
IPBoost – Non-Convex Boosting via Integer Programming

Marc Pfetsch * 1 Sebastian Pokutta * 2

Abstract
Recently non-convex optimization approaches for
solving machine learning problems have gained
significant attention. In this paper we explore
non-convex boosting in classification by means of
integer programming and demonstrate real-world
practicability of the approach while circumvent-
ing shortcomings of convex boosting approaches.
We report results that are comparable to or better
than the current state-of-the-art.

1. Introduction
Boosting is an important (and by now standard) technique
in classification to combine several ‘low accuracy’ learn-
ers, so-called base learners, into a ‘high accuracy’ learner,
a so-called boosted learner. Pioneered by the AdaBoost
approach of (Freund & Schapire, 1995), in recent decades
there has been extensive work on boosting procedures and
analyses of their limitations. In a nutshell, boosting proce-
dures are (typically) iterative schemes that roughly work as
follows: for t = 1, . . . , T do the following:

1. Train a learner µt from a given class of base learners
on the data distribution Dt.

2. Evaluate performance of µt by computing its loss.

3. Push weight of the data distribution Dt towards mis-
classified examples leading to Dt+1.

Finally, the learners are combined by some form of voting
(e.g., soft or hard voting, averaging, thresholding). A close
inspection of most (but not all) boosting procedures reveals
that they solve an underlying convex optimization problem
over a convex loss function by means of coordinate gradient
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descent. Boosting schemes of this type are often referred to
as convex potential boosters. These procedures can achieve
exceptional performance on many data sets if the data is cor-
rectly labeled. However, it was shown in (Long & Servedio,
2008; 2010) that any convex potential booster can be easily
defeated by a very small amount of label noise (this also
cannot be easily fixed by early termination). The intuitive
reason for this is that convex boosting procedures might
progressively zoom in on the (small percentage of) misclas-
sified examples in an attempt to correctly label them, while
simultaneously moving distribution weight away from the
correctly labeled examples. As a consequence, the boosting
procedure might fail and produce a boosted learner with
arbitrary bad performance on unseen data.

Let D = {(xi, yi) | i ∈ I} ⊆ Rd × {±1} be a set of
training examples and for some logical condition C, define
I[C] = 1 if C is true and I[C] = −1 otherwise. Typically,
the true loss function of interest is of a form similar to

`(D, θ) :=
∑
i∈I

I[hθ(xi) 6= yi], (1)

i.e., we want to minimize the number of misclassifications,
where hθ is some learner parameterized by θ; this function
can be further modified to incorporate margin maximization
as well as include a measure of complexity of the boosted
learner to help generalization etc. It is important to observe
that the loss in Equation (1) is non-convex and hard to min-
imize. Thus, traditionally this loss has been replaced by
various convex relaxations, which are at the core of most
boosting procedures. In the presence of mislabeled exam-
ples (or more generally label noise) minimizing these convex
relaxations might not be a good proxy for minimizing the
true loss function arising from misclassifications.

Going beyond the issue of label noise, one might ask more
broadly, why not directly minimizing misclassifications
(with possible regularizations) if one could? In the past,
this has been out of the question due to the high complexity
of minimizing the non-convex loss function. In this paper,
we will demonstrate that this is feasible and practical with
today’s integer programming techniques. We propose to
directly work with a loss function of the form as given in
(1) (and variations) and solve the non-convex combinatorial
optimization problem with state-of-the-art integer program-
ming (IP) techniques including column generation. This
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approach generalizes previous linear programming based ap-
proaches (and hence implicitly convex approaches) in, e.g.,
(Demiriz et al., 2002; Goldberg & Eckstein, 2010; 2012;
Eckstein & Goldberg, 2012), while solving classification
problems with the true misclassification loss. We acknowl-
edge that (1) is theoretically very hard (in fact NP-hard as
shown, e.g., in (Goldberg & Eckstein, 2010)), however, we
hasten to stress that in real-world computations for specific
instances the behavior is often much better than the theo-
retical asymptotic complexity. In fact, most real-world in-
stances are actually relatively “easy” and with the availabil-
ity of very strong integer programming solvers such as, e.g.,
the commercial solvers CPLEX, Gurobi, and XPRESS
and the academic solver SCIP, these problems can be of-
ten solved rather effectively. In fact, integer programming
methods have seen a huge improvement in terms of compu-
tational speed as reported in (Savickỳ et al., 2000; Bertsimas
& Dunn, 2017). The latter reports that integer programming
solving performance has seen a combined hardware and soft-
ware speed-up of 80 billion from 1991 to 2015 (hardware:
570 000, software 1 400 000) using state-of-the-art hardware
and solvers such as CPLEX (see (CPLEX)), Gurobi (see
(Gurobi)), XPRESS (see (XPRESS)), and SCIP (see (Gam-
rath et al., 2020)). With this, problems that traditionally
have been deemed unsolvable can be solved in reasonable
short amounts of time making these methods accessible,
feasible, and practical in the context of machine learning al-
lowing to solve a (certain type of) non-convex optimization
problems.

