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Abstract

Stochastic neural networks with discrete random
variables are an important class of models for
their expressiveness and interpretability. Since
direct differentiation and backpropagation is not
possible, Monte Carlo gradient estimation tech-
niques are a popular alternative. Efficient stochas-
tic gradient estimators, such Straight-Through and
Gumbel-Softmax, work well for shallow stochas-
tic models. Their performance, however, suffers
with hierarchical, more complex models. We fo-
cus on stochastic networks with Boolean latent
variables. To analyze such networks, we introduce
the framework of harmonic analysis for Boolean
functions to derive an analytic formulation for the
bias and variance in the Straight-Through estima-
tor. Exploiting these formulations, we propose
FouST, a low-bias and low-variance gradient es-
timation algorithm that is just as efficient. Ex-
tensive experiments show that FouST performs
favorably compared to state-of-the-art biased esti-
mators and is much faster than unbiased ones.

1. Introduction

Stochastic neural networks with discrete latent variables
have been an alluring class of models for their expressiv-
ity and interpretability, dating back to foundational work
on Helmholtz machines (Dayan et al., 1995) and sigmoid
belief nets (Neal, 1992). Since they are not directly differ-
entiable, discrete random variables do not mesh well with
the workhorse of modern Deep Learning, that is the back-
propagation algorithm. Monte Carlo gradient estimation is
an effective solution where, instead of computing the true
gradients, one can sample gradients from some distribu-
tion. The sample estimates can be either biased or unbiased.
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2 Efstratios Gavves '

Unbiased gradient estimates like score function estimators
(Williams, 1992) come typically at the cost of high variance
leading to slow learning. In contrast, biased gradient esti-
mates such Straight-Through (Bengio et al., 2013), while
efficient, run the risk of convergence to poor minima and
unstable training. To this end several solutions have recently
been proposed that either reduce variance in unbiased esti-
mators (Mnih & Gregor, 2014; Gu et al., 2016; Tucker et al.,
2017; Rezende et al., 2014; Grathwohl et al.) or control
bias in biased estimators (Jang et al., 2017; Maddison et al.,
2017). These methods, however, have difficulty scaling up
to hierarchical neural networks with multiple stochastic lay-
ers: low-variance unbiased estimators are too expensive L
while the compounded bias from the continuous relaxations
on multiple stochastic layers leads to poor minima. In this
work we focus on biased estimators.

Our goal in this paper is a gradient estimator for Boolean
random variables that works for any complex hierarchical
neural networks also. We resort to the term Boolean in-
stead of binary to emphasize that we work directly on the
Boolean space {—1,+1}, without any continuous relax-
ations or quantizations. With this in mind we re-purpose
the framework of harmonic analysis of Boolean functions,
widely used in computational learning and computational
complexity theory (O’Donnell, 2014; Linial et al., 1993;
Mossel et al., 2003; Mansour, 1994). We cast stochastic
neural networks as Boolean functions f(z) over Boolean
latent variables z sampled from probability distributions
p(z). We then use harmonic analysis to determine that the
bias in the Straight-Through gradient estimates corresponds
to the weighted sum of higher-order Taylor coefficients of
f(2). Moreover, we show that variance in stochastic neural
networks is caused by higher order Fourier coefficients. The
direct consequence is that one can control the bias and the
variance in the Straight-Through estimator by manipulating
the higher-order Fourier and Taylor coefficients of f(z).
Building upon the harmonic analysis of existing gradient
estimators, we present an algorithm, FouST, that admits
low bias and low variance gradient estimates for Boolean
latent variable models. In experiments, we are able to train
complex hierarchical neural networks with no difficulty,

"Training a nonlinear sigmoid belief network model on GPU
with two stochastic layers on MNIST with REBAR took 1.5 days.
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Algorithm 1 FouST Gradient Estimator

Require: Parameters 6 € RX, Bernoulli Representation
{=1/7,4+1/7}, Interval Parameter b € [0, a], Constant
scaling parameter ~y, NoiseOp flag, T' NoiseOp sam-

ples, p

1: Sample z; ~ pp,(2;),i=1,..., K

2: Sample y; ~ Unif(b, a)

3: Sety; := z; xy;

4: Compute ST gradient dy, := 0y, f(y)

5: Importance reweighing 9y, := 0.5/p(z;) - O,
6: if not NoiseOp then

7. return partial gradient v0p,,i =1, ..., K
8: else

9:  Sample 2* from N,(2), k=1,...T
10:  Run steps 1-5 for each z*
11:  return average of T partial gradients.
12: end if

while scoring high accuracies compared to state-of-the-art
baselines. We summarize FouST in Algorithm 1.

