
Supplementary Material

A. Experimental Details
A.1. Performance analysis

In this section, we provide details of the experimental setup used in our performance benchmarks. One of the goals of our
experiments was to compare the performance of different asynchronous RL algorithms "apples to apples", i.e. where all the
details that influence throughput are exactly the same for all methods we compare. This includes hardware configuration,
simulated environments and their settings (e.g. observation resolution), model size and architecture, and the number of
environment instances sampled in parallel.

A.1.1. HARDWARE CONFIGURATION

We focused on commodity hardware often used for deep learning experimentation. Systems #1 and #2 were used for
performance benchmarks. System #3 is similar to System #2, except with four accelerators instead of one. We used
System #3 for our large-scale experiments with self-play and population-based training. See Table A.1 for details.

System #1 System #2 System #3

Processor Intel Core i9-7900X 2 x Intel Xeon Gold 6154 2 x Intel Xeon Gold 6154
Base frequency 3.30 GHz 3.00 GHz 3.00 GHz
Physical cores 10 36 36
Logical cores 20 72 72

RAM 128 GB DDR4 256 GB DDR4 256 GB DDR4

GPUs 1 x NVidia GTX 1080Ti 1 x NVidia RTX 2080Ti 4 x NVidia RTX 2080Ti
GPU memory 11GB GDDR5X 11GB GDDR6 11GB GDDR6

OS Ubuntu 18.04 64-bit Ubuntu 18.04 64-bit Ubuntu 18.04 64-bit
GPU drivers NVidia 440.44 NVidia 418.40 NVidia 418.40

Table A.1. Hardware setups used for profiling and performance measurements (Systems #1 and #2) and for large-scale experiments with
self-play and PBT (System #3).

A.1.2. ENVIRONMENTS

We used three reinforcement learning domains for benchmarking: Atari, VizDoom, and DeepMind Lab. For Atari we simply
chose Breakout with 4-framestack, although other environments exhibit almost identical throughput. The VizDoom scenario
we selected is a simplified version of Battle with a single discrete action head and the input space including only the pixel
observations (no auxiliary game info). Most of the frameworks we tested do not support complex action and observation
spaces, so this simplification allowed us to use the exact same version of the environment for all of the evaluated algorithms
without major code modifications.

We chose rooms_collect_good_objects_train from DMLab-30 as our benchmark environment for DeepMind Lab. This
environment is also referred to as seekavoid_arena_01 in prior work (Espeholt et al., 2018). Just like the VizDoom scenario,
this environment has pixel-based observations and a simple discrete action space.

In DeepMind Lab some environment states can be significantly harder to render, and therefore the simulation time depends
on the behavior of the agent, e.g. as the agent learns to explore the environment the simulation can slow down or speed up as
the distribution of visited states changes. To eliminate this potential source of variance in throughput we ignore the action
distribution provided by the policy and sample actions randomly instead in our performance measurements for DMLab.

Supplementary Material

This way we can measure only the throughput, disentangled from the learning performance. Note that using the random
policy for acting does not change the amount of computation done by the algorithm. We collect and process the experience
in the exact same way, only the actions sampled from the policy are replaced by random actions on the actors.

VizDoom environments are rendered with native resolution of 160× 120× 3 which is downsampled to 128× 72× 3. For
DMLab the observation resolution is 96× 72× 3. For VizDoom and DMLab we used 4-frameskip and no framestacking.
Atari frames are rendered in 210×160×3 and downsampled to 84×84 greyscale images. For Atari we used 4-frameskip and
4-framestack in all measurements, although higher overall throughput can be achieved without frame stacking. Following
(Espeholt et al., 2018) and (Espeholt et al., 2019) we report the throughput of all algorithms measured in environment frames
per second, i.e. a number of simulated environment transitions, or, in our case, 4× the number of samples processed by the
learner per second.

