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Abstract 

When predictions support decisions they may in-
fluence the outcome they aim to predict. We 
call such predictions performative; the prediction 
influences the target. Performativity is a well-
studied phenomenon in policy-making that has so 
far been neglected in supervised learning. When 
ignored, performativity surfaces as undesirable 
distribution shift, routinely addressed with retrain-
ing. We develop a risk minimization framework 
for performative prediction bringing together con-
cepts from statistics, game theory, and causality. 
A conceptual novelty is an equilibrium notion 
we call performative stability. Performative sta-
bility implies that the predictions are calibrated 
not against past outcomes, but against the future 
outcomes that manifest from acting on the predic-
tion. Our main results are necessary and sufficient 
conditions for the convergence of retraining to 
a performatively stable point of nearly minimal 
loss. In full generality, performative prediction 
strictly subsumes the setting known as strategic 
classification. We thus also give the first sufficient 
conditions for retraining to overcome strategic 
feedback effects. 

1. Introduction 
Supervised learning excels at pattern recognition. When 
used to support consequential decisions, however, predictive 
models can trigger actions that influence the outcome they 
aim to predict. We call such predictions performative; the 
prediction causes a change in the distribution of the target. 

Consider a simplified example of predicting credit default 
risk. A bank might estimate that a loan applicant has an 
elevated risk of default, and will act on it by assigning a 
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high interest rate. In a self-fulfilling prophecy, the high 
interest rate further increases the customer’s default risk. 
Put differently, the bank’s predictive model is not calibrated 
to the outcomes that manifest from acting on the model. 

Once recognized, performativity turns out to be ubiquitous. 
Traffic predictions influence traffic patterns, crime location 
prediction influences police allocations that may deter crime, 
recommendations shape preferences and thus consumption, 
stock price prediction determines trading activity and hence 
prices. When ignored, performativity can surface as a form 
of distribution shift. As the decision-maker acts accord-
ing to a predictive model, the distribution over data points 
appears to change over time. In practice, the response to 
such distribution shifts is to frequently retrain the predictive 
model as more data becomes available. Retraining is often 
considered an undesired—yet necessary—cat and mouse 
game of chasing a moving target. 

What would be desirable from the perspective of the de-
cision maker is a certain equilibrium where the model is 
optimal for the distribution it induces. Such equilibria co-
incide with the stable points of retraining, that is, models 
invariant under retraining. Performativity therefore suggests 
a different perspective on retraining, exposing it as a natural 
equilibrating dynamic rather than a nuisance. 

This raises fundamental questions. When do such stable 
points exist? How can we efficiently find them? Under what 
conditions does retraining converge? When do stable points 
also have good predictive performance? In this work, we 
formalize performative prediction, tying together conceptual 
elements from statistical decision theory, causal reasoning, 
and game theory. We then resolve some of the fundamental 
questions that performativity raises. 

1.1. Our Contributions 

We put performativity at the center of a decision-theoretic 
framework that extends the classical statistical theory under-
lying risk minimization. The goal of risk minimization is to 
find a decision rule, specified by model parameters θ, that 
performs well on a fixed joint distribution D over covari-
ates X and an outcome variable Y . Whenever predictions 
are performative, the choice of predictive model affects the 
observed distribution over instances Z = (X, Y ). We for-
malize this intuitive notion by introducing a map D(·) from 
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the set of model parameters to the space of distributions. 
For a given choice of parameters θ, we think of D(θ) as the 
distribution over features and outcomes that results from 
making decisions according to the model specified by θ. 
This mapping from predictive model to distribution is the 
key conceptual device of our framework. 

A natural objective in performative prediction is to evaluate 
model parameters θ on the resulting distribution D(θ) as 
measured via a loss function `. This results in the notion we 
call performative risk, defined as 

PR(θ) = E `(Z; θ) . 
Z∼D(θ) 

The difficulty in minimizing PR(θ) is that the distribution 
itself depends on the argument θ, a dependence that defeats 
traditional theory for risk minimization. Moreover, we gen-
erally envision that the map D(·) is unknown to the decision 
maker. 

Perhaps the most natural algorithmic heuristic in this sit-
uation is a kind of fixed point iteration: repeatedly find a 
model that minimizes risk on the distribution resulting from 
the previous model, corresponding to the update rule 

θt+1 = arg min E `(Z; θ) . 
θ Z∼D(θt) 

We call this procedure repeated risk minimization. We also 
analyze its empirical counterpart, where we work with finite 
samples. These procedures exemplify a family of retraining 
heuristics that are ubiquitous in practice for dealing with all 
kinds of distributions shifts irrespective of cause. 

When repeated risk minimization converges in objective 
value, the model has minimal loss on the distribution it 
entails: 

PR(θ) = min E `(Z; θ0) . 
θ0 Z∼D(θ) 

We refer to this condition as performative stability, not-
ing that it is neither implied by nor does it imply minimal 
performative risk. Our central result can be summarized 
informally as follows. 

Theorem 1.1 (Informal). If the loss is smooth, strongly con-
vex, and the map D(·) is sufficiently Lipschitz, then repeated 
risk minimization converges to performative stability at a 
linear rate. Moreover, if any one of these assumptions does 
not hold, repeated risk minimization can fail to converge. 