We make the following three contributions.

1. We introduce the framework of harmonic analysis of
Boolean functions to analyze discrete stochastic neural
networks and gradients. Under this framework, we
quantify the bias and variance in stochastic gradients,
associating them with higher order Taylor and Fourier
coefficients respectively.

2. Based on the harmonic analysis and quantification of
bias and variance, we present FouST. FouST is a gra-
dient estimator that admits low bias and low variance
by manipulating higher order Taylor and Fourier coef-
ficients, as guided by the Harmonic Analysis.

3. Asaside contribution, based on our theoretical analysis
we show that the DARN (Gregor et al., 2014) gradient
estimator — originally motivated in terms for unbiased
control variates for quadratic functions — can be inter-
preted as a lower-bias version of Straight-Through.

We continue with briefly introducing the framework of har-
monic analysis for Boolean functions in section 2. We
use this framework in section 3 to interpret true stochastic
gradients as Fourier coefficients. In section 4 we describe
the proposed low-bias, low-variance estimator. We close
with related work in section 5, experimental validation in
section 6 and a conclusion in section 7.

2. Harmonic Analysis of Boolean Functions

We consider Boolean functions on the n-dimensional
Boolean cube, f : {—1,+1}" — R. The setting of

Harmonic Analysis for Boolean functions is the space of
Boolean functions f with a product probability distribution
on the Boolean input, that is p(z) = []]_, pi(z). We denote
p; as the probability of the i-th dimension being one, i.e.,
p;i := p;i(z; = +1). We denote the mean and variance of z;
by u; and o;, respectively.

An example of a Boolean function in this setting is a gen-
erative neural network f : z — y with a factorized latent
distribution, as commonly done in representation learning
(Kingma & Welling, 2014; Higgins et al., 2017). In this
example, z is the stochastic Boolean input taking only two
possible values, +1 or —1. The stochastic input is also
known as the latent code in stochastic neural networks. vy is
the output of the neural network, like the cross entropy loss.
Often, the goal of a generative neural network is to learn or
approximate the latent distribution given input data z, i.e.,
p(z|z), which we explore in the experiments.

Next, we introduce a few basic operations in the context of
Harmonic Analysis of Boolean functions, which we need
later on. To improve readability, we collect all important no-
tations in table 1. We include further details in the appendix.
For a more comprehensive introduction, we refer the reader
to O’Donnell (2014).

Inner product. The inner product of two Boolean functions
fand gis: (f,g) = E,;)[f(2)g(z)]. To have cleaner
notation, from here on we drop p(z) from the subscript of
the expectation E[-] = [E,,.)[-] whenever an expectation is
taken with respect to the whole vector z.

Orthonormal basis. Let S be any subset of dimensions of
the n-dimensional Boolean cube, S C [n] = {1,...,n}. Per
S we define a basis function, ¢5(2) := [[;c g ¢i(2:), where
for the empty set ¢z (z) = 1 and for the i-th dimension
¢i := Z-E2 ie., the z-score normalized dimension. As an

example, we take the case of the uniform Bernoulli distribu-
tion, namely p;(z; = +1) = 1/2 and p;(z; = —1) = 1/2.
In that case, the basis for the ¢-th dimension is ¢;(z;) = z;,
aspu; =0and o; = 1.

As z is n-dimensional, the total number of basis functions
¢s is 2™ for all possible subsets in [n]. In expectation, the
inner product between the basis functions forms the identity
matrix

Ep(z)[(bi(zi)Q] = 17
Ep(2)[0i(2:)8;(25)] = Epz) [0i(2i)] Ep) [05(25)] = 0,8 # j.
where the last identity derives from the independence of

any dimensions i # j. The ¢g functions, therefore, form an
orthonormal basis for the space of Boolean functions f.
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Fourier expansion of Boolean functions. We expand the
boolean function f on the set of 2" orthonormal basis func-
tions,

fz) =" [P(S)¢s(2).