Contribution and Related Work

Our contribution can be summarized as follows:

IP-based boosting. We propose an integer programming
based boosting procedure. The resulting procedure utilizes
column generation to solve the initial learning problem and
is inherently robust to labeling noise, since we solve the
problem for the (true) non-convex loss function. In partic-
ular, our procedure is robust to the instances from (Long
& Servedio, 2008; 2010) that defeat other convex potential
boosters.

Linear Programming (LP) based boosting procedures have
been already explored with LPBoost (Demiriz et al., 2002),
which also relies on column generation to price the learn-
ers. Subsequent work in (Leskovec & Shawe-Taylor, 2003)
considered LP-based boosting for uneven datasets. We also
perform column generation, however, in an IP framework
(see (Desrosiers & Lübbecke, 2005) for an introduction)
rather than a purely LP-based approach, which significantly
complicates things. In order to control complexity, overfit-
ting, and generalization of the model typically some sparsity
is enforced. Previous approaches in the context of LP-based
boosting have promoted sparsity by means of cutting planes,

see, e.g., (Goldberg & Eckstein, 2010; 2012; Eckstein &
Goldberg, 2012). Sparsification can be handled in our ap-
proach by solving a delayed integer program using addi-
tional cutting planes.

An interesting alternative use of boosting in the context of
training average learners against rare examples has been
explored in (Shalev-Shwartz & Wexler, 2016); here the
‘boosting’ of the data distribution is performed while a more
complex learner is trained. In (Freund et al., 2015) boosting
in the context of linear regression has been shown to reduce
to a certain form of subgradient descent over an appropriate
loss function. For a general overview of boosting methods
we refer the interested reader to (Schapire, 2003). Non-
convex approaches to machine learning problems gained
recent attention and (mixed) integer programming, in par-
ticular, has been used successfully to incorporate combi-
natorial structure in classification, see, e.g., (Bertsimas &
Shioda, 2007; Chang et al., 2012; Bertsimas & King, 2015;
Bertsimas et al., 2016), as well as, (Günlük et al., 2016;
Bertsimas & Dunn, 2017; Dash et al., 2018; Günlük et al.,
2018; Verwer & Zhang, 2019); note that (Dash et al., 2018)
also uses a column generation approach. Moreover, neu-
ral network verification via integer programming has been
treated in (Tjeng et al., 2017; Fischetti & Jo, 2018). See
also the references contained in all of these papers.

Computational results. We present computational results
demonstrating that IP-based boosting can avoid the bad ex-
amples of (Long & Servedio, 2008): by far better solutions
can be obtained via LP/IP-based boosting for these instances.
We also show that IP-based boosting can be competitive for
real-world instances from the LIBSVM data set. In fact,
we obtain nearly optimal solutions in reasonable time for
the true non-convex cost function. Good solutions can be
obtained if the process is stopped early. While it cannot
match the raw speed of convex boosters, the obtained results
are (often) much better. Moreover, the resulting solutions
are often sparse.

2. IPBoost: Boosting via Integer
Programming

We will now introduce the basic formulation of our boost-
ing problem, which is an integer programming formulation
based on the standard LPBoost model from (Demiriz et al.,
2002). While we confine the exposition to the binary classi-
fication case only, for the sake of clarity and due to space
limitations, we stress that our approach can be extended
to the multi-class case using standard methods. In subse-
quent sections, we will refine the model to include additional
model parameters etc.

Let (x1, y1), . . . , (xN , yN ) be the training set with points
xi ∈ Rd and two-class labels yi ∈ {±1}. Moreover, let
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Ω := {h1, . . . , hL : Rd → {±1}} be a class of base learn-
ers and let a margin ρ ≥ 0 be given. Our basic boosting
model is captured by the following integer programming
problem:

min

N∑
i=1

zi (2)

L∑
j=1

ηij λj + (1 + ρ)zi ≥ ρ ∀ i ∈ [N ],

L∑
j=1

λj = 1, λ ≥ 0,

z ∈ {0, 1}N ,

where the error function η can take various forms depending
on how we want to treat the output of base learners. For
learner hj and training example xi we consider the follow-
ing choices:

(i) ±1 classification from learners:
ηij := 2 I[hj(xi) = yi]− 1 = yi · hj(xi);

(ii) class probabilities of learners:
ηij := 2P[hj(xi) = yi]− 1;

(iii) SAMME.R error function for learners:
ηij := 1

2yi log
(

P[hj(xi)=1]
P[hj(xi)=−1]

)
.

