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A. Visualizing the Performative Risk and Trajectory of RRM 
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Figure 4. Performative risk surface and trajectory of repeated risk minimization for two different values of sensitivity parameter ε. The 
initial iterate is the risk minimizer on the base dataset (•). We mark the performative optimum (?) and performatively stable point (×). 

We provide additional experimental results in which we visualize the trajectory of repeated risk minimization on the surface 
of the performative risk. We adopt the general setting of Section 5. However, to properly visualize the loss, we rerun the 
experiments on a reduced version of the dataset with only two features (i.e x ∈ R2), both of which are adapted strategically 
according to the update described in Section 5. 
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Figure 4 plots the performative risk surface, together with the trajectory of RRM given by straight black lines. The top plot 
shows the trajectory for a suitably small sensitivity parameter ε. We see that RRM converges to a stable point which is close 
to the performative optimum. We contrast this behavior with that of RRM when ε is large in the bottom plot. Here, we 
observe that the iterates oscillate and that the algorithm fails to converge. 

Both plots mark the risk minimizer on the initial data set (•), before any strategic adaptation takes place. This point also 
corresponds to the initial iterate of RRM θ0. We additionally mark the performative optimum (?) on the risk curve. The 
top plot additionally marks the last iterate of RRM, which serves as a proxy for the performatively stable point (×). As 
predicted by our theory, this stable point is in a small neighborhood around the performative optimum. 

B. Applications of Performativity 
To illustrate the fact that performativity is a common cause for concept drift, we review a table of concepts drift applications 
from ˇ e et al. (2016). In Table 1, we highlight those settings that naturally occur due to performativity. Below we Zliobait˙ 
briefly discuss the role of performativity in such applications. 

Appl. 
Indust. Monitoring & control Information management Analytics & diagnostics 

Security, 
Police 

fraud detection, 
insider trading detection, 
adversary actions detection 

next crime place 
prediction 

crime volume 
prediction 

Finance, 
Banking, 
Telecom, 
Insurance, 
Marketing, 
Retail, 
Advertising 

monitoring & management 
of customer segments, 
bankruptcy prediction 

product or service 
recommendation, 
including complimentary, 
user intent or information 
need prediction 

demand prediction, 
response rate 
prediction, budget 
planning 

Production 
industry controlling output quality - predict bottlenecks 

Education 
(e-Learning, 
e-Health), 
Media, 
Entertainment 

gaming the system, 
drop out prediction 

music, VOD, movie, 
news, learning object 
personalized search 
& recommendations 

player-centered game 
design, learner-centered 
education 

Table 1. Table of concept drift applications from ˇ e et al. (2016).Zliobait˙ 

The role of fraud detection systems is to predict whether an instance such as a transaction or email is legitimate or not. It 
is well-known that designers of such fraudulent instances adapt to the fraud detection system in place in order to breach 
security. Therefore, the deployment of fraud detection systems shapes the features of fraudulent instances. 

Crime place prediction uses historical data to estimate the likelihood of crime at a given location. Those locations where 
criminal behavior is deemed likely by the system typically get more police patrols and better surveillance. These actions 
resulting from prediction significantly decrease the probability of crime taking place, thus changing the data used for future 
predictions. 

In personalized recommendations, instances are recommended to a user based on their historical context, such as their 
ratings or purchases. The set of recommendations thus depends on the trained machine learning model, which in turn 
changes the user’s future ratings or purchases. In other words, user features serving as input to a recommender inevitably 
depend on the previously used recommendation mechanisms. 

In online two-player games, it is common to request an AI opponent. The level of sophistication of the AI opponent might 
be chosen depending on the user’s success history in the given game, with the goal of making the game appropriately 
challenging. This choice of AI opponent changes players’ future success profiles, again causing a distribution shift in the 
features serving as an input to the prediction system. 