The notion of Lipschitz continuity here refers to the Eu-
clidean distance on model parameters and the earth mover’s 
distance on distributions. Informally, it requires that a small 
change in model parameters θ does not have an outsized 
effect on the induced distribution D(θ). 

In contrast to standard supervised learning, convexity alone 
is not sufficient for convergence in objective value, even if 

the other assumptions hold. Performative prediction there-
fore gives a new and interesting perspective on the impor-
tance of strong convexity. 

Strong convexity has a second benefit. Not only does it 
guarantee that retraining converges to a stable point at a lin-
ear rate, it also ensures that this stable point approximately 
minimizes the performative risk. 

Theorem 1.2 (Informal). If the loss is Lipschitz and strongly 
convex, and the map D(·) is Lipschitz, all stable points and 
performative optima lie in a small neighborhood. 

Recall that performative stability on its own does not im-
ply minimal performative risk. What the previous theorem 
shows, however, is that strong convexity guarantees that we 
can approximately satisfy both. 

We complement our main results with a case study in strate-
gic classification. Strategic classification aims to anticipate 
a strategic response to a classifier from an individual, who 
can change their features prior to being classified. We ob-
serve that strategic classification is a special case of perfor-
mative prediction. On the one hand, this allows us to transfer 
our technical results to this established setting. In particular, 
our results are the first to give a guarantee on repeated risk 
minimization in the strategic setting. On the other hand, 
strategic classification provides us with one concrete setting 
for what the mapping D(·) can be. We use this as a basis of 
an empirical evaluation in a semi-synthetic setting, where 
the initial distribution is based on a real data set, but the 
distribution map is modeled. 

1.2. Related Work 

Performativity is a broad concept in the social sciences, 
philosophy, and economics (MacKenzie et al., 2007; Healy, 
2015). Below we focus on the relationship of our work to 
the most relevant technical scholarship. 

Learning on non-stationary distributions. A closely re-
lated line of work considers the problem of concept drift, 
broadly defined as the problem of learning when the target 
distribution over instances drifts with time (Kuh et al., 1991; 
Bartlett, 1992; Bartlett et al., 2000; Gama et al., 2014). 

Concept drift is more general phenomenon than performa-
tivity in that it considers arbitrary sources of shift. However, 
studying the problem at this level of generality has led to 
a number of difficulties in creating a unified language and 
objective (Gama et al., 2014; Webb et al., 2016), an issue 
we circumvent by assuming that the population distribu-
tion is determined by the deployed classifier. Importantly, 
this line of work also discusses the importance of retrain-
ing ( ̌  e, 2010; Gama et al., 2014). However, it stops Zliobait˙ 
short of discussing the need for stability or analyzing the 
long-term behavior of retraining. 
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Strategic classification. Strategic classification recognizes 
that individuals often adapt to the specifics of a decision 
rule so as to gain an advantage (Dalvi et al., 2004; Brückner 
et al., 2012; Hardt et al., 2016a; Khajehnejad et al., 2019). 
Recent work in this area considers issues of incentive de-
sign (Kleinberg & Raghavan, 2019; Miller et al., 2020), con-
trol over an algorithm (Burrell et al., 2019), and fairness (Hu 
et al., 2019; Milli et al., 2019). Our model of performative 
prediction includes all notions of strategic adaption that we 
are aware of as a special case. Unlike many works in this 
area, our results do not depend on a specific cost function for 
changing individual features. Rather, we rely on an assump-
tion about the sensitivity of the data-generating distribution 
to changes in the model parameters. 

Recently, there has been increased interest within the al-
gorithmic fairness community in classification dynamics. 
See, for example, Liu et al. (2018), Hu & Chen (2018), and 
Hashimoto et al. (2018). The latter work considers repeated 
risk minimization, but from the perspective of what it does 
to a measure of disparity between groups. 

Causal inference. The reader familiar with causality can 
think of D(θ) as the interventional distribution over in-
stances Z resulting from a do-intervention that sets the 
model parameters to θ in some underlying causal graph. 
Importantly, this mapping D(·) remains fixed and does not 
change over time or by intervention: deploying the same 
classifier at two different points in time must induce the 
same distribution over observations Z. While causal in-
ference focuses on estimating properties of interventional 
distributions such as treatment effects (Pearl, 2009; Imbens 
& Rubin, 2015), our focus is on a new stability notion and 
iterative retraining procedures for finding stable points. 

Reinforcement learning. In general, any instance of per-
formative prediction can be reframed as a reinforcement 
learning problem. Yet, by studying performative prediction 
problems within such a broad framework, we lose many of 
the intricacies of performativity which make the problem 
interesting and tractable to analyze. We return to discuss 
some of the connections between both frameworks later on. 

2. Framework and Main Definitions 
In this section, we formally introduce the principal solution 
concepts of our framework: performative optimality and 
performative stability. 