In the first case we perform a hard minimization of the
classification error, in the second case we perform a soft
minimization of the classification error, and in the last one
we minimize the SAMME.R error function as used in the
(multi-class) AdaBoost variant in (Zhu et al., 2009). The
SAMME.R error function allows a very confident learner to
overrule a larger number of less confident learners predicting
the opposite class.

The zi variable in the model above indicates whether ex-
ample i ∈ [N ] := {1, . . . N} satisfies the classification
requirement: zi = 0 if example i is correctly labeled by
the boosted learner

∑
j hjλj with margin at least ρ with re-

spect to the utilized error function η; in an optimal solution,
if a variable is 1 this implies misclassification, otherwise
by minimizing you could have set it to zero. The λj with
j ∈ [L] form a distribution over the family of base learners.
The only non-trivial family of inequalities in (2) ranges over
examples i ∈ [N ] and enforces that the combined learner∑
j∈[L] hjλj classifies example i ∈ N correctly with mar-

gin at least ρ (we assume throughout that ρ ≤ 1) or zi = 1,
i.e., the example is disregarded and potentially misclassified.
By minimizing

∑
i∈N zi, the program computes the best

combination of base learners maximizing the number of
examples that are correctly classified with margin at least ρ.

The margin parameter ρ helps generalization as it prevents
base learners to be used to explain low-margin noise.

Before we continue with the integer programming based
boosting algorithm we would like to remark the following
about the solution structure of optimal solutions with respect
to the chosen margin:

Lemma 1 (Structure of high-margin solutions)
Let (λ, z) be an optimal solution to the integer program (2)
for a given margin ρ using error function (i). Further let
I := {i ∈ [N ] | zi = 0} and J := {j ∈ [L] | λj > 0}.
If the optimal solution is non-trivial, i.e., I 6= ∅, then the
following holds:

1. If ρ = 1, then there exists an optimal solution with
margin 1 using only a single base learner hj for some
j ∈ J .

2. If there exists ̄ ∈ J with λ̄ > 1−ρ
2 , then h̄ by itself is

already an optimal solution with margin 1.

3. If |J | < 2
1−ρ , then there exists ̄ ∈ J with h̄ by itself

being already an optimal solution with margin 1. In
particular for ρ > 0, the statement is non-trivial.

Proof. For the first case observe that∑
j∈J

ηijλj ≥ 1,

holds for all i ∈ I . As
∑
j∈J λj = 1 and λj > 0 for all

j ∈ J , we have that ηij = 1 for all i ∈ I , j ∈ J . Therefore
the predictions of all learners hj with j ∈ J for examples
i ∈ I are identical and we can simply choose any such
learner hj with j ∈ J arbitrarily and set λj = 1.

For the second case observe as before that
∑
j∈J ηijλj ≥ ρ

holds for all i ∈ I . We claim that ηi̄ = 1 for all i ∈ I .
For contradiction suppose not, i.e., there exists ı̄ ∈ I with
ηı̄̄ = −1. Then∑

j∈J
ηı̄jλj <

( ∑
j∈J\{̄}

λj

)
︸ ︷︷ ︸

<1− 1−ρ
2

−1− ρ
2

< ρ,

using ηij ≤ 1,
∑
j∈J λj = 1, and λj > 0 for all j ∈ J .

This contradicts
∑
j∈J ηijλj ≥ ρ and therefore ηi̄ = 1 for

all i ∈ I . Thus h̄ by itself is already an optimal solution
satisfying even the (potentially) higher margin of 1 ≥ ρ on
examples i ∈ I .

Finally, for the last case observe that if |J | < 2
1−ρ , then

together with
∑
j∈J λj = 1, and λj > 0 for all j ∈ J , it

follows that there exists ̄ ∈ J with λ̄ > 1−ρ
2 . Otherwise∑

j∈J λj ≤ |J |
1−ρ

2 < 1; a contradiction. We can now
apply the second case. �
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Similar observations hold for error functions (ii) and (iii)
with the obvious modifications to include the actual value
of ηij not just its sign.

Our proposed solution process consists of two parts. We first
solve the integer program in (2) using column generation.
Once this step is completed, the solution can be sparsified (if
necessary) by means of the model presented in Section 2.2,
where we trade-off classification performance with model
complexity.