SCln]

2

The Fourier coefficients f®) (S) are computed by the in-
verse Fourier expansion,

Ff®(S) =E[f(2)¢s(2)],

namely the inner product of the Boolean function f(z) with
the basis functions under distribution p(z). We write f()
for f(P)(S), when there is no confusion regarding p(z). The
degree of a coefficient f(*)(S) is the cardinality of S.

3)

e There is only a single degree-0 coefficient for the empty
set, f(P)(2). Recalling that ¢ = 1, the degree-0
coefficient equals to the expected value of f under

p(2), fP(2) = E[f(2)]

e The variance of a function can be given in terms of
Fourier coefficients as
() =Ef -EUD = > f9% @

SC[n],S#2

where the last equation follows by Plancherel’s theo-

rem: (f, f) = ngn] £(9)2

As the coefficients depend on the distribution p(z), the
expansion in (2) is known as the p-biased Fourier expansion
of the Boolean function f(z).

Fourier Noise Operator. Given z,2’ € {—1,1}" and p €
[0, 1], we say that z, 2’ are p-correlated if 2’ is generated by
independently setting each 2] to z; with probability p and a
sample from p; with probability 1 — p. We denote this by
z' ~ N,(z). We use this to define the noise operator T,
acting on f as the expectation over p-correlated inputs as
follows:

To[f1(2) = Ezron, () [£ (2)]

The noise operator has a special action on the functions
¢;, multiplying them by p. For the basis function ¢g this
translates to multiplication by pl!:

Tp[¢S](2) =T, (H ¢z>

i€S

(2) = [ [ Tol0:)(2) = o195 (2).

€S

By linearity of expectation it follows that

T,f1(z) = > F(S)T,lesl(2) = > p*1f(S)es(2).
SCln] ]

SCln

Table 1. A summary of notation.
z  Boolean variable € {—1 + 1}

f(2) Boolean function, VAE decoder loss
¢s(z) Basis for subset S
f®(S)  Fourier coefficient of f for S under p(z)
T,[f](z) Noise operator with parameter p that
averages inputs 2’ correlated with z
Op, E[f(2)] True gradient for the loss IE,.)[f(2)]
E[0., f(z)] Straight-Through gradient
bias®) (géT) Bias of the gradient estimate for i-th
dimension under distribution p(z)
pli21/2)  Uniform Bernoulli distribution for

p(zi), e, plz; = +1) =1/2

Following equation (4), the variance of the new function
T,[f](#) is now given by

D

SClnl,S#2

P51 f(9)2. (5)

3. Harmonic Analysis of Straight-Through

We start from a stochastic neural network and optimize
the model parameters with respect to a loss function £ :=
E,(z)[f(2)] by taking the gradients

api L= api IEp(z) [f(z)] (6)

per dimension. As the latent codes z are obtained by ran-
domly sampling from p(z) —a non-differentiable operation—
backpropagation is inapplicable. To this end, Bengio et al.
(2013) propose the Straight-Through estimator that approxi-
mates the gradient with

8115 L= IEp(z) [8z1 f(Z)} N

Due to the mismatch in the forms of the true and the Straight
through gradients, the approximation is biased. Our goal is
to understand and quantify the source of this bias.

In our setting, the Boolean function f(z) is a neural network
model operating on the Boolean latent input. The strategy,
therefore, is to study the Boolean function f(z) under the
framework of Harmonic Analysis of Boolean functions.

We first derive a relation between the true gradient in (6)
and the Fourier coefficients for f(z). Specifically, we show
that the true gradient for the ¢-th dimension is equal to the
degree-1 Fourier coefficient for the i-th dimension. By tak-
ing a Taylor expansion of (i) the true gradient -or its Fourier
coefficient to be precise, and (ii) the Straight-Through gradi-
ent, we can compare the two. The term-by-term comparison
quantifies the source of the bias in the Straight-Through
gradient, yielding the following lemma, where bias®) ( g;T)

denotes the bias of the i-th gradient estimate, g;T, under
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the general distribution p(z); bias® """ (g;T> is the bias
under the uniform Bernoulli distribution for the ith variable,
while the other dimensions remain unchanged; and, cj, are
the Taylor coefficients for the i-th dimension on f(z) around
0, where we drop ¢ from the superscript for clarity.
Lemma 1. The bias in the Straight-Through estimator, gér,
is caused by the mismatch of higher-order odd terms in the
Taylor expansion of g* and g;T and is equal to

as® (gt ) = bias® ") ( i )
bias (gsr) = bias Igr +E
k=25,7>0

®)

Proof. For compactness, we provide only a sketch for the
proof, keeping the steps needed later for the final estimator.
For the detailed proof please refer to the appendix.

