and 1,500 test samples (TinyImageNet; Hendrycks & Dietterich, 2019). The
experiments were conducted on a server of 4 GPUs, each of which is an NVIDIA TITAN Xp, 12 GB with 3,840 CUDA
cores. All the models share the same structure, consisting of 2 and 3 convolutional layers, respectively for MNIST and
CIFAR-10 datasets, and a ResNet18 model for the Tiny ImageNet dataset.

Both fully-connected and convolution layers can be applied in the representation learning model a(x, θ1). Given convolution
layer, the computation of each feature map needs to be DP; since each of them independently reads a local region of input
neurons. Therefore, the sensitivity ∆R can be considered the maximal sensitivity given any single feature map in the first
affine transformation layer. In addition, each hidden neuron can only be used to reconstruct a unit patch of input units. That
results in d (Lemma 2) being the size of the unit patch connected to each hidden neuron, e.g., d = 9 given a 3× 3 unit patch,
and β is the number of hidden neurons in a feature map.

MNIST: We used two convolutional layers (32 and 64 features). Each hidden neuron connects with a 5x5 unit patch. A
fully-connected layer has 256 units. The batch size m was set to 2,499, ξ = 1, ψ = 2. I-FGSM, MIM, and MadryEtAl
were used to draft l∞(µ) adversarial examples in training, with Tµ = 10. Learning rate %t was set to 1e − 4. Given a
predefined total privacy budget ε, ε2 is set to be 0.1, and ε1 is computed as: ε1 = ε−ε2

(1+1/γ+1/γx) . This will guarantee that
(ε1 + ε1/γx + ε1/γ + ε2) = ε. ∆R = (142 + 2) × 25 and ∆L2 = 2 × 256. The number of Monte Carlo sampling for
certified inference n is set to 2,000.

CIFAR-10: We used three convolutional layers (128, 128, and 256 features). Each hidden neuron connects with a 4x4 unit
patch in the first layer, and a 5x5 unit patch in other layers. One fully-connected layer has 256 neurons. The batch size m
was set to 1,851, ξ = 1.5, ψ = 10, and Tµ = 3. The ensemble of attacks A includes I-FGSM, MIM, and MadryEtAl. We
use data augmentation, including random crop, random flip, and random contrast. Learning rate %t was set to 5e− 2. In
the CIFAR-10 dataset, ε2 is set to (1 + r/3.0) and ε1 = (1 + 2r/3.0)/(1 + 1/γ + 1/γx), where r ≥ 0 is a ratio to control
the total privacy budget ε in our experiment. For instance, given r = 0, we have that ε = (ε1 + ε1/γx + ε1/γ + ε2) = 2.
∆R = 3 × (142 + 2) × 16 and ∆L2 = 2 × 256. N and M are set to 1 and 4 in the distributed training. The number of
Monte Carlo sampling for certified inference n is set to 1,000.

Tiny ImageNet: We used a ResNet-18 model. Each hidden neuron connects with a 7x7 unit patch in the first layer, and 3x3
unit patch in other layers. The batch size m was set to 4,500, ξ = 1.5, ψ = 10, and Tµ = 10. The ensemble of attacks
A includes I-FGSM, MIM, and MadryEtAl. Learning rate %t was set to 1e − 2. In the Tiny ImageNet dataset, ε2 is set
to 1 and ε1 = (1 + r)/(1 + 1/γ + 1/γx), where r ≥ 0 is a ratio to control the total privacy budget ε in our experiment.
∆R = 3 × (322 + 2) × 49 and ∆L2 = 2 × 256. N and M are set to 1 and 20 in the distributed training. The number of
Monte Carlo sampling for certified inference n is set to 1,000.
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Q. Complete and Detailed Experimental Results
Results on the MNIST Dataset. Figure 2 illustrates the conventional accuracy of each model as a function of the privacy
budget ε on the MNIST dataset under l∞(µa)-norm attacks, with µa = 0.2 (a pretty strong attack). It is clear that our
StoBatch outperforms AdLM, DP-SGD, SecureSGD, and SecureSGD-AGM, in all cases, with p < 1.32e− 4. On average,
we register a 22.36% improvement over SecureSGD (p < 1.32e − 4), a 46.84% improvement over SecureSGD-AGM
(p < 1.83e − 6), a 56.21% improvement over AdLM (p < 2.05e − 10), and a 77.26% improvement over DP-SGD
(p < 5.20e− 14), given our StoBatch mechanism. AdLM and DP-SGD achieve the worst conventional accuracies. There
is no guarantee provided in AdLM and DP-SGD. Thus, the accuracy of the AdLM and DPSGD algorithms seem to show
no effect against adversarial examples, when the privacy budget is varied. This is in contrast to our StoBatch model, the
SecureSGD model, and the SecureSGD-AGM model, whose accuracies are proportional to the privacy budget.