2.1. Solution Process using Column Generation

The reader will have realized that (4) is not practical, since
we typically have a very large if not infinite class of base
learners Ω; for convenience we assume here that Ω is finite
but potentially very large. This has been already observed
before and dealt with effectively via column generation in
(Demiriz et al., 2002; Goldberg & Eckstein, 2010; 2012;
Eckstein & Goldberg, 2012). We will follow a similar strat-
egy here, however, we generate columns within a branch-
and-bound framework leading effectively to a branch-and-
bound-and-price algorithm that we are using; this is signif-
icantly more involved compared to column generation in
linear programming. We detail this approach in the follow-
ing.

The goal of column generation is to provide an efficient way
to solve the linear programming (LP) relaxation of (2), i.e.,
the zi variables are relaxed and allowed to assume fractional
values. Moreover, one uses a subset of the columns, i.e.,
base learners, L ⊆ [L]. This yields the so-call restricted
master (primal) problem

min

N∑
i=1

zi (3)∑
j∈L

ηij λj + (1 + ρ)zi ≥ ρ ∀ i ∈ [N ],

∑
j∈L

λj = 1, λ ≥ 0, z ∈ [0, 1]N .

Its restricted dual problem is

max ρ

N∑
i=1

wi + v −
N∑
i=1

ui (4)

N∑
i=1

ηij wi + v ≤ 0 ∀ j ∈ L,

(1 + ρ)wi − ui ≤ 1 ∀ i ∈ [N ],

w ≥ 0, u ≥ 0, v free.

Consider a solution (w∗, v∗, u∗) ∈ RN × R × RN of (4).
The so-called pricing problem is to decide whether this
solution is actually optimal or whether we can add further

constraints, i.e., columns in the primal problem. For this,
we need to check whether (w∗, v∗, u∗) is feasible for the
complete set of constraints in (4). In the following, we
will assume that the variables zi are always present in the
primal and therefore that the corresponding inequalities
(1 + ρ)wi− ui ≤ 1 are satisfied for each i ∈ [N ]. Thus, the
main task of the pricing problem is to decide whether there
exists j ∈ [L] \ L such that

N∑
i=1

ηij w
∗
i + v∗ > 0. (5)

If such an j exists, then it is added to L, i.e., to (3), and the
process is iterated. Otherwise, both (3) and (4) have been
solved to optimality.

The pricing problem (5) can now be rephrased as follows:
Does there exist a base learner hj ∈ Ω such that (5) holds?
For this, the w∗i can be seen as weights over the points
xi, i ∈ [N ], and we have to classify the points according
to these weights. For most base learners, this task just
corresponds to an ordinary classification or regression step,
depending on the form chosen for ηij . Note, however, that
in practice (5) is not solved to optimality, but is rather solved
heuristically. If we find a base learner hj that satisfies (5),
we continue, otherwise we stop.

The process just described allows to solve the relaxation
of (2). The optimal misclassification values are determined
by a branch-and-price process that branches on the vari-
ables zi and solves the intermediate LPs using column gen-
eration. Note that the zi are always present in the LP, which
means that no problem-specific branching rule is needed,
see, e.g., (Barnhart et al., 1998) for a discussion. In total,
this yields Algorithm 1.

The output of the algorithm is a set of base learners L∗ and
corresponding weights λ∗j . A classifier can be obtained by
voting, i.e., a given point x is classified by each of the base
learners resulting in ξj , for which we again can use the three
options (i)–(iii) above. We then take the weighted combi-
nation and obtain the predicted label as sgn(

∑
j∈L∗ ξjλ

∗
j ).

In the implementation, we use the following important com-
ponents. First, we use the framework SCIP that automati-
cally applies primal heuristics, see, e.g., (Berthold, 2014)
for an overview. These heuristics usually take the current
solution of the relaxation and try to build a feasible solu-
tion for (2). In the current application, the most important
heuristics are rounding heuristics, i.e., the zi variables are
rounded to 0 or 1, but large-scale neighborhood heuristics
sometimes provide very good solutions as well. Neverthe-
less, we disable diving heuristics, since these often needed
a long time, but never produced a feasible solution. In total,
this often generates many feasible solutions along the way.

Another trick that we apply is the so-called stall limit. The
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Algorithm 1 IPBoost
Input: Examples D = {(xi, yi) | i ∈ I} ⊆ Rd × {±1},

class of base learners Ω, margin ρ
Output: Boosted learner

∑
j∈L∗ hjλ

∗
j with base learners

hj and weights λ∗j
1: T ← {([0, 1]N ,∅)} // set of local bounds and learners for open subproblems

2: U ←∞, L∗ ← ∅ // upper bound on optimal objective

3: while T 6= ∅ do
4: Choose and remove (B,L) from T .
5: repeat
6: Solve (3) using the local bounds on z in B with

optimal dual solution (w∗, v∗, u∗).
7: Find learner hj ∈ Ω satisfying (5). // solve pricing problem

8: until hj is not found
9: Let (λ̃, z̃) be the final solution of (3) with base learn-

ers L̃ = {j | λ̃j > 0}.
10: if

∑N
i=1 z̃i < U then

11: if z̃ ∈ {0, 1}N then
12: U ←

∑N
i=1 z̃i, L∗ ← L̃, λ∗ ← λ̃ // update best sol.