True gradient as degree-1 Fourier coefficient. Starting from
the true gradient in (6), we can show that it is equiva-
lent to the degree-1 Fourier coefficients under the uniform
Bernoulli distribution.

Ops Ep(o)[f(2)] = 100 _ 2212 (5)  (9)

gj
= 2Ep(i~>1/2)(z) [f(Z)ZJ (10)

We give the detailed proof for obtaining this identity in the
appendix.

Taylor expansion of true gradient. f(z) can be further ana-
lyzed in terms of Taylor expansion centered around 0,

f(z):CO+Clzi+CQZ§+c3z§’+... (11)

where k! = 9% f(2)|., =0 are the Taylor coefficients. Note

that all ¢, are a function of z;, j # 4. Replacing f(z) in (10)

with (11), we have that

8;01. []Ep(z) [f(z)]] = QEpi,—»l/Q(z)[CoZi + 612’2»2 + CQZ? + - ]
(12)

:2Ep(2\i)[cl+03+"']v (13)

using sz = 1 and zf’”'l = z; to go from (12) to (13).
According to (13), the true gradient of f(z) with respect to
p; 1s equal to the expected sum of the odd Taylor coefficients

of f(2).

Taylor expansion of Straight-Through gradient. We take the
derivative of the Taylor expansion in (11) with respect to z;,

0., f(2) =1 + 2¢coz; + 30321-2 + 40425’ + .. (14)

The Straight-Through estimator is the expectation of (14),
that is

]Ep(z) [3zlf(2)] = Ep(z) [01 + 2¢oz; + 38321-2 4. ] (15)
=Epzle1 +3cs + 55 + -]
-‘r]Ep(z\,)[ZCQ +deg+ - (16)

Z keg | ps.

where E,,(.,)[2i] = pi.

Comparison of Taylor terms of true and Straight-Through
gradients. To determine the bias of the Straight-Through
gradient, we subtract the Taylor expansion of the true gradi-
ent (13) from the Taylor expansion of the Straight-Through
gradient (16),

bias®) (g} ) = Eps)[0, £ (2)] = Oy By [F(2)]] (D)

= ]Ep(z\i) Z (]4} — 2)Ck
k=2j+1,7>0
By | Do ker| i (18)
k=235,7>0

= biasP VA (gl )+ Byey | Y ker| e (19)
k=24,5>0

To obtain the last identity, note that the expectation in (16)
under the uniform Bernoulli distribution sets p; = 0 and
vanishes the second term. O

Lemma 1 introduces two perspectives on the source of bias
for the Straight-Through estimator. According to (18), the
bias is a series of Taylor terms. The higher order coefficients
contribute more to the bias because of the multiplying fac-
tors k — 1 and k for odd and even terms respectively. We
refer to this as the Taylor formulation. According to (19),
part of the bias is due to the mismatch of the generative
distribution p(z;) from the uniform Bernoulli distribution
pU=1/2)(2;). We refer to this as the distribution mismatch
formulation.

4. Low-bias & Variance Gradient Estimates

We start from the two formulations for the source of bias in
the Straight-Through estimator to design a better gradient
estimator. The method yields gradient estimation that is just
as efficient as the Straight-Through but with low bias with a
single sample evaluation of the decoder. We also show that
we can couple the estimator with the Fourier Noise operator
to reduce variance, which in turn increases training stability
with a small extra cost.

We coin the final algorithm FouST, for Fourier Straight-
Through estimator, and summarize the steps in Algorithm 1.

4.1. Lowering Bias by Importance Sampling

Starting from the distribution mismatch formulation in (19),
the total bias under any (unknown) distribution p(z) decom-
poses to the bias under the uniform Bernoulli p(*~1/2)(2)
and bias from the non-zero higher-order harmonics in ex-
pectation under p(z). This gives a straightforward way to
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lower bias: encourage the gradient estimator under p(z) to
approach the bias under the uniform Bernoulli, thus setting
the bias from higher order harmonics to 0:

bias® (g;T) — bias(pﬁl/Q)(ggT) =

Z kep | i — 0

k=25,j>0

E:U(Z\i)

That is, we can lower the bias for the Straight-Through esti-
mator if we sample from the uniform Bernoulli p(*=1/2)(z)
distribution rather than p(z).