Gaming the system falls under the umbrella of strategic classification, which we discuss in detail in Section 5, so we avoid 
further discussion in this section. 
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C. Detailed Derivation of Example 2.2 
Since we have closed form expressions for all the relevant distributional quantities, we can write out a precise expression of 
the performative risk in our biased coin toss example. In particular, by factoring out the expectation we have that, 

h h ii� �2 �2 
PR(θ) = E Y − fθ(X) = E E (Y − fθ(X) X , 

(X,Y )∼D(θ) (X,Y )∼D(θ) 

where all the distributions are taken with respect to D(θ). If we now expand out the squared loss, we can write, h h ii�2 � � 
E E (Y − fθ(X) X = E E[Y 2|X] − 2 E[Y |X]fθ(X) + fθ(X)

2 . 
(X,Y )∼D(θ) (X,Y )∼D(θ) 

Using our knowledge of the distribution map, we know that 

1
E[Y 2|X] = E[Y |X] = + µX + εθX. 

2 

Plugging these into our previous expression and simplifying terms, we find that we can write the performative risk as, � � 

PR(θ) = E 
1 − 2µθX2 + (1 − 2ε)θ2X2 =

1 − 2µθ + (1 − 2ε)θ2 . 
4 4 

Importantly, we see that the distribution over X is irrelevant for the performative risk, since X2 = 1 with probability 1. The 
performative risk is then a quadratic function of θ. The minimizer of this objective, the performative optimum, is therefore 

µ
θPO = . 

1 − 2ε 

For performative stability, we recall a classifier θPS is performatively stable if and only if � �2 
θPS = arg min E Y − fθ(X) . 

θ∈[0,1] Z∼D(θPS) 

Furthermore, we know that the unique minimizer of the squared loss is the conditional expectation function. Therefore, if 
we can find a classifier within our class that satisfies 

fθ(x) = E [Y | X = x], ∀x, 
(X,Y )∼D(θ) 

then this classifier is the (unique) performatively stable classifier. Rewriting this above expression, we have that a classifier 
fθ is stable if 

1 1 
+ εθx + µx = + θx. 

2 2 

Solving the above expression for θ, we get 
µ

θPS = . 
1 − ε 

As a final note, another way of seeing that there is a unique performatively stable classifier is that this example satisfies the 
conditions of Theorem 3.8. Repeated risk minimization is hence a contraction which implies that there must be a unique 
stable classifier. 

D. Auxiliary Lemmas 
Lemma D.1 (Bubeck (2015), Proposition 1.3). Let f be convex and let Ω be a closed convex set on which f is differentiable, 
then 

x∗ ∈ arg min f(x) 
x∈Ω 

if and only if 
rf(x∗)

T (y − x∗) > 0, ∀y ∈ Ω. 
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Lemma D.2 (Bubeck (2015), Lemma 3.11). Let f : Rd → R be β-smooth and γ-strongly convex, then for all x, y in Rd , 

(rf(x) −rf(y))>(x − y) > 
γβ kx − yk22 +

1 krf(x) −rf(y)k22. γ + β γ + β 

Lemma D.3 (Kantorovich-Rubinstein). A distribution map D(·) is ε-sensitive if and only if for all θ, θ0 ∈ Θ: � � 

sup E g(Z) − E g(Z) 6 εkθ − θ0k2 : g : Rp → R, g 1-Lipschitz . (1) 
Z∼D(θ) Z∼D(θ0) 

Lemma D.4. Let f : Rn → Rd be an L-Lipschitz function, and let X, X 0 ∈ Rn be random variables such that 
W1(X, X 0) 6 C. Then 

k E[f(X)] − E[f(X 0)]k2 6 LC. 

Proof. 

k E[f(X)] − E[f(X 0)]k2 = (E[f(X)] − E[f(X 0)])>(E[f(X)] − E[f(X 0)])2 

(E[f(X)] − E[f(X 0)])> 

= k E[f(X)] − E[f(X 0)]k2 (E[f(X)] − E[f(X 0)]). 
k E[f(X)] − E[f(X 0)]k2 

E[f(X)]−E[f(X0)]Now define the unit vector v := . By linearity of expectation, we can further write k E[f (X)]−E[f (X0)]k2 

k E[f(X)] − E[f(X 0)]k2 = k E[f(X)] − E[f(X 0)]k2 (E[v >f(X)] − E[v >f(X 0)]).2 

For any unit vector v and L-Lipschitz function f , v>f is a one-dimensional L-Lipschitz function, so we can apply Lemma 
D.3 to obtain 

k E[f(X)] − E[f(X 0)]k2 6 k E[f(X)] − E[f(X 0)]k2LC. 2 

Canceling out k E[f(X)] − E[f(X 0)]k2 from both sides concludes the proof. 