13: else
14: Choose i ∈ [N ] with z̃i /∈ Z.
15: Set B0 ← B ∩ {zi ≤ 0}, B1 ← B ∩ {zi ≥ 1}.
16: Add (B0, L̃), (B1, L̃) to T . // create new branching nodes

17: end if
18: end if
19: end while
20: Optionally sparsify final solution L∗.

solver automatically stops if the best primal solution could
not be (strictly) improved during the lastK nodes processed
in the branch-and-bound tree (we use K = 5000).

Furthermore, preliminary experiments have shown that the
intermediate linear programs that have to be solved in each
iteration become increasingly hard to solve by the simplex
algorithm for a large number of training points. We could
apply bagging (Breiman, 1996), but obtained good results
with just subsampling 30 000 points if their number N is
larger than this threshold.

Furthermore, we perform the following post-processing. For
the best solution that is available at the end of the branch-
and-bound algorithm, we fix the integer variables to the
values in this solution. Then we maximize the margin over
the learner variables that were used in the solution, which
is just a linear program. In most cases, the margin can
be slightly improved in this way, hoping to get improved
generalization.

2.2. Sparsification

One of the challenges in boosting is to balance model accu-
racy vs. model generalization, i.e., to prevent overfitting.

Apart from pure generalization considerations, a sparse
model often lends itself more easily to interpretation, which
might be important in certain applications.

There are essentially two techniques that are commonly used
in this context. The first one is early stopping, i.e., we only
perform a fixed number of boosting iterations, which would
correspond to only generating a fixed number of columns.
The second common approach is to regularize the problem
by adding a complexity term for the learners in the objective
function, so that we minimize

∑N
i=1 zi+

∑L
j=1 αjyj . Then

we can pick αj as a function of the complexity of the learner
hj . For example, in (Cortes et al., 2014) boosting across
classes of more complex learners has been considered and
the αj are chosen to be proportional to the Rademacher
complexity of the learners (many other measures might be
equally justified).

In our context, it seems natural to consider the following
integer program for sparsification:

min

N∑
i=1

zi +

L∑
j=1

αjyj

L∑
j=1

ηij λj + (1 + ρ)zi ≥ ρ ∀ i ∈ [N ],

L∑
j=1

λj = 1, 0 ≤ λj ≤ yj ∀ j ∈ [L],

z ∈ {0, 1}N , y ∈ {0, 1}L,

with ηij as before. The structure of this sparsification prob-
lem that involves additional binary variables y cannot be
easily represented within the column generation setup used
to solve model (2), because the upper bounds on λj implied
by yj would need to be represented in dual problem, giving
rise to exponentially many variables in the dual. In principle,
one could handle a cardinality constraint on the yj variables
using a problem specific branching rule; this more involved
algorithm is however beyond the scope of this paper. In
consequence, one can solve the sparsification problem sep-
arately for the columns that have been selected in phase 1
once this phase is completed. This is similar to (Goldberg
& Eckstein, 2010), but directly aims to solve the MIP rather
than a relaxation. Moreover, one can apply so-called IIS-
cuts, following (Pfetsch, 2008). Using the Farkas lemma,
the idea is to identify subsets I ⊆ [N ] such that the system

L∑
j=1

ηij λj ≥ ρ, i ∈ I,
L∑
j=1

λj = 1, λ ≥ 0,

is infeasible. In this case the cut∑
i∈I

zi ≥ 1
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is valid. Such sets I can be found by searching for vertices
of the corresponding alternative polyhedron. If this is done
iteratively (see (Pfetsch, 2008)), many such cuts can be
found that help to strengthen the LP relaxation. These cuts
dominate the ones in (Goldberg & Eckstein, 2010), but one
needs to solve an LP for each vertex/cut.

3. Computational Results
To evaluate the performance of IPBoost, we ran a wide
range of tests on various classification tasks. Due to space
limitations, we will only be able to report aggregate results
here; additional more extensive results can be found in the
Supplementary Material. The code is available through the
web pages of the authors.