Throughout our presentation, we focus on predictive models 
that are parametrized by a vector θ ∈ Θ, where the param-
eter space Θ ⊆ Rd is a closed, convex set. We use capi-
tal letters to denote random variables and their lowercase 
counterparts to denote realizations of these variables. We 
consider instances z = (x, y) defined as feature, outcome 
pairs, where x ∈ Rm−1 and y ∈ R. Whenever we define a 

variable θ∗ = arg minθ g(θ) as the minimizer of a function 
g, we resolve the issue of the minimizer not being unique 
by setting θ∗ to an arbitrary point in the arg minθ g(θ) set. 

2.1. Performative Optimality 

In supervised learning, the goal is to learn a predictor fθ 

which minimizes the expected loss with respect to instances 
drawn i.i.d. from a fixed distribution D. The optimal classi-
fier fθSL solves the following optimization problem, 

θSL = arg min E `(Z; θ), 
Z∼Dθ∈Θ 

where `(z; θ) denotes the loss of predictor fθ at a point z. 

We contrast this with the performative optimum. As in-
troduced previously, in settings where predictions support 
decisions, the manifested distribution over features and out-
comes is in part determined by the deployed classifier. In-
stead of considering a fixed distribution D, each classifier 
fθ induces a potentially different distribution D(θ) over 
instances z. A predictor must therefore be evaluated with 
regard to the expected loss over the distribution D(θ) it 
induces: its performative risk. 

Definition 2.1 (performative optimality and risk). A classi-
fier fθPO is performatively optimal if the following relation-
ship holds: 

θPO = arg min E `(Z; θ). 
Z∼D(θ)θ 

defWe define PR(θ) = EZ∼D(θ) `(Z; θ) as the performative 
risk; then, θPO = arg minθ PR(θ). 

The following example illustrates the differences between 
the traditional notion of optimality in supervised learning 
and performative optima. Appendix C contains full deriva-
tions relevant to this example. 

Example 2.2 (biased coin flip). Consider the task of pre-
dicting a biased coin flip where the bias of the coin depends 
on a feature X and the assigned score fθ(X). 

In particular, define D(θ) in the following way. X is a 
1-dimensional feature supported on {±1} and Y | X ∼ 

1 1Bernoulli( 1 + µX + εθX) with µ ∈ (0, ) and ε < − µ.2 2 2 
Assume that the class of predictors consists of linear models 

1of the form fθ(x) = θx + and that the objective is to2 
minimize the squared loss: `(z; θ) = (y − fθ(x))2 . 

Here, ε represents the performative aspect of the model. If 
ε = 0, outcomes are independent of the assigned scores 
and the problem reduces to standard supervised learning 
where the optimal predictor is the conditional expectation 

1fθSL (x) = E[Y | X = x] = 2 + µx, with θSL = µ. 

In the performative setting with ε 6= 0, the optimal predic-
tion θPO balances between its predictive accuracy as well 
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as the bias induced by the prediction itself. In particular, a 
direct calculation demonstrates that 

� �2
1 µ

θPO = arg min E Y − θX − ⇔ θPO = . 
θ∈[0,1] Z∼D(θ) 2 1 − 2ε 

Hence, the performative optimum and the supervised learn-
ing solution are equal if ε = 0 and diverge as the performa-
tivity strength ε increases. 

2.2. Performative Stability 

A natural, desirable property of a classifier fθ is that, given 
that we use the predictions of fθ as a basis for decisions, 
those predictions are also simultaneously optimal for distri-
bution that the classifier induces. We introduce the notion 
of performative stability to refer to predictive models that 
satisfy this property. 

Definition 2.3 (performative stability and decoupled risk). 
A classifier fθPS is performatively stable if the following 
relationship holds: 

θPS = arg min E `(Z; θ). 
θ Z∼D(θPS) 

defWe define DPR(θ, θ0) = EZ∼D(θ) `(Z; θ0) as 
the decoupled performative risk; then, θPS = 
arg minθ DPR(θPS, θ). 

A performatively stable classifier fθPS minimizes the ex-
pected loss on the distribution D(θPS) resulting from de-
ploying fθPS in the first place. Therefore, a model that is 
performatively stable eliminates the need for retraining after 
deployment since any retraining procedure would simply 
return the same classifier. Performatively stable classifiers 
are fixed points of risk minimization. We further develop 
this idea in the next section. 

Observe that performative optimality and performative sta-
bility are in general two distinct solution concepts. Per-
formatively optimal classifiers need not be performatively 
stable and performatively stable classifiers need not be per-
formatively optimal. We illustrate this point in the context 
of our previous biased coin toss example. 
Example 2.2 (continued). Consider again our model of 
a biased coin toss. In order for a classifier fθ to be perfor-
matively stable, it must satisfy the following relationship: � �2

1 µ
θPS = arg min E Y − θX − ⇔ θPS = . 

θ∈[0,1] Z∼D(θPS) 2 1 − ε 

Solving for θPS directly, we see that there is a unique per-
formatively stable classifier. This example illustrates that 
performative stability and performative optimality need not 
identify. In fact, in this example they identify if and only if 
ε = 0. Note that, in general, if the map D(θ) is constant 

across θ, performative optima must coincide with perfor-
matively stable solutions, and both coincide with “static” 
supervised learning solutions as well. 