� 

E. Proofs of Main Results 
E.1. Proof of Theorem 3.5 

Fix θ, θ0 ∈ Θ. Let f(ϕ) = EZ∼D(θ) `(Z; ϕ) and f 0(ϕ) = EZ∼D(θ0) `(Z; ϕ). Since f is γ-strongly convex and G(θ) is the 
unique minimizer of f(x) we know that, 

f(G(θ)) − f(G(θ0)) > (G(θ) − G(θ0))> rf(G(θ0)) + 
γ kG(θ) − G(θ0)k22 ,
2 

f(G(θ0)) − f(G(θ)) > 
γ kG(θ) − G(θ0)k22. 2 

Together, these two inequalities imply that 

>−γkG(θ) − G(θ0)k2 > (G(θ) − G(θ0)) rf(G(θ0)).2 

Next, we observe that (G(θ) − G(θ0))>rθ ̀ (z; G(θ0)) is kG(θ) − G(θ0)k2β-Lipschitz in z. This follows from applying 
Cauchy-Schwarz and the fact that the loss is β-jointly smooth. Using the dual formulation of the earth mover’s distance 
(Lemma D.3) and ε-sensitivity of D(·), we can write 

(G(θ) − G(θ0))> rf(G(θ0)) − (G(θ) − G(θ0))> rf 0(G(θ0)) > −εβkG(θ) − G(θ0)k2kθ − θ0k2. 

Furthermore, using the first-order optimality conditions for convex functions, we have (G(θ) − G(θ0))>rf 0(G(θ0)) > 0, 
and hence (G(θ) − G(θ0))>rf(G(θ0)) > −εβkG(θ) − G(θ0)k2kθ − θ0k2. Therefore, we conclude that, 

−γkG(θ) − G(θ0)k22 > −εβkG(θ) − G(θ0)k2kθ − θ0k2. 
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Claim (a) then follows by rearranging. 

To prove claim (b) we note that θt = G(θt−1) by the definition of RRM, and G(θPS) = θPS by the definition of stability. 
Applying the result of part (a) yields � �t 

kθt − θPSk2 6 ε
β kθt−1 − θPSk2 6 ε

β kθ0 − θPSk2. 
γ γ 

Setting this expression to be at most δ and solving for t completes the proof of claim (b). Alternatively, part (b) can be 
concluded by a direct application of the Banach fixed-point theorem to part (a). 

E.2. Proof of Proposition 3.6 

Proof of (a): Consider the linear loss defined as ` ((x, y); θ) = βyθ, for θ ∈ [−1, 1]. Note that this objective is β-jointly 
smooth and convex, but not strongly convex. Let the distribution of Y according to D(θ) be a point mass at εθ, and let the 
distribution of X be invariant with respect to θ. Clearly, this distribution is ε-sensitive. 

Here, the decoupled performative risk has the following form DPR(θ, ϕ) = εβθϕ. The unique performatively stable 
point is 0. However, if we initialize RRM at any point other than 0, the procedure generates the sequence of iterates 
. . . , 1, −1, 1, −1 . . . , thus failing to converge. Furthermore, this behavior holds for all ε, β > 0. 

1Proof of (b): Consider a type of regularized hinge loss `(z; θ) = C max(−1, yθ)+ γ (θ−1)2, and suppose Θ ⊇ [− 1 ].2 2ε , 2ε 

Let the distribution of Y according to D(θ) be a point mass at εθ, and let the distribution of X be invariant with respect to θ. 
Clearly, this distribution is ε-sensitive. 

Let θ0 = 2. Then, by picking C big enough, RRM prioritizes to minimize the first term exactly, and hence we get θ1 = − 1 .2ε 
In the next step, again due to large C, we get θ2 = 2. Thus, RRM keeps oscillating between 2 and − 1 , failing to converge. 2ε 
This argument holds for all γ, ε > 0. 

Proof of (c): Suppose that the loss function is the squared loss, `(z; θ) = (y − θ)2, where y, θ ∈ R. Note that this implies 
β = γ. Let the distribution of Y according to D(θ) be a point mass at 1 + εθ, and let the distribution of X be invariant with 
respect to θ. This distribution family satisfies ε-sensitivity, because 

W1(D(θ), D(θ0)) = ε|θ − θ0|. 

By properties of the squared loss, we know 

arg min DPR(θ, θ0) = E [Y ] = 1 + εθ. 
θ0 Z∼D(θ) 

It is thus not hard to see that RRM does not contract if ε > γ = 1:β 

|G(θ) − G(θ0)| = |1 + εθ − 1 − εθ0| = ε|θ − θ0|, 

which exactly matches the bound of Theorem 3.5 and proves the first statement of the proposition. The unique performatively 
1stable point of this problem is θ such that θ = 1 + εθ, which is θPS = for ε > 1.1−ε 

For ε = 1, no performatively stable point exists, thereby proving the second claim of the proposition. If ε > 1 on the other 
hand, and θ0 6= θPS, we either have θt →∞ or θt → −∞, because 

t−1X εt − 1 
θt = 1 + εθt−1 = εk + θ0ε

t = + θ0ε
t ,

ε − 1 
k=0 

thus concluding the proof. 