Computational Setup. All tests were run on a Linux clus-
ter with Intel Xeon quad core CPUs with 3.50GHz, 10 MB
cache, and 32 GB of main memory. All runs were performed
with a single process per node; we stress, in particular, that
we run all tests as single thread / single core setup, i.e.,
each test uses only a single node in single thread mode.
We used a prerelease version of SCIP 7.0.0 with SoPlex
5.0.0 as LP-solver (Gamrath et al., 2020); note that this
combination is completely available in source code and
free for academic use at www.scipopt.org. The main
part of the code was implemented in C, calling the python
framework scikit-learn (Pedregosa et al., 2011) at
several places. We use the decision tree implementation of
scikit-learnwith a maximal depth of 1, i.e., a decision
stump, as base learners for all boosters. We benchmarked
IPBoost against our own implementation of LPBoost (Dem-
iriz et al., 2002) as well as the AdaBoost implementation
in version 0.21.3 of scikit-learn using 100 iterations;
note that we always report the number of pairwise distinct
base learners for AdaBoost. We performed 10 runs for each
instance with varying random seeds (which for instance
affects randomly chosen test sets) and we report average
accuracy and standard deviations. Note that we use a time
limit of one hour for each run of IPBoost. The reported
solution is the best solution available at that time.

Results on Constructed Hard Instances. We start our
discussion of computational results by reporting on experi-
ments with the hard instances of (Long & Servedio, 2008).
These examples are tailored to using the ±1 classification
from learners (option (i) in Section 2). Thus, we use this
function for prediction and voting for every algorithm. The
performance of IPBoost, LPBoost and AdaBoost (using 100
iterations) is presented in Table 1. Here, N is the number of
points and γ refers to the noise level. Note that we randomly
split off 20 % of the points for the test set, and recall that we
report the averages of 10 runs.

On every instance class, IPBoost clearly outperforms LP-
Boost. AdaBoost performs much less well, as expected; it
also uses significantly more base learners. Note, however,
that the scikit-learn implementation of AdaBoost pro-
duces much better results than the one in (Long & Servedio,
2008) (an accuracy of about 53 % as opposed to 33 %). As
noted above, the instances are constructed for a ±1 clas-
sification function. If we change to SAMME.R, AdaBoost
performs much better: slightly worse that IPBoost, but better
than LPBoost.

LIBSVM Instances. We use classification instances from
the LIBSVM data sets available at https://www.csie.
ntu.edu.tw/~cjlin/libsvmtools/datasets/.
We selected the 40 smallest instances. If available, we
choose the scaled version over the unscaled version.
Note that 25 instances of those 40 instances come with a
corresponding test set. Since the test sets for the instances
a1a–a9a looked suspicious (often more features and
points than in the train set and sometimes only features in
one class), we decided to remove the test sets for these nine
instances. This leaves 16 instances with test set. For the
other 24, we randomly split off 20% of the points as a test
set; we provide statistics for the individual instances in the
Supplementary Material.

Results for LIBSVM. An important choice for the algo-
rithm is how the error matrix η is set up, i.e., which of the
three options (i)–(iii) presented in Section 2 is used. In
preliminary computations, we compared all three possibil-
ities. It turned out that the best option is to use the class
probabilities (ii) for η both for Model (2) and when using
the base learners in a voting scheme, which we report here.

Another crucial choice in our approach is the margin
bound ρ. We ran our code with different values – the aggre-
gated results are presented in Table 2; the detailed results
are given in the Supplementary Material. We report accu-
racies on the test set and train set, respectively. In each
case, we report the averages of the accuracies over 10 runs
with a different random seed and their standard deviations.
The accuracies of IPBoost are compared to LPBoost and
AdaBoost. We also report the number L of learners in the
detailed results. Note that the behavior of AdaBoost is in-
dependent of ρ, i.e., the accuracies are the same over the
different values of ρ in Table 2.

The results show that IPBoost outperforms both LPBoost
and AdaBoost. IPBoost clearly outperforms LPBoost, al-
though there are instances where LPBoost generates slightly
better results, both for the train and the test accuracies. Inter-
estingly, the accuracies of IPBoost (and LPBoost) increase
with respect to AdaBoost, when considering the test set
instead of the training set: less overfitting and better gener-
alization. For the considered instances the best value for the

www.scipopt.org
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 1. Averages of the test accuracies for hard instances. The table shows the accuracies and standard deviations as well as the number
of learners L for three algorithms using ρ = 0.05 for 10 different seeds; best solutions are marked with *; using ±1 values for prediction
and voting.