For ease of presentation, we refer to a choice of param-
eters θ as performatively stable (optimal) if the classifier 
parametrized by θ, fθ, is performatively stable (optimal). 
We will also occasionally refer to performative stability as 
simply stability. 
Remark 2.4. Observe that both performative stability and 
optimality can be expressed via the decoupled performative 
risk as follows: 

θPS is performatively stable ⇔ θPS = arg min DPR(θPS, θ), 
θ 

θPO is performatively optimal ⇔ θPO = arg min DPR(θ, θ). 
θ 

3. When Retraining Converges to Stable 
Points 

Having introduced our framework for performative predic-
tion, we now address some of the basic questions that arise 
in this setting and examine the behavior of common ma-
chine learning practices, such as retraining, through the lens 
of performativity. We begin by analyzing the behavior of 
these procedures when they operate at a population level 
and then extend our analysis to finite samples. 

3.1. Assumptions 

It is easy to see that one cannot make any guarantees on the 
convergence of retraining or the existence of stable points 
without making some regularity assumptions on D(·). One 
reasonable way to quantify the “regularity” of D(·) is to 
assume Lipschitz continuity. Intuitively, such an assumption 
captures the idea that, if decisions are made according to 
similar predictive models, then the resulting distributions 
over instances should also be similar. We now introduce this 
key assumption of our work, which we call ε-sensitivity. 

Definition 3.1 (ε-sensitivity). We say that a distribution 
map D(·) is ε-sensitive if for all θ, θ0 ∈ Θ: � � 

W1 D(θ), D(θ0) 6 εkθ − θ0k2, 

where W1 denotes the earth mover’s distance. 

The earth mover’s distance is a natural notion of distance 
between probability distributions that provides access to a 
rich technical repertoire (Villani, 2003; 2008). Furthermore, 
we can verify that it is satisfied in various settings. 

Remark 3.2. An example where this assumption is satisfied 
is a Gaussian family: given θ = (µ, σ1, . . . , σp) ∈ R2p, de-
fine D(θ) = N (ε1µ, ε2

2 diag(σ1
2 , . . . , σp 

2)) where ε1, ε2 ∈� 
R. Then D(·) is ε-sensitive for ε = max |ε1|, |ε2| . 
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In addition to this assumption on the distribution map, we 
will often make standard assumptions on the loss function 
`(z; θ) which hold for broad classes of losses. Each tech-
nical result to follow will invoke some subset of them. To 

defsimplify our presentation, let Z = ∪θ∈Θsupp(D(θ)). 

(A1) (joint smoothness) A loss function `(z; θ) is β-jointly 
smooth if ∀θ, θ0 ∈ Θ and z, z0 ∈ Z: 

krθ ̀ (z; θ) −rθ ̀ (z; θ
0)k 6 β kθ − θ0k2 ,2 

0krθ ̀ (z; θ) −rθ ̀ (z ; θ)k 6 β kz − z 0k2 .2 

(A2) (strong convexity) A loss function `(z; θ) is γ-
strongly convex if ∀ θ, θ0 ∈ Θ and z ∈ Z: 

`(z; θ) > `(z; θ0)+rθ ̀ (z; θ
0)>(θ−θ0)+ 

γ kθ − θ0k2
2 
. 

2 

If γ = 0, this last assumption is equivalent to convexity. We 
will sometimes refer to β , where β is defined as in (A1) andγ 
γ as in (A2), as the condition number. 

3.2. Repeated Risk Minimization 

We now formally define repeated risk minimization and 
prove one of our main results: sufficient and necessary 
conditions for retraining to converge to stability. 

Definition 3.3 (RRM). Repeated risk minimization (RRM) 
refers to the procedure where, starting from an initial model 
fθ0 we perform the following sequence of updates for t > 0: 

def
θt+1 = G(θt) = arg min E `(Z; θ). 

Z∼D(θt)θ∈Θ 

Using a toy example, we again argue that restrictions on 
the map D(·) are necessary to enable interesting analyses of 
RRM, otherwise it might be computationally infeasible to 
find performative optima, and performatively stable points 
might not even exist. 

Example 3.4. Consider optimizing the squared loss 
`(z; θ) = (y − θ)2 , where θ ∈ [0, 1] and the distribution 
of the outcome Y , according to D(θ), is a point mass at 0 

1if θ > 1 , and a point mass at 1 if θ < . Clearly there is2 2 
no performatively stable point, and RRM will simply result 
in the alternating sequence 1, 0, 1, 0, . . . . The performative 

1optimum in this case is θPO = .2 

To show convergence of retraining schemes, it is hence 
necessary to make a regularity assumption on D(·), such 
as ε-sensitivity. We are now ready to state our main result 
regarding the convergence of repeated risk minimization. 