A.1.3. MODEL ARCHITECTURES

In all our performance benchmarks we used the same convolutional neural network to parameterize the actor and the critic,
which is similar to model architectures used in prior work (Mnih et al., 2016; Espeholt et al., 2018). In our implementation
the 3-layer convolutional head is followed by a fully-connected layer, an LSTM core, and another pair of fully-connected
layers to output the action distribution and the baseline. This architecture is referred to as simplified (see Figure A.1), in
contrast to the full architecture used in Battle, Deathmatch, and Duel experiments, that contains additional observation and
action spaces. We used the simplified architecture to benchmark throughput in Atari, VizDoom, and DMLab.

Note that in our large-scale VizDoom experiments with the full model we chose to use GRU RNN cells (Cho et al., 2014)
instead of LSTM (Hochreiter & Schmidhuber, 1997). Empirically we find that GRU cells exhibit similar sample efficiency
to LSTM cells and require slightly less computation.

/255

Conv2D 8 × 8, stride 4

ReLU

Conv2D 4 × 4, stride 2

ReLU

Conv2D 3 × 3, stride 2

ReLU

FC 512

ReLU

LSTM 512

µ(at|xt, ht) V π(xt, ht)

ht ht+1

128× 72× 3

32 filters

64 filters

128 filters

/255

Conv2D 8 × 8, stride 4

ReLU

Conv2D 4 × 4, stride 2

ReLU

Conv2D 3 × 3, stride 2

ReLU

FC 512

ReLU

GRU 512

µ1, ..., µL V π(xt, ht)

ht ht+1

128× 72× 3

32 filters

64 filters

128 filters

FC 128
ReLU

FC 128

ReLU

game info
23× 1

Figure A.1. Neural network architectures used in VizDoom experiments. Left: simplified architecture used for performance measurements
and standard VizDoom environments. Right: full architecture with additional low-dimensional game information input (health, armor,
ammunition, etc.) and L independent action heads.

A.1.4. BENCHMARKING RESULTS

We provide benchmarking results in the tabular form (see Table A.2). Data points are omitted for configurations that
could not be initialized due to lack of resources, such as memory, simultaneously open file descriptors, or active parallel
threads. Since Sample Factory allocates a very minimal amount of resources per environment instance, we were able to test
configurations running as many as 3000 environments on a single machine for VizDoom and Atari, although increasing

Supplementary Material

number of environments further provides diminishing returns.

Table A.3 shows performance figures for SampleFactory in some additional scenarios. As mentioned in the main paper,
using GPU for rendering DeepMind Lab environments can improve performance, especially on systems with fewer CPU
cores (e.g. System #1).

Finally, we show performance figures for population-based training scenarios. Here we use 4 GPUs to accelerate learners
and policy workers associated with up to 12 agents trained in parallel. Performance figures show that there is a very small
penalty for increasing the population size, despite the fact that the amount of communication required grows significantly
(e.g. rollout workers have to send observations to many different policy workers associated with different agents). The
measurements in the table show the performance only for single-player environments. Multiplayer environments that involve
actual network communication between individual game instances are significantly slower, up to 2-3 times, depending on the
number of communicating instances. Significant performance gains are possible through replacing network communication
between game instances with faster local mechanism, although this could require significant modifications to the VizDoom
engine and lies beyond the scope of this project.

System 1 (10xCPU, 1xGPU)

Atari 84x84x4 VizDoom 128x72 RGB DmLab 96x72 RGB

of envs sampled: 20 40 80 160 320 640 20 40 80 160 320 640 20 40 80 160 320 640

DeepMind IMPALA 6350 6470 6709 6880 - - 6615 6776 7041 6669 - - 6179 5943 6133 6448 - -
SeedRL IMPALA 11347 15734 20715 24906 26149 - 11443 14537 19705 22059 22733 - 6747 10293 11262 11191 10604 -
RLLib IMPALA 10808 13596 17744 20236 21192 18232 10676 12556 12472 13444 11500 11868 7736 9224 9948 11644 11516 -
rlpyt PPO 13312 17764 21772 27240 31408 35272 16268 23688 26448 31660 38908 41940 9028 10852 11376 11560 12280 12400