When the privacy budget ε = 0.2 (a tight DP protection), there are significant drops, in terms of conventional accuracy, given
the baseline approaches. By contrast, our StoBatch mechanism only shows a small degradation in the conventional accuracy
(6.89%, from 89.59% to 82.7%), compared with a 37% drop in SecureSGD (from 78.64% to 41.64%), and a 32.89% drop
in SecureSGD-AGM (from 44.1% to 11.2%) on average, when the privacy budget ε goes from 2.0 to 0.2. At ε = 0.2,
our StoBatch mechanism achieves 82.7%, compared with 11.2% and 41.64% correspondingly for SecureSGD-AGM and
SecureSGD. This is an important result, showing the ability to offer tight DP protections under adversarial example attacks
in our model, compared with existing algorithms.

• Figure 4 presents the conventional accuracy of each model as a function of the attack size µa on the MNIST dataset, under
a strong DP guarantee, ε = 0.2. Our StoBatch mechanism outperforms the baseline approaches in all cases. On average, our
StoBatch model improves 44.91% over SecureSGD (p < 7.43e− 31), a 61.13% over SecureSGD-AGM (p < 2.56e− 22),
a 52.21% over AdLM (p < 2.81e− 23), and a 62.20% over DP-SGD (p < 2.57e− 22). More importantly, our StoBatch
model is resistant to different adversarial example algorithms with different attack sizes. When µa ≥ 0.2, AdLM, DP-SGD,
SecureSGD, and SecureSGD-AGM become defenseless. We further register significantly drops in terms of accuracy, when
µa is increased from 0.05 (a weak attack) to 0.6 (a strong attack), i.e., 19.87% on average given our StoBatch, across all
attacks, compared with 27.76% (AdLM), 29.79% (DP-SGD), 34.14% (SecureSGD-AGM), and 17.07% (SecureSGD).

• Figure 6 demonstrates the certified accuracy as a function of µa. The privacy budget is set to 1.0, offering a reasonable
privacy protection. In PixelDP, the construction attack bound εr is set to 0.1, which is a pretty reasonable defense. With
(small perturbation) µa ≤ 0.2, PixelDP achieves better certified accuracies under all attacks; since PixelDP does not preserve
DP to protect the training data, compared with other models. Meanwhile, our StoBatch model outperforms all the other
models when µa ≥ 0.3, indicating a stronger defense to more aggressive attacks. More importantly, our StoBatch has a
consistent certified accuracy to different attacks given different attack sizes, compared with baseline approaches. In fact,
when µa is increased from 0.05 to 0.6, our StoBatch shows a small drop (11.88% on average, from 84.29%(µa = 0.05)
to 72.41%(µa = 0.6)), compared with a huge drop of the PixelDP, i.e., from 94.19%(µa = 0.05) to 9.08%(µa = 0.6)
on average under I-FGSM, MIM, and MadryEtAl attacks, and to 77.47%(µa = 0.6) under FGSM attack. Similarly,
we also register significant drops in terms of certified accuracy for SecureSGD (78.74%, from 86.74% to 7.99%) and
SecureSGD-AGM (81.97%, from 87.23% to 5.26%) on average. This is promising.

Results on the CIFAR-10 Dataset further strengthen our observations. In Figure 3, our StoBatch clearly outperforms
baseline models in all cases (p < 6.17e− 9), especially when the privacy budget is small (ε < 4), yielding strong privacy
protections. On average conventional accuracy, our StoBatch mechanism has an improvement of 10.42% over SecureSGD
(p < 2.59e − 7), an improvement of 14.08% over SecureSGD-AGM (p < 5.03e − 9), an improvement of 29.22% over
AdLM (p < 5.28e− 26), and a 14.62% improvement over DP-SGD (p < 4.31e− 9). When the privacy budget is increased
from 2 to 10, the conventional accuracy of our StoBatch model increases from 42.02% to 46.76%, showing a 4.74%
improvement on average. However, the conventional accuracy of our model under adversarial example attacks is still low,
i.e., 44.22% on average given the privacy budget at 2.0. This opens a long-term research avenue to achieve better robustness
under strong privacy guarantees in adversarial learning.