Theorem 3.5. Suppose that the loss `(z; θ) is β-jointly 
smooth (A1) and γ-strongly convex (A2). If the distribution 
map D(·) is ε-sensitive, then the following is true: 

(a) kG(θ) − G(θ0)k2 6 ε β kθ − θ0k2, ∀θ, θ0 ∈ Θ.γ 

γ(b) If ε < , the iterates θt of RRM converge to a uniqueβ 
performatively stable point θPS at a linear rate, 

log(1 kθ0 − θPSk2)δkθt − θPSk2 6 δ for t > . 
(1 − ε β )γ 

The main message of this theorem is that in performative 
prediction, if the loss function is sufficiently “nice” and the 
distribution map is sufficiently (in)sensitive, then one need 
only retrain a classifier a small number of times before it 
converges to a unique stable point. Here, we provide a proof 
sketch illustrating the main ideas behind the theorem and 
defer the full proof to Appendix E.1. 

Proof Sketch. Fix θ, θ0 ∈ Θ. Let f(ϕ) = EZ∼D(θ) `(Z; ϕ) 
and f 0(ϕ) = EZ∼D(θ0) `(Z; ϕ). By applying standard prop-
erties of strong convexity and the fact that G(θ) is the unique 
minimizer of f(ϕ), we can derive that, 

>−γkG(θ) − G(θ0)k2 > (G(θ) − G(θ0)) rf(G(θ0)).2 

Next, we observe that (G(θ) − G(θ0))>rθ ̀ (z; G(θ0)) is 
kG(θ) − G(θ0)k2β-Lipschitz in z. This follows from apply-
ing the Cauchy-Schwarz inequality and the fact that the loss 
is β-jointly smooth. Using the dual formulation of the earth 
mover’s distance (Lemma D.3) and ε-sensitivity of D(·), as 
well as the first-order conditions of optimality for convex 
functions, a short calculation reveals that 

(G(θ)−G(θ0))> rf(G(θ0)) > −εβkG(θ)−G(θ0)k2kθ −θ0k2. 

Claim (a) then follows by combining the previous two inequalities 
and rearranging. Intuitively, strong convexity forces the iterates 
to contract after retraining, yet this contraction is offset by the 
distribution shift induced by changing the underlying classifier. 
Joint smoothness and ε-sensitivity ensure that this shift is not too 
large. Part (b) is essentially a consequence of applying the Banach 
fixed-point theorem to the result of part (a). � 

One intriguing insight from our analysis is that this conver-
gence result is in fact tight; removing any single assumption 
required for convergence by Theorem 3.5 is enough to con-
struct a counterexample for which RRM diverges. 

Proposition 3.6. Suppose that the distribution map D(·) is 
ε-sensitive with ε > 0. RRM can fail to converge at all in 
any of the following cases, for any choice of β, γ > 0: 

(a) The loss is β-jointly smooth and convex, but not 
strongly convex. 

(b) The loss is γ-strongly convex, but not jointly smooth. 
(c) The loss is β-jointly smooth and γ-strongly convex, but 

ε > γ .β 

Proposition 3.6 suggests a fundamental difference between 
strong and weak convexity in our framing of performative 
prediction (weak meaning γ = 0). In supervised learn-
ing, using strongly convex losses generally guarantees a 
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faster rate of optimization, yet asymptotically, the solution 
achieved with either strongly or weakly convex losses is 
globally optimal. However, in our framework, strong con-
vexity is in fact necessary to guarantee convergence of re-
peated risk minimization, even for arbitrarily smooth losses 
and an arbitrarily small sensitivity parameter. 

3.3. Repeated Gradient Descent 

Theorem 3.5 demonstrates that repeated risk minimization 
converges to a unique stable point if the sensitivity parameter 
ε is small enough. However, implementing RRM requires 
access to an exact optimization oracle. We now relax this 
requirement and demonstrate how a simple gradient descent 
algorithm also converges to a unique stable point. 

Definition 3.7 (RGD). Repeated gradient descent (RGD) is 
the procedure where, starting from an initial model fθ0 we 
perform the following sequence of updates for t > 0: 

def
θt+1 = Ggd(θt) = ΠΘ(θt − η E rθ ̀ (Z; θt)), 

Z∼D(θt ) 

where η > 0 is a fixed step size and ΠΘ denotes the Eu-
clidean projection operator onto Θ. 

Note that repeated gradient descent only requires the loss 
` to be differentiable with respect to θ. It does not require 
taking gradients of the performative risk. Like RRM, we can 
show that RGD is a contractive mapping for small enough 
sensitivity parameter ε. 

Theorem 3.8. Suppose that the loss `(z; θ) is β-jointly 
smooth (A1) and γ-strongly convex (A2). If the distribution 

γmap D(·) is ε-sensitive with ε < , then RGD (β+γ)(1+1.5ηβ) 
2with step size η 6 satisfies the following: β+γ 

(a) kGgd(θ) − Ggd(θ
0)k2 � � �� 

6 1 − η 
βγ − ε(1.5ηβ2 + β) kθ − θ0k2. 

β + γ 

(b) The iterates θt of RGD converge to a unique performa-
tively stable point θPS at a linear rate, � � 

1log kθ0 − θPSk2δkθt − θPSk2 6 δ for t > � � . 
βγ η − ε(1.5ηβ2 + β)β+γ 

The conclusion of Theorem 3.8 is a strict generalization of a 
classical optimization result which considers a static objec-� � 

1 − η βγ tive, in which case the rate of contraction is β+γ 

(see for example Theorem 2.1.15 in Nesterov (2013) or 
Lemma 3.7 in Hardt et al. (2016b)). Our rate exactly 
matches this standard result in the case that ε = 0. The 
proof of Theorem 3.8 can be found in Appendix E.3. 