SampleFactory APPO 17544 25307 35287 42113 46169 48016 16985 24809 37300 47913 55772 59525 8183 11792 12903 13040 13869 14746

System 2 (36xCPU, 1xGPU)

Atari 84x84x4 VizDoom 128x72 RGB DmLab 96x72 RGB

of envs sampled: 72 144 288 576 1152 1728 72 144 288 576 1152 1728 72 144 288 576 1152 1728

DeepMind IMPALA 9661 8826 8602 - - - 10708 10043 9990 - - - 8782 8622 8491 - - -
SeedRL IMPALA 25400 33425 39500 39726 - - 23395 29591 34428 - - - 22814 30354 32149 34773 - -
RLLib IMPALA 19148 20960 20440 19328 19360 22440 11471 11361 12144 11974 12098 12391 12536 13084 13932 - - -
rlpyt PPO 24520 33544 39920 53112 63984 68880 37848 40040 57792 68644 71080 73544 22700 24140 29180 29424 32652 32948

SampleFactory APPO 37061 59610 81247 95555 120355 135893 38955 61223 79857 103658 131571 146551 26421 37088 41781 42149 41383 41784

Table A.2. Throughput of asynchronous RL methods measured in environment frames per second (samples per second ×4).

Hardware Training scenario Rollout workers Total number of envs Throughput, env. frames/sec

System #1 DMLab with GPU rendering 20 160 17952
System #1 DMLab with GPU rendering 20 320 18243

System #3 VizDoom Battle PBT, full model, 4 agents 72 2304 153602
System #3 VizDoom Battle PBT, full model, 8 agents 72 2304 154081
System #3 VizDoom Battle PBT, full model, 12 agents 72 2304 146443

Table A.3. Performance of Sample Factory in additional training scenarios.

A.2. DMLab-30 experiment

In this section we share our findings related to multi-task training on DMLab-30. Overall, we largely follow the same
training procedure as the original IMPALA implementation, e.g. we used the exact same model based on ResNet backbone.
We found however that seemingly subtle implementation details can significantly influence the learning performance.

One of the key choices when training on a multi-task benchmark like DMLab-30 with an asynchronous RL algorithm is
whether to give different tasks the same amount of samples, or the same amount of compute. We follow (Espeholt et al.,
2018) and employ the second strategy. Just like the original implementation of IMPALA, we spawn an equal number of
workers for every task (in our case 90 workers on a 36-core system, 3 workers per task) and let the OS schedule these
processes. Note that this gives somewhat unfair advantage to tasks which render faster, since with the same amount of CPU
time more samples can be generated for the faster environments. Sample Factory supports both training regimes, but we

Supplementary Material

decided to go with the IMPALA strategy to ensure fair comparison of scores. Also, the throughput is higher in this mode.
The authors argue that this implementation detail (distribution of compute resources across tasks) should be stated explicitly
whenever different multi-task algorithms are compared.

The only significant difference compared to the original IMPALA setup is the chosen action space. We decided to use a
slightly different discretization of the game inputs introduced in (Hessel et al., 2019), since it makes the action space closer
to the one available to humans, e.g. it allows the agent to turn and move forward within the same frame. The increased
number of actions, however, makes exploration harder, and we see a drop in performance in some of the levels where
exploration is key. Figure A.2 shows the full breakdown of the agent’s performance on individual tasks.

Finally, we noticed that one of the most significant factors affecting the throughput is the level generation at the episode
boundary. To make the DMLab-30 benchmark more accessible we release a dataset of pre-generated levels, as well as the
environment wrapper that makes it easy to use the dataset with any RL algorithm implementation. This wrapper builds on
top of the already existing DMLab level cache. Without relying on the random seed provided by the environment, it will
load the levels from the dataset until all of them are used in the training session, after which new levels will be generated
and added to the cache. Follow the link below to find instructions on how to download the dataset and use it with Sample
Factory: https://github.com/alex-petrenko/sample-factory#dmlab-level-cache.