IPBoost LPBoost AdaBoost
N γ score L score L score L

2000 0.1 * 69.05 ± 2.54 4.8 66.22 ± 1.73 2.0 58.58 ±2.77 20.9
4000 0.1 * 68.61 ± 1.50 4.6 65.23 ± 1.95 2.0 55.45 ±2.99 20.9
8000 0.1 * 67.26 ± 1.62 3.6 64.58 ± 1.05 2.0 53.24 ±1.68 20.9

16000 0.1 * 67.50 ± 1.48 3.3 64.73 ± 0.80 2.0 51.85 ±0.80 21.0
32000 0.1 * 67.36 ± 1.55 2.6 65.18 ± 0.55 2.0 51.22 ±0.73 20.9
64000 0.1 * 66.65 ± 1.04 2.5 65.17 ± 0.35 2.0 50.48 ±0.49 20.9
2000 0.075 * 71.30 ± 2.06 4.6 66.55 ± 1.89 2.0 57.95 ±2.83 21.1
4000 0.075 * 70.20 ± 1.69 4.1 66.54 ± 1.58 2.0 55.27 ±2.77 21.0
8000 0.075 * 68.41 ± 1.73 3.8 65.38 ± 1.05 2.0 53.14 ±1.51 21.0

16000 0.075 * 68.10 ± 2.18 2.9 65.63 ± 0.81 2.0 51.73 ±0.67 21.0
32000 0.075 * 68.06 ± 1.47 2.6 66.17 ± 0.62 2.0 51.12 ±0.61 20.9
64000 0.075 * 67.92 ± 1.05 2.4 66.12 ± 0.33 2.0 50.35 ±0.47 21.0
2000 0.05 * 72.20 ± 1.92 5.1 67.05 ± 1.71 2.0 57.50 ±2.51 21.0
4000 0.05 * 71.74 ± 1.59 4.9 67.27 ± 1.69 2.0 54.75 ±2.47 20.9
8000 0.05 * 70.09 ± 1.96 3.4 66.19 ± 1.22 2.0 53.01 ±1.40 21.0

16000 0.05 * 70.05 ± 1.57 3.3 66.82 ± 0.81 2.0 51.75 ±0.85 21.0
32000 0.05 * 69.25 ± 1.86 2.4 67.30 ± 0.54 2.0 51.15 ±0.65 21.0
64000 0.05 * 68.83 ± 1.44 2.3 67.06 ± 0.37 2.0 50.35 ±0.54 21.0

averages: 18 69.03 ± 1.68 3.5 0 66.07 ± 1.06 2.0 0 53.27 ±1.49 21.0

margin ρ was 0.05 for LPBoost and IPBoost; AdaBoost has
no margin parameter.

Depending on the size of the instances, typical running times
of IPBoost range from a few seconds up to one hour. We
provide details of the running times in the Supplementary
Material. The average run time of IPBoost for ρ = 0.05
is 1367.78 seconds, while LPBoost uses 164.35 seconds,
and AdaBoost 3.59 seconds. The main bottleneck arises
from the solution of large LP relaxations in each iteration of
the algorithm. Note that we apply the simplex algorithm in
order to benefit from hot start after changing the problem by
adding columns or changing bounds. Nevertheless, larger
LPs turned out to be very hard to solve. One explanation for
this is that the matrix is very dense.

Feasible solutions of high quality are often found after a few
seconds via primal heuristics. The solution that is actually
used for constructing the boosted learner is often found long
before the solution process finished, i.e., the algorithm con-
tinues to search for better solutions without further progress.
Note that in most cases, the algorithm is stopped, because
no further improving solution was found, i.e., the stall limit
is applied (see Section 2.1). We have experimented with
larger limits (K > 5000), but the quality of the solutions
only improved very slightly. This suggests that the solutions
we found are optimal or close to optimal for (2).

Also interesting is the number of base learners in the best
solutions of IPBoost. The results show that this is around
12 on average for ρ = 0.05; for ρ = 0.01 it is around 18.

Thus, the optimal solutions are inherently sparse. Therefore,
for these settings and instances, the sparsification procedure
described in Section 2.2 will likely not be successful. How-
ever, it seems likely that for instance sets requiring different
margins the situation is different.

We have also experimented with different ways to handle ρ.
Following (Demiriz et al., 2002), one can set up a model
in which the margin ρ is a variable to be optimized in addi-
tion to the number of misclassifications. In this model, it is
crucial to find the right balance between the different parts
of the objective. For instance, on can run some algorithm
(AdaBoost) to estimate the number of misclassifications and
then adjust the weight factor accordingly. In preliminary ex-
periments, this option was inferior to the approach described
in this paper; we used an identical approach for LPBoost for
consistency.