3.4. Finite-Sample Analysis 

We now extend our main results regarding the convergence 
of RRM and RGD to the finite-sample regime. To do so, 
we leverage the fact that, under mild regularity conditions, 
the empirical distribution Dn given by n samples drawn 
i.i.d. from a true distribution D is with high probability 
close to D in earth mover’s distance (Fournier & Guillin, 
2015). We begin by defining the finite-sample version of 
these procedures. 

Definition 3.9 (RERM & REGD). Define repeated empir-
ical risk minimization (RERM) to be the procedure where 
starting from a classifier fθ0 at every iteration t > 0, we 
collect nt samples from D(θt) and perform the update: 

def
θt+1 = Gnt (θt) = arg min E `(Z; θ). 

Z∼Dnt (θt )θ 

Similarly, define repeated empirical gradient descent 
(REGD) to be the optimization procedure with update rule: 

def
θt+1 = Ggd 

nt (θt) = ΠΘ(θt − η E rθ ̀ (Z; θt)). 
Z∼Dnt (θt) 

Here, η > 0 is a step size and ΠΘ denotes the Euclidean 
projection operator onto Θ. 

The following theorem illustrates that with enough samples 
collected at every iteration, with high probability both al-
gorithms converge to a small neighborhood around a stable 
point. Recall that m is the dimension of data samples z. 

Theorem 3.10. Suppose that the loss `(z; θ) is β-jointly 
smooth (A1) and γ-strongly convex (A2), and that there exist 

def R 
µ|x|α 

α > 1, µ > 0 such that ξα,µ = Rm e dD(θ) is finite 
∀θ ∈ Θ. Let δ ∈ (0, 1) be a radius of convergence. Con-� �� 

1 tsider running RERM or RGD with nt = O log(εδ)m p 

samples at time t. 
γ(a) If the map D(·) is ε-sensitive with ε < , then with 2β 

probability 1 − p, RERM satisfies, � � 
1log kθ0 − θPSk2δkθt − θPSk2 6 δ, for all t > � � . 
1 − 2εβ 

γ 

γ(b) If the map D(·) is ε-sensitive with ε < ,(β+γ)(1+1.5ηβ) 
then with probability 1 − p, REGD with satisfies, � � 

1log kθ0 − θPSk2δkθt−θPSk2 6 δ, for all t > � � , 
βγ η − ε(3ηβ2 + 2β)β+γ 

2for a constant choice of step size η 6 β+γ . 

Proof sketch. The basic idea behind these results is the fol-
lowing. While kθt − θPSk2 > δ, the sample size nt is 
sufficiently large to ensure a behavior similar to that on a 
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population level: as in Theorems 3.5 and 3.8, the iterates θt 
contract toward θPS. This implies that θt eventually enters a 
δ-ball around θPS, for some large enough t. Once this hap-
pens, contrary to population-level results, a contraction is 
no longer guaranteed due to the noise inherent in observing 
only finite-sample approximations of D(θt). Nevertheless, 
the sample size nt is sufficiently large to ensure that θt 
cannot escape a δ-ball around θPS either. � 

4. Relating Optimality and Stability 
As we discussed previously, while performative optima are 
always guaranteed to exist,1 it is not clear whether performa-
tively stable classifiers exist in all settings. Our algorithmic 
analysis of repeated risk minimization and repeated gradient 
descent revealed the existence of unique stable points under 
the assumption that the objective is strongly convex and 
smooth. The first result of this section illustrates existence 
of stable points under weaker assumptions on the loss, in 
the case where the solution space Θ is constrained. Proofs 
can be found in Appendix E. 

Proposition 4.1. Let the distribution map D(·) be ε-
sensitive and Θ ⊂ Rd be compact. If the loss `(z; θ) is 
convex and jointly continuous in (z, θ), then there exists a 
performatively stable classifier. 

A natural question to consider at this point is whether there 
are procedures analogous to RRM and RGD for efficiently 
computing performative optima. 

Our analysis suggests that directly minimizing the performa-
tive risk is in general a more challenging problem than find-
ing performatively stable points. In particular, we can con-
struct simple examples where the performative risk PR(θ) 
is non-convex, despite strong regularity assumptions on the 
loss and the distribution map. 

Proposition 4.2. The performative risk PR(θ) can be con-
cave in θ, even if the loss `(z; θ) is β-jointly smooth (A1), 
γ-strongly convex (A2), and the distribution map D(·) is 

γε-sensitive with ε < β . 

However, what we can show is that there are cases where 
finding performatively stable points is sufficient to guaran-
tee that the resulting classifier has low performative risk. In 
particular, our next result demonstrates that if the loss func-
tion `(z; θ) is Lipschitz in z and γ-strongly convex, then 
all performatively stable points and performative optima 
lie in a small neighborhood around each other. Moreover, 
the theorem holds for cases where performative optima and 
performatively stable points are not necessarily unique. 