A.3. VizDoom experiments

We used full neural network architecture (as shown on Figure A.1) to train our final VizDoom agents. All advanced VizDoom
environments we used (Battle, Battle2, Deathmatch, Duel) included an additional observation space with game information
in numerical form. We only used information available to a human player through in-game UI. This includes: health and
armor, current score, number of players in a match, selected weapon index, possession of different types of weapons, and
amount of ammunition available for each weapon. We do not use previous rewards as a policy input, because the reward
function can be based on hidden in-game information (e.g. damage dealt) and thus may give the agent an unfair advantage at
test time.

Table A.4 describes the action space used in VizDoom experiments. We decompose the set of possible actions into seven
independent action distributions, which allows the agent to combine multiple actions within the same frame, e.g. run forward,
strafe, and attack at the same time. The action space for horizontal aim is technically continuous although in this work we
discretize it with 1.25◦ step, which empirically leads to faster learning.

Action head Number of actions Comment
Moving 3 no-action / forward / backward
Strafing 3 no-action / left / right
Attacking 2 no-action / attack
Sprinting 2 no-action / sprint
Object interaction 2 no-action / interact
Weapon selection 8 no-action / select weapon slot 1..7
Horizontal aim 21 no-action / turning between −12.5◦ and 12.5◦ in 1.25◦ steps

Total number of possible actions 12096

Table A.4. Action space used in VizDoom multi-agent experiments.

Reward function for Battle and Battle2 is based on the game score (+1 for killing a monster) plus a small additional reward
for collecting health and ammo packs. In Deathmatch and Duel we extended the reward function to include penalties for
dying, as well as additional rewards for picking up new types of weapons and dealing damage to opponents. Finally, we
penalize the agent for switching the weapons too often, which accelerates the training in early stages.

The basic hyperparameters of all our experiments are presented in Table A.5. We deviate from these parameters only in
Deathmatch and Duel experiments where we used action repeat (frameskip) of two consecutive frames instead of four.
Consequently, we adjusted the discount factor to 0.995 to account for this change. We observe that in these environments
repeating actions fewer times led to better final performance of the agents.

In all hardware setups we used the number of rollout workers equal to the number of CPU cores. This allows us to use
CPU affinity setting for processes to minimize the amount of context switching and accelerate sampling. The number of
environments per core that enables the highest throughput lies between 24 and 25 for VizDoom. Note that for systems with

https://github.com/alex-petrenko/sample-factory#dmlab-level-cache

Supplementary Material

large number of CPU cores a larger batch size might be required to reduce the policy lag. In all our experiments the policy
lag was on average between 5 and 10 SGD steps, which results in stable training. Tensorboard summaries were used to
monitor the policy lag during training.

Learning rate 10−4

Action repeat (frameskip) 2/4
Framestack No
Discount γ 0.995/0.99
Optimizer Adam (Kingma & Ba, 2015)
Optimizer settings β1 = 0.9, β2 = 0.999, ε = 10−6

Gradient norm clipping 4.0

Rollout length T 32
Batch size, samples 2048
Number of training epochs 1

V-trace parameters ρ̄ = c̄ = 1
PPO clipping range [1.1−1, 1.1]

Entropy coefficient 0.003
Critic loss coefficient 0.5

Table A.5. Hyperparameters for VizDoom experiments.

A.3.1. POPULATION-BASED TRAINING

In our VizDoom population-based training experiments we used System #3 to train a population of 8 agents in parallel. The
full configuration of Sample Factory in this setup includes 72 rollout workers (one worker per logical core), 32 environment
instances per rollout worker, 8 policy workers, and 8 learners (one for every policy involved). We deployed 2 learners and 2
policy workers on each available GPU with more GPU memory to spare.