One way to satisfy this condition is to resort to importance
sampling from p(*~1/2)(z) instead of p(z). To this end,
we first get samples from p(z) and compute the gradients
0., f (z) as we would normally do with the Straight-Through.
Then, we correct the gradient by estimating the expectation
under p(*~1/2) (), namely we multiply and divide by p(z)
per dimension

1

20(=) 2., f(2)], (20)
recalling that p"~1/2)(z;) = 1/2. Interestingly, Gregor
et al. (2014) arrive at a similar proposition, albeit in the
context of unbiased control variates for quadratic functions.
Our derivation provides the additional insight that impor-
tance sampling with respect to the uniform Bernoulli distri-
bution, as in (20), reduces the bias of the Straight-Through
estimator.

Ep(iﬁ»l/%(z) [@lf(z)} = E’P(Z)

4.2. Reducing Variance via the Fourier Noise operator

A common observation when using biased gradient estima-
tors such as straight-through is that training tends to become
unstable. This observation is usually attributed to the bias
in the gradient estimator. On the other hand, we observe in
our experiments that it is a combination of bias and variance
that leads to instability and that training stability can be
improved by lowering variance even when biased estimators
are employed.

In this section we propose the application of the Fourier
noise operator to construct lower variance functions to im-
prove optimization. The Fourier noise operator takes as
input a Boolean function f to produce another function
T'[f](z) which is similar to f but with significantly smaller
dependence on higher degree terms leading to reduced vari-
ance. The noise operator can be thought of as a smoothing
operator where the output function is produced by taking
inputs 2’ that are correlated with z and averaging the given
function f evaluated on the correlated inputs. The Fourier
expansion of this function is reproduced in the following,
where p € [0, 1] is a parameter.

T,[f1(z) = Y P f(S)es(2).

SCin]

Such a function has a number of properties that make it
attractive, all of which can be seen from the Fourier expan-
sion. The first is that expected values of the two functions
remain the same, since the degree 0 Fourier coefficients are
the same for both f(z) and T'[f](z). The second property is
that the variance of the resulting function is much lower than
that of the original function, since the new Fourier coeffi-
cients are given by p!5! () leading to smaller coefficients
for higher order terms (see equation (5) for the variance
expression).

Given a VAE decoder function f that has high variance,
we can replace the decoder with its noise operated version
T,[f] to reduce variance without affecting the output value
in expectation. The choice of the parameter p determines the
extent to which variance is reduced, with p = 1 correspond-
ing to no reduction and p = 0 being a simple expectation
of f over independent samples and hence 0 variance. In our
experiments we observe a significant improvement when us-
ing correlated samples (with p around 0.5) over independent
samples (corresponding to p = 0).

4.3. Lowering Bias by Discounting Taylor Terms

Continuing to the Taylor formulation in (18), the total bias
can also be seen as the sum of rescaled, higher order Taylor
terms. We can lower the bias by discounting the contribution
of these higher order Taylor terms. This can be achieved
by modifying the function f(z) to yield Taylor terms with
discounted coefficients cg,1. It can also be achieved by
rescaling the representation of the Boolean variables z¥ to
discount the higher order Taylor terms.

4.3.1. DISCOUNTING TAYLOR COEFFICIENTS ¢

We recall that the moments of the uniform distribution over
an interval [a, b]:

b k+1 k+1
1y, b —a
/a T (R () @
bk
= a1 (whena =0) (22)

We make two observations. First, the numerator contains b,
which has the same form as zf Second, the denominator
contains k + 1, which discounts the multiplying factors in
(18). This suggests that we can feed uniformly sampled
inputs from [0,b]™ to the function to obtain similar Tay-
lor terms zf with discounted cy1. Next, we describe the
precise steps to use the uniformed samples to lower bias.

First, we sample z from the latent Bernoulli distribution. We
assume that we want the gradient relative to the variable 2z
and that ;1 = 0 or the importance sampling correction has
been applied. Next, we sample u = (ug, .. ., u,) such that
u; is sampled from the uniform distribution over [0, z;] if
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z; = lor [z,0] if z; = —1. We then estimate the gradient
as Oy, f(u). To express the expectation of the gradient under
such random sampling we look at the multivariate Taylor
expansion of f and the respective gradients.