Generalization Performance. We found that the boosted
learners computed via IPBoost generalize rather well. Fig-
ure 1 gives a representative example for generalization: here
we plot the train and test accuracy of the solutions encoun-
tered by IPBoost within a run, while solving the boosting
problem for various margins.

We observe the following almost monotonous behavior: the
smaller ρ, the more base learners are used and the better
the obtained training accuracy. This is of course expected,
since smaller margins allow more freedom to combine base
learners. However, this behavior does not directly trans-
late to better testing accuracies, which indicates overfitting.
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Table 2. Aggregated results for LIBSVM: Average test/train accuracies and standard deviations (STD) for three algorithms over 10
different seeds, using class probabilities for prediction and voting; we considered 40 instances as outlined in Section 3. Column “# best”
represents the number of instances on which the corresponding algorithm performed best (ties possible). Column “ER” gives the error
rate, i.e., 1/(1− a) for the average accuracy a.

IPBoost LPBoost AdaBoost

type ρ # best accuracy STD ER # best accuracy STD ER # best accuracy STD ER

test 0.1 24 80.70 4.08 5.18 7 80.16 3.93 5.04 9 79.79 3.82 4.95
test 0.075 25 80.77 3.89 5.20 6 80.21 3.89 5.05 9 79.79 3.82 4.95
test 0.05 26 80.78 4.07 5.20 7 80.31 3.73 5.08 8 79.79 3.82 4.95
test 0.025 25 80.63 3.94 5.16 7 80.21 3.91 5.05 8 79.79 3.82 4.95
test 0.01 26 80.59 3.91 5.15 7 79.80 3.67 4.95 7 79.79 3.82 4.95

train 0.1 25 83.52 2.51 6.07 1 82.29 2.61 5.65 15 84.36 1.99 6.40
train 0.075 24 83.94 2.38 6.23 1 82.52 2.54 5.72 15 84.36 1.99 6.40
train 0.05 26 84.34 2.43 6.38 1 82.90 2.40 5.85 14 84.36 1.99 6.40
train 0.025 29 84.97 2.44 6.65 1 83.39 2.43 6.02 10 84.36 1.99 6.40
train 0.01 31 85.69 2.48 6.99 3 84.20 2.26 6.33 6 84.36 1.99 6.40
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Figure 1. Train vs. test performance for different margins ρ on instance w1a. Each point represents a solution encountered by IPBoost
while solving the boosting problem. Grayscale values indicate the number of base learners used in boosted learners; see the legend.

Note that IPBoost obtains better average test accuracies
than AdaBoost for every ρ, but this is not always the case
for the train accuracies. This again demonstrates the good
generalization properties of IPBoost.

We would also like to point out that the results in Figures 1,
2, and 3 give an indication that the often cited belief that
“solving (close) to optimality reduces generalization” is not
true in general. In fact, minimizing the right loss function
close to optimality can actually help generalization.

4. Concluding Remarks
In this paper, we have first reproduced the observation
that boosting based on column generation, i.e., LP- and
IP-boosting, avoids the bad performance on the well-known
hard classes from the literature. More importantly, we have
shown that IP-boosting improves upon LP-boosting and
AdaBoost on the LIBSVM instances on which a consistent
improvement even by a few percent is not easy. The price to
pay is that the running time with the current implementation
is much longer. Nevertheless, the results are promising, so
it can make sense to tune the performance, e.g., by solving

the intermediate LPs only approximately and deriving tai-
lored heuristics that generate very good primal solutions,
see (Borndörfer et al., 2008) and (Borndörfer et al., 2013),
respectively, for examples for column generation in public
transport optimization. Another direction is that the in-
stances have low treewidth, which make the LP-relaxations
amendable to decomposition approaches.

Moreover, our method has a parameter that needs to be
tuned, namely the margin bound ρ. It shares this property
with LP-boosting, where one either needs to set ρ or a cor-
responding objective weight. AdaBoost, however, depends
on the number of iterations which also has to be adjusted to
the instance set. We plan to investigate methods based on
the approach in the current paper that avoid the dependence
on a parameter.

In conclusion, our approach is suited very well to an offline
setting in which training may take time and where even a
small improvement is beneficial or when convex boosters
behave very badly. Moreover, it can serve as a tool to
investigate the general performance of such methods.
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Figure 2. Train vs. test performance for different margins ρ on instance australian. Each point represents a solution encountered by
IPBoost while solving the boosting problem. Grayscale values indicate the number of base learners used in boosted learners; see the
legend.
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Figure 3. Train vs. test performance for different margins ρ on instance mushrooms. Each point represents a solution encountered by
IPBoost while solving the boosting problem. Grayscale values indicate the number of base learners used in boosted learners; see the
legend.
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