Theorem 4.3. Suppose that the loss `(z; θ) is Lz -Lipschitz 
in z, γ-strongly convex (A2), and that the distribution map 

1In particular, they are guaranteed to exist over the extended 
real line, i.e. we allow θ ∈ (R ∪ {±∞})d . 

D(·) is ε-sensitive. Then, for every performatively stable 
point θPS and every performative optimum θPO: 

2Lzε kθPO − θPSk2 6 . 
γ 

This result shows that in cases where repeated risk mini-
mization converges to a stable point, the resulting classifier 
approximately minimizes the performative risk. 

Moreover, Theorem 4.3 suggests a way of converging close 
to performative optima in objective value even if the loss 
function is smooth and convex, but not strongly convex. 
In particular, by adding quadratic regularization to the ob-
jective, we can ensure that RRM or RGD converge to a 
performatively stable point that approximately minimizes 
the performative risk, see Appendix F. 

5. A Case Study in Strategic Classification 
Having presented our model for performative prediction, we 
now proceed to illustrate how these ideas can be applied 
within the context of strategic classification and discuss 
some of the implications of our theorems for this setting. 

We begin by formally establishing how strategic classifica-
tion can be cast as a performative prediction problem and 
illustrate how our framework can be used to derive results 
regarding the convergence of popular retraining heuristics 
in strategic classification settings. Afterwards, we further 
develop the connections between both fields by empirically 
evaluating the behavior of repeated risk minimization on a 
dynamic credit scoring task. 

5.1. Stackelberg Equilibria are Performative Optima 

Strategic classification is a two-player game between an 
institution which deploys a classifier and agents who adapt 
their features in order to improve their outcomes. 

A classic example of this setting is that of a bank which 
uses a machine learning classifier to predict whether or not a 
loan applicant is creditworthy. Individual applicants react to 
the bank’s classifier by manipulating their features with the 
hopes of inducing a favorable classification. This game is 
said to have a Stackelberg structure since agents adapt their 
features only after the bank has deployed their classifier. 

The optimal strategy for the institution in a strategic classifi-
cation setting is to deploy the solution corresponding to the 
Stackelberg equilibrium, defined as the classifier fθ which 
achieves minimal loss over the induced distribution D(θ) 
in which agents have strategically adapted their features in 
response to fθ. In fact, we see that this equilibrium notion 
exactly matches our definition of performative optimality: 

fθSE is a Stackelberg equilibrium ⇔ θSE ∈ arg min PR(θ). 
θ 
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(a) Repeated Risk Minimization (RRM) (b) Repeated Gradient Descent (RGD) 

Figure 1. Convergence in domain of RRM (left) and RGD (right) for varying ε-sensitivity parameters. We add a marker if at the next 
iteration the distance between iterates is numerically zero. We normalize the distance by c = kθ0,S k− 

2
1 . 

We think of D as a “baseline” distribution over feature-
outcome pairs before any classifier deployment, and D(θ) 
denotes the distribution over features and outcomes obtained 
by strategically manipulating D. As described in previous 
work (Brückner et al., 2012; Hardt et al., 2016a; Milli et al., 
2019), the distribution map D(θ) in strategic classification 
corresponds to the data-generating process given in Figure 2. 

Here, u and c are problem-specific functions which deter-
mine the best response for agents. Together with the base 
distribution D, these define the relevant distribution map 
D(·) for the problem of strategic classification. 

A strategy commonly adapted in practice as a means of cop-
ing with the distribution shift that arises in strategic classifi-
cation is to repeatedly retrain. This procedure corresponds 
to the repeated risk minimization procedure introduced in 
Definition 3.3. Our results describe the first set of suffi-
cient conditions under which repeated retraining overcomes 
strategic effects. 

Corollary 5.1. Let the institution’s loss be Lz - and Lθ -
Lipschitz in z and θ respectively, β-jointly smooth (A1), and 
γ-strongly convex (A2). If the induced distribution map is 

γε-sensitive, with ε < , then RRM converges to a stableβ 

classifier θPS that is 2Lz ε(Lθ + Lz ε)γ
−1 close in objective 

value to the Stackelberg equilibrium. 

Input: base distribution D, classifier fθ, cost function c 
and utility function u 
Sampling procedure for D(θ): 

1. Sample (x, y) ∼ D 
02. Compute xBR ← arg maxx0 u(x0, θ) − c(x , x) 

3. Output sample (xBR, y) 

Figure 2. Distribution map for strategic classification. 

5.2. Simulations 

We next examine the convergence of repeated risk minimiza-
tion and repeated gradient descent in a simulated strategic 
classification setting. We run experiments on a dynamic 
credit scoring simulator in which an institution classifies 
the creditworthiness of loan applicants. As motivated pre-
viously, agents react to the institution’s classifier by ma-
nipulating their features to increase the likelihood that they 
receive a favorable classification. 

To run our simulations, we construct a distribution map 
D(θ), as described in Figure 2. For the base distribution D, 
we use a class-balanced subset of a Kaggle credit scoring 
dataset (Kaggle, 2012). Features x ∈ Rm−1 correspond 
to historical information about an individual, such as their 
monthly income and number of credit lines. Outcomes 
y ∈ {0, 1} are binary variables which are equal to 1 if the 
individual defaulted on a loan and 0 otherwise. 