2= ca ] 5 (23)

where a € N™ a multi-index. Each component «; is the
exponent of z; (similar to k£ above). The true gradient
Op, E[f(#)] depends on the terms where ¢ is odd and for
all 4 #£ 1, o is even and is expressed as follows.

> e [ B (24)

azaqodd £l
a;even,iZl

= ) ca (25)

«a:arodd
ajeven,iFl

Op, E[f(2)]

The expected gradient under our random sampling is given
as follows,

]Ez,u[amf(u)] = Z ajcq | Z,u Z(lxl 1 HEz u al

azaiodd i#1
aeven,i#l

(26)
a;—1 i
B azgdd M= il;[lEZ[az—Fl]
a;even,i#1
(27)
= > caHE ’a ], (28)

azapodd i#1
a;even,i#1

where we now use z, u in the subscript of the expectations
for clarity. A comparison between the true gradient expres-
sion (24) and the expected gradient in (28) shows that

1. This gives the correct coefficient for all terms where
«; = 0 for ¢ # 1. That is, for all terms in which only
z1 appears (for any degree).

2. The estimate becomes progressively worse as the total
degree of other terms (except for dimension 1 in our
use case) becomes larger.

Sampling from the uniform distribution can lead to bias re-
duction for functions with small coefficients. For functions
with large coefficients we can use smaller interval [a, b] by
increasing a in (21). In that case, if we repeat the above
analysis we discount low degree terms less and high degree
terms more. In practice, we find that setting ¢ = 0 and
focusing on the low degree terms suffices across datasets
and setups.

Last, we emphasize that u serves only as an auxiliary vari-
able; its purpose is to help compute a gradient of lower
bias and has no learned parameters. In the end, the only
latent variable is the Boolean z. A potential problem from
the proposed uniform sampling is increased variance. We
can control the variance by incorporating the Fourier noise
operator as described in section 4.2.

4.3.2. DISCOUNTING BY REPRESENTATION RESCALING

We can further discount higher order Taylor terms and lower
bias by rescaling the representation of z;. Specifically, we
transform z; by h(z;) = z;/7. h(z;) is still a valid Boolean
representation, as h(z) € {—1/7,+1/7} is a two valued
set. After the transformation h(z), the gradient of the Taylor
expansion of f(z) in (14) becomes

0., f(2) = 1 4 202 /T + Bcg2? J7% + deg 2l T3 4 ..
(29)

In expectation, the Straight-Through gradient then becomes

Ep() [0z, f(2)] = Epz)ler 4 2¢22i /7 + ...] (30)

:]Ep(z\i)[cl/T-i-?)Cg/T +~-']+Ep(z\i)[202/’7' —l-]/.LZ
(€29)

In comparison, the true gradient is
8,,1. [Ep(z) [f(Z)]] = QEp(z\i)[q/T + 03/7'3 + - ] (32)

By comparing (31) and (32), the gradient estimate has lower
bias by damping higher order Taylor terms by inverse pow-
ers of 7. The Taylor expansion after scaling the input in
(31) implies that larger values for 7 would lead to lower
bias. However, as 1/7 — 0 the sampling is confined to a
smaller interval and the gradient estimate becomes more
deterministic, thus causing worse performance. In practice,
we treat 7 as a hyperparameter tuned with cross-validation.

5. Related Work

Monte Carlo gradient estimators for training models with
stochastic variables can be biased or unbiased. Perhaps the
best known example of an unbiased gradient estimator is the
REINFORCE algorithm (Williams, 1992). Unfortunately,
REINFORCE gives gradients of high variance. For continu-
ous stochastic variables Kingma & Welling (2014) propose
the reparameterization trick, which transforms the random
variable into a function of deterministic ones perturbed by a
fixed noise source, yielding much lower variance gradient
estimates. For discrete stochastic variables, REINFORCE
is augmented with control variates for variance reduction.
A number of control variate schemes have been proposed:
NVIL (Mnih & Gregor, 2014) subtracts two baselines (one
constant and one input-dependent) from the objective to re-
duce variance. MuProp (Gu et al., 2016) uses the first-order



Low Bias Low Variance Gradient Estimation for Boolean Stochastic Networks

Taylor approximation of the function as a baseline. REBAR
(Tucker et al., 2017) uses the Gumbel-Softmax trick to form
a control variate for unbiased gradient estimates. RELAX
(Grathwohl et al.) generalizes REBAR to include an auxil-
iary network in the gradient expression and uses continuous
relaxations and the reparameterization trick to give unbiased
gradients.