Every 5M frames during training we randomly mutate hyperparameters and reward shaping weights of the bottom 70% of
the population. The mutation rate is 15% for each hyperparameter. In our experiments we mutated learning rate, entropy
loss coefficient, Adam β1, and individual reward shaping coefficients by increasing or decreasing these parameters by a
factor of 1.2. Additionally, every 5M frames we replace the policy weights for the worst 30% of agents with weights of the
policy randomly sampled from the best 30%. In Duel experiment we introduce an additional threshold that prevents the
weights exchange mechanism if policies are relatively close in performance (the difference in win rate is less than 0.35),
which helps to increase the diversity of the population.

B. Additional performance considerations
Seemingly small details can make a big difference in the performance of an asynchronous system. We found that tuning
CPU core affinity and priority for various components of the system can give us a substantial performance gain. In Sample
Factory we recommend setting the number of rollout workers to the number of logical CPU cores. In this case we can use
processor affinity to run these worker processes on individual cores, preventing a lot of unnecessary context switching.
We also found that in most configurations it helps to deprioritize rollout workers and let policy workers and learners to be
scheduled as soon as there is any work available. This helps saturate the rollout workers with actions and increases the
overall performance. Sample Factory comes with a default set of priorities/affinities that will work well for many training
configurations.

In the highest throughput configurations batching of trajectories into minibatches and transferring them to the GPU can also
become a bottleneck. Similar to (Espeholt et al., 2018) and (Espeholt et al., 2019) we implement this preprocessing step in
the background thread on the learner, eliminating this particular performance issue.

B.1. FIFO queues

Sample Factory generally avoids explicit data transfer between system components, instead these components exchange
addresses in shared memory buffers. Perhaps rather surprisingly, we found that at frame rates above 105 FPS even
communicating these addresses can be difficult. In fact, at this speed the standard Python’s multiprocessing.Queue tends to

Supplementary Material

occupy a significant portion of CPU time.

To solve this issue we implemented our own version of the IPC FIFO queue in C++, based on a circular buffer and POSIX
mutexes. This custom implementation is a drop-in replacement for the standard multiprocessing.Queue and it allows for
20-30 times faster message exchange in many producers - few consumers configuration, also achieving lower latency. The
URL below contains installation instructions and detailed performance measurements:

https://github.com/alex-petrenko/faster-fifo

References
Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. Learning phrase

representations using RNN encoder-decoder for statistical machine translation. In EMNLP, 2014.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg,
S., and Kavukcuoglu, K. IMPALA: Scalable distributed deep-rl with importance weighted actor-learner architectures. In
ICML, 2018.

Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., and Michalski, M. SEED RL: Scalable and efficient deep-rl with
accelerated central inference. CoRR, abs/1910.06591, 2019.

Hessel, M., Soyer, H., Espeholt, L., Czarnecki, W., Schmitt, S., and van Hasselt, H. Multi-task deep reinforcement learning
with popart. In AAAI, 2019.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Computation, 1997.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous
methods for deep reinforcement learning. In ICML, 2016.

https://github.com/alex-petrenko/faster-fifo

Supplementary Material

0 20 40 60 80 100 120 140 160
Human Normalised Score, %

language_select_described_object

explore_goal_locations_small

explore_obstructed_goals_small

language_answer_quantitative_question

explore_object_locations_small

psychlab_visual_search

rooms_collect_good_objects_train

language_select_located_object

explore_object_locations_large

explore_goal_locations_large

psychlab_sequential_comparison

explore_obstructed_goals_large

natlab_varying_map_randomized

natlab_varying_map_regrowth

explore_object_rewards_many

explore_object_rewards_few

psychlab_continuous_recognition

psychlab_arbitrary_visuomotor_mapping

rooms_select_nonmatching_object

skymaze_irreversible_path_varied

rooms_keys_doors_puzzle

rooms_exploit_deferred_effects_train

rooms_watermaze

skymaze_irreversible_path_hard

natlab_fixed_large_map

language_execute_random_task

lasertag_one_opponent_small

lasertag_three_opponents_small

lasertag_three_opponents_large

lasertag_one_opponent_large

Sample Factory DeepMind IMPALA

Figure A.2. Final human-normalized training scores for individual DMLab-30 environments.