The institution makes predictions using a logistic regres-
sion classifier. We assume that individuals have linear 

0utilities u(θ, x) = −hθ, xi and quadratic costs c(x , x) = 
1 0 − xk2kx 2, where ε is a positive constant that regulates 2ε 

the cost incurred by changing features, and hence the sensi-
tivity of the distribution map. Linear utilities indicate that 
agents wish to minimize their assigned probability of de-
fault. We divide the set of features into strategic features 
S ⊆ [m − 1], such as the number of open credit lines, and 
non-strategic features (e.g., age). Solving the optimization 
problem described in Figure 2, the best response for an indi-

0vidual corresponds to the following update, x = xS − εθS ,S 
0where xS , x , θS ∈ R|S|. As per convention in the literature S 

(Brückner et al., 2012; Hardt et al., 2016a; Milli et al., 2019), 
individual outcomes y are unaffected by manipulation. 

Intuitively, this data-generating process is ε-sensitive since 
for a given choice of classifiers, fθ and fθ0 , an individual 
feature vector is shifted to xS − εθS and to xS − εθS 

0 , re-
spectively. The distance between these two shifted points is 
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Figure 3. Performative risk (left) and accuracy (right) of the classifier θt at different stages of RRM for ε = 80. Solid blue lines indicate 
the optimization phase and dotted green lines indicate the distribution shift after classifier deployment. 

equal to εkθS − θ0 k2. Since the optimal transport distance S 
is bounded by εkθ − θ0k2 for every individual point, it is 
also bounded by this quantity over the entire distribution. A 
full proof of this claim is presented in Appendix G. 

For our experiments, instead of sampling from D(θ), we 
treat the points in the original dataset as the true distribu-
tion. Hence, we can think of all the following procedures 
as operating on the population level. Furthermore, we add 
a regularization term to the logistic loss to ensure that the 
objective is strongly convex. Further details about the ex-
perimental setup may be found in Appendix G. 

Repeated risk minimization. The first experiment we con-
sider is the convergence of RRM. From our theoretical anal-
ysis, we know that RRM is guaranteed to converge at a 
linear rate to a performatively stable point if the sensitivity 
parameter ε is smaller than γ . In Figure 1 (left), we seeβ 
that RRM does indeed converge in only a few iterations for 
small values of ε while it divergences if ε is too large. 

The evolution of the performative risk during the RRM 
optimization is illustrated in Figure 3. We evaluate PR(θ) 
at the beginning and at the end of each optimization round 
and indicate the effect due to distribution shift with a dashed 
green line. We also verify that the surrogate loss is a good 
proxy for classification accuracy in the performative setting. 

Repeated gradient descent. In the case of RGD, we find 
similar behavior to that of RRM. While the iterates again 
converge linearly, they naturally do so at a slower rate than 
in the exact minimization setting, given that each iteration 
consists only of a single gradient step. Again, we can see in 
Figure 1 that the iterates converge for small values of ε and 
diverge for large values. 

6. Discussion and Future Directions 
Our work draws attention to the problem of performativity 
in statistical learning and decision-making. Performative 
prediction enjoys a clean formal setup that we introduced, 
drawing on elements from causality and game theory. 

Retraining is often considered a nuisance intended to cope 
with distribution shift. In contrast, our work interprets re-
training as the natural equilibrating dynamic for performa-
tive prediction. The fixed points of retraining are performa-
tive stable points. Moreover, retraining converges to such 
stable points under natural assumptions, including strong 
convexity of the loss function. It is interesting to note that 
(weak) convexity alone is not enough. Performativity thus 
gives another intriguing perspective on why strong convex-
ity is desirable in supervised learning. 

Several interesting questions remain. For example, by let-
ting the step size of repeated gradient descent tend to 0, 

γwe see that this procedure converges for ε < . Exactβ+γ 
repeated risk minimization, on the other hand, provably con-

γverges for every ε < , and we showed this inequality is β 
tight. It would be interesting to understand whether this gap 
is a fundamental difference between both procedures or an 
artifact of our analysis. 

Lastly, we believe that the tools and ideas from performative 
prediction can be used to make progress in other subareas 
of machine learning. For example, in this paper, we have 
illustrated how reframing strategic classification as a perfor-
mative prediction problem leads to a new understanding of 
when retraining overcomes strategic effects. However, we 
view this example as only scratching the surface of work 
connecting performative prediction with other fields. 

In particular, reinforcement learning can be thought of 
as a case of performative prediction. In this setting, the 
choice of policy fθ, affects the distribution D(θ) over 
z = {(sh, ah)}∞ , the set of visited states, s, and actions, h=1 
a, in a Markov Decision Process. Building off this con-
nection, we can reinterpret repeated risk minimization as a 
form of off-policy learning in which an agent first collects 
a batch of data under a particular policy fθ, and then finds 
the optimal policy for that trajectory offline. We believe 
that some of the ideas developed in the context of performa-
tive prediction can shed new light on when these off-policy 
methods can converge. 
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