Regarding biased estimators, a simple choice is the Straight-
Through estimator (Bengio et al., 2013) which uses the gra-
dient relative to the sample as that relative to the probability
parameter. Another recent approach is to use continuous
relaxations of discrete random variables so that the reparam-
eterization trick becomes applicable. The most common
example of this being the Gumbel-Softmax estimator (Mad-
dison et al., 2017; Jang et al., 2017). Although this is a
continuous relaxation, it has been used to define the Gumbel
Straight-Through estimator with hard samples. This uses
arg max in the forward pass and the Gumbel-Softmax gra-
dient is used as an approximation during in the backward
pass. DARN (Gregor et al., 2014), like MuProp, also uses
the first-order Taylor expansion as a baseline but does not
add the analytical expectation, making the estimator biased
for non-quadratic functions.

The Fourier expansion itself is widely used in computa-
tional learning theory with applications to learning low-
degree functions (Kushilevitz & Mansour, 1993), decision
trees (Mansour, 1994), constant-depth circuits (Linial et al.,
1993) and juntas (Mossel et al., 2003). To the best of our
knowledge we are the first to explore Fourier expansions
for lowering the bias and variance in stochastic gradient
estimators.

6. Experiments

Experimental Setup. We first validate FouST on a toy
setup with a known analytic expression for f(z). Next,
we validate FouST by training generative models using the
variational autoencoder framework of Kingma & Welling
(2014). We optimize the single sample variational lower
bound (ELBO) of the log-likelihood. We train variational
autoencoders exclusively with Boolean latent variables on
OMNIGLOT, CIFARI10, mini-ImageNet (Vinyals et al.,
2016) and MNIST (see the appendix). We compare against
Straight-Through, Gumbel-Softmax, and DARN. The re-
sults were consistent over multiple runs. Details regarding
architectures and hyperparameters are in the appendix.

6.1. Biased Estimators on a Toy Problem

To validate the excessive bias in the Straight-Through esti-
mator, as well as to explore the benefits of FouST, we first
explore a toy problem. Similar to Tucker et al. (2017), we
minimize E,,,)[(z — t)?], where ¢ € (0, 1) is a continuous

—— Gumbel-Softmax
FouST[0.5]

074 —— DARN

— ST

Probability

0 1000 2000 3000 4000 5000
) . . Steps .
Figure 1. Biased estimators on a toy problem. Lower is better.
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Figure 2. Training ELBO for two stochastic layer nonlinear models
on OMNIGLOT

target value and z is a sample from the Bernoulli distribution
p(z). The optimum is obtained for p(z = +1) € {0,1}.
Figure 1, shows a case with ¢ = 0.45, where the minimizing
solution is p(z = +1) = 0. Unlike the Straight-Through,
FouST converges to the minimizing deterministic solution.

6.2. FouST vs. State-of-the-Art Gradient Estimators

Training Stochastic MLPs. We train MLPs with one and
two stochastic layers on OMNIGLOT with the non-linear
architecture of Tucker et al. (2017). Each stochastic Boolean
layer is preceded by two deterministic layers of 200 tanh
units. All hyperparameters remain fixed throughout the
training. All estimators in this section use one sample per
example and a single decoder evaluation.

We present results in figure 2. FouST outperforms other
biased gradient estimators in both datasets and architectures.
FouST is clearly better than the Straight-Through estima-
tor. Despite the complicated nature of the optimized neural
network function f(z) the bias reduction appears fruitful.

With one or two stochastic layers we can also use the unbi-
ased REBAR. REBAR is not directly comparable to the esti-
mators we study, since it uses multiple decoder evaluations
and for models with multiple stochastic layers, multiple
passes through later layers. Nevertheless, for MNIST with
two stochastic layers REBAR reaches a worse test ELBO
of -94.43 v. -91.94 for FouST (see appendix for test ELBO
and training curves with REBAR). A possibility of worse
test than training ELBOs for REBAR was also suggested in
the original work (Tucker et al., 2017).
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Table 2. Validation bits per dimension for various models on
CIFAR-10. (x) Discrete VAE++ uses a sophisticated RBM-based
prior to obtain these results.