• The accuracy of our model is consistent given different attacks with different adversarial perturbations µa under a rigorous
DP protection (ε = 2.0), compared with baseline approaches (Figure 5). In fact, when the attack size µa increases from 0.05
to 0.5, the conventional accuracies of the baseline approaches are remarkably reduced, i.e., a drop of 25.26% on average
given the most effective baseline approach, SecureSGD. Meanwhile, there is a much smaller degradation (4.79% on average)
in terms of the conventional accuracy observed in our StoBatch model. Our model also achieves better accuracies compared
with baseline approaches in all cases (p < 8.2e− 10). Figure 7 further shows that our StoBatch model is more accurate than
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baseline approaches (i.e., εr is set to 0.1 in PixelDP) in terms of certified accuracy in all cases, with a tight privacy budget
set to 2.0 (p < 2.04e− 18). We register an improvement of 21.01% in our StoBatch model given the certified accuracy over
SecureSGD model, which is the most effective baseline approach (p < 2.04e− 18).

Scalability under Strong Iterative Attacks. First, we scale our model in terms of adversarial training in the CIFAR-10
dataset, in which the number of iterative attack steps is increased from Tµ = 3 to Tµ = 200 in training, and up to Ta =
2,000 in testing. Note that the traditional iterative batch-by-batch DP adversarial training (Alg. 1) is nearly infeasible in this
setting, taking over 30 days for one training with 600 epochs. Thanks to the parallel and distributed training, our StoBatch
only takes u 3 days to finish the training. More importantly, our StoBatch achieves consistent conventional and certified
accuracies under strong iterative attacks with Ta = 1, 000, compared with the best baseline, i.e., SecureSGD (Figure 8).
Across attack sizes µa ∈ {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and steps Ta ∈ {100, 500, 1000, 2000}, on average, our StoBatch
achieves 44.87±1.8% and 42.18±1.8% in conventional and certified accuracies, compared with 29.47±12.5% and 20±6.1%
of SecureSGD (p < 1.05e− 9).

• We achieve a similar improvement over the Tiny ImageNet, i.e., following (Hendrycks & Dietterich, 2019), with
a ResNet18 model, i.e., a larger dataset on a larger network (Figure 9). On average, across attack sizes µa ∈
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and steps Ta ∈ {100, 500, 1000, 2000}, our StoBatch achieves 29.78±4.8% and 28.31±1.58%
in conventional and certified accuracies, compared with 8.99±5.95% and 8.72±5.5% of SecureSGD (p < 1.55e− 42).

Key observations: (1) Incorporating ensemble adversarial learning into DP preservation, tightened sensitivity bounds, a
random perturbation size µt at each training step, and composition robustness bounds in both input and latent spaces does
enhance the consistency, robustness, and accuracy of DP model against different attacks with different levels of perturbations.
These are key advantages of our mechanism; (2) As a result, our StoBatch model outperforms baseline algorithms, in
terms of conventional and certified accuracies in most of the cases. It is clear that existing DP-preserving approaches
have not been designed to withstand against adversarial examples; and (3) Our StoBatch training can help us to scale our
mechanism to larger DP DNNs and datasets with distributed adversarial learning, without affecting the model accuracies
and DP protections.

(a) I-FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks

Figure 2. Conventional accuracy on the MNIST dataset given ε, under l∞(µa = 0.2) and Ta = 10.
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(a) I-FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks

Figure 3. Conventional accuracy on the CIFAR-10 dataset given ε, under l∞(µa = 0.2) and Ta = 3.

(a) I-FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks

Figure 4. Conventional accuracy on the MNIST dataset given µa (ε = 0.2, tight DP protection) and Ta = 10.
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(a) I-FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks

Figure 5. Conventional accuracy on the CIFAR-10 dataset given µa (ε = 2, tight DP protection) and Ta = 3.

(a) I-FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks

Figure 6. Certified accuracy on the MNIST dataset. ε is set to 1.0 (tight DP protection) and Ta = 10.
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(a) I-FGSM attacks (b) FGSM attacks

(c) MIM attacks (d) MadryEtAl attacks

Figure 7. Certified accuracy on the CIFAR-10 dataset. ε is set to 2 (tight DP protection) and and Ta = 3.

(a) Conventional Accuracy (Ta = 1, 000) (b) Certified Accuracy (Ta = 1, 000)

(c) Conventional Accuracy (Ta = 2, 000) (d) Certified Accuracy (Ta = 2, 000)

Figure 8. Accuracy on the CIFAR-10 dataset, under Strong Iterative Attacks (Ta = 1, 000; 2, 000). ε is set to 2 (tight DP protection).
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(a) Conventional Accuracy (Ta = 1, 000) (b) Certified Accuracy (Ta = 1, 000)

(c) Conventional Accuracy (Ta = 2, 000) (d) Certified Accuracy (Ta = 2, 000)

Figure 9. Accuracy on the Tiny ImageNet dataset, under Strong Iterative Attacks (Ta = 1, 000; 2, 000). ε is set to 5.