MODEL BPD

VIMCO (VAN DEN OORD ET AL., 2017) 5.14
DISCRETE VAE++* (VAHDAT ET AL., 2018)  3.59

VQ-VAE (VAN DEN OORD ET AL., 2017) 4.67
FouST (L=4) 4.16
FOUST+NOISEOP (L=1) 4.02
541 —— FouST (L=4)
—— ST (L=4)

—— FouST+NoiseOp (L=1)

Training ELBO (Bits/Dimension)
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Figure 3. ELBO comparison on CIFAR-10 with stochastic ResNet.

Training Stochastic ResNets. We further validate FouST
in a setting where the encoder and decoder are stochastic
ResNets (S-ResNets), that is standard ResNets with stochas-
tic layers inserted between ResNet blocks. Similar to MLPs,
FouST outperforms other biased estimators also on CIFAR-
10 (Figure 3). Note that despite the hyperparameter sweep,
we were unable to train S-ResNet’s with Gumbel-Softmax,
so we compare against Straight-Through. With an S-ResNet
with 12 ResNet blocks and 4 stochastic layers FouST yields
a validation score of 4.16 bits per dimension (bpd). We
used the discretized logistic mixture output model (Salimans
et al., 2017). A comparison with other reported numbers
is presented in table 2. We repeat the same experiment on
mini-ImageNet with deeper hierarchical models with up
to 10 stochastic layers but with a simpler Gaussian output
model. We arrive at the same conclusions (see appendix).

Efficiency. We compare the efficiency of different estima-
tors in the appendix. Like other biased estimators, FouST
requires a single sample for estimating the gradients and has
similar wallclock times. On MNIST, the unbiased REBAR
is 15x and 40x slower than the biased estimators for two and
five stochastic layer MLP’s respectively. From the above
experiments we conclude that FouST allows for efficient
and effective training of fully connected and convolutional
neural networks with Boolean stochastic variables.

6.3. FouST with Fourier Noise Operator

We test FouST with a reduced variance VAE decoder
function obtained by applying the Fourier noise operator,
T,[f](2). To extend the procedure to hierarchical networks

—— FouST+Independent Samples
—— FouST+NoiseOp (p = 0.5)
—— FouST+NoiseOp (p = 0.8)
—— FouST+NoiseOp (p = 0.9)
—— FouST+NoiseOp (p = 0.95)
—— FouST (No NoiseOp)

Training ELBO (Bits/Dimension)

0 20000 40000 60000 80000 100000 120000 140000
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Figure 4. FouST with various values p for the Fourier Noise Oper-
ator versus independent samples on CIFAR-10.

we apply the noise operator in the lowest stochastic layer.

We test whether applying the Fourier noise operator gives
an advantage over multiple independent samples. In each
case we used 5 samples to estimate T},[f](z). We a use
single 64 channel-wide stochastic layer with an S-ResNet
VAE on CIFAR-10 but with increased deterministic depth.
The training ELBO curves are in figure 4, which show a
significant improvement when correlated samples with p =
0.5 are used as opposed to independent samples.

A comparison with the same architecture trained without
the Fourier noise operator shows a significant worsening of
training stability, which reinforces our assumption that train-
ing instability is due to a combination of bias and variance.
As evident from figure 4, training stability improves as p is
decreased. Nevertheless, correlated samples lead to better
optimization over independent ones.

Next we trained stochastic ResNets on CIFAR-10 with a
wider 256 channel stochastic layer using the reduced vari-
ance version. We improve upon the deeper 4 layer version
described in the previous section, achieving a validation
score of 4.02 bits per dimension, as shown in figure 3.

7. Conclusion

In this work we introduce the framework of harmonic anal-
ysis for Boolean functions. We use harmonic analysis to
derive the source of bias in the Straight-Through estima-
tor for Boolean random variables. Based on the analysis
we propose the FouST gradient estimate algorithm to train
neural networks with Boolean random variables in hierar-
chical stochastic layers. FouST outperforms state-of-the-art
biased gradient estimators, while maintaining efficiency that
is orders of magnitude higher than unbiased estimators. Im-
portantly, to the best of our knowledge FouST is the first
gradient estimate algorithm, biased or unbiased, to be able
to train very deep and wide neural networks with Boolean
random variables. We conclude that harmonic analysis for
Boolean function is a useful methodological tool for hierar-
chical Boolean stochastic neural networks and FouST is a
practical gradient estimate algorithm to train them.
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