E.3. Proof of Theorem 3.8 

Since projecting onto a convex set can only bring two iterates closer together, in this proof we ignore the projection operator 
ΠΘ and treat Ggd as performing merely the gradient step. 
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We begin by expanding out kGgd(θ) − Ggd(θ
0)k22, 

2 

kGgd(θ) − Ggd(θ
0)k22 = θ − η E rθ ̀ (Z; θ) − θ0 + η E rθ ̀ (Z; θ

0) 
Z∼D(θ) Z∼D(θ0) 2� � 

= kθ − θ0k22 − 2η(θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0) 

2 

+ η2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0) 2 

def 
= T1 − 2ηT2 + η2T3. 

Next, we analyze each term individually, 

def
T1 = kθ − θ0k22,� � 

def
T2 = (θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ

0) , 
Z∼D(θ) Z∼D(θ0) 

def
T3 = k E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ

0)k22 . 
Z∼D(θ) Z∼D(θ0) 

We start by lower bounding T2: � � 

T2 = (θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) + E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0) Z∼D(θ0) Z∼D(θ0)� � � � 

= (θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) + (θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0) Z∼D(θ0) Z∼D(θ0)� � 

> −kθ − θ0k2 k E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ)k2 + (θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) , 

Z∼D(θ) Z∼D(θ0) Z∼D(θ0 ) Z∼D(θ0) 

where in the last step we apply the Cauchy-Schwarz inequality. By smoothness, rθ ̀ (Z; θ) is β-Lipschitz in Z. Together 
with the fact that Z is ε-sensitive, we can lower bound the first term in the above expression by applying Lemma D.4, which 
results in −βεkθ − θ0k22. 

We apply Lemma D.2 to lower bound the second term by � � 

(θ − θ0)> E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ0) Z∼D(θ0) 

> 
βγ kθ − θ0k22 +

1 
E 

� 
krθ ̀ (Z; θ) −rθ ̀ (Z; θ

0)k2
� 

β + γ β + γ Z∼D(θ0)
2 

2 

> 
βγ kθ − θ0k22 +

1 
E [rθ ̀ (Z; θ) −rθ ̀ (Z; θ

0)] ,
β + γ β + γ Z∼D(θ0) 2 

where we have applied Jensen’s inequality in the last line. Putting everything together, we get � � 2 

T2 > 
βγ − βε kθ − θ0k22 +

1 
E [rθ ̀ (Z; θ) −rθ ̀ (Z; θ

0)] . 
β + γ β + γ Z∼D(θ0) 2 

Now we upper bound T3. We begin by expanding out the square just as before, 

2 

T3 = E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) + E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0) Z∼D(θ0) Z∼D(θ0) 

2 2 

= E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) + E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) (2) 

Z∼D(θ) Z∼D(θ0) 2 Z∼D(θ0) Z∼D(θ0) 2� �> � � 

+ 2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) . 

Z∼D(θ) Z∼D(θ0) Z∼D(θ0) Z∼D(θ0) 
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We again bound each term individually. By the smoothness of the loss and Lemma D.4, 

2 

E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) 6 β2ε2kθ − θ0k22 . 
Z∼D(θ) Z∼D(θ0) 2 

Moving on to the last term in (2): � �> � � 

2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0 ) Z∼D(θ0 ) Z∼D(θ0) � �> 
def 
= 2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ

0) E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) v 
Z∼D(θ0 ) Z∼D(θ0) 2 Z∼D(θ) Z∼D(θ0 )� � 

> > = 2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) E v rθ ̀ (Z; θ) − E v rθ ̀ (Z; θ) , 

Z∼D(θ0 ) Z∼D(θ0) 2 Z∼D(θ) Z∼D(θ0) 

def EZ∼D(θ0 ) rθ ̀ (Z;θ)−EZ∼D(θ0) rθ ̀ (Z;θ
0)

where we define the unit vector v = . By smoothness of the loss, we can concludekEZ∼D(θ0) rθ ̀ (Z;θ)−EZ∼D(θ0) rθ ̀ (Z;θ0)k2 

>that v rθ ̀ (Z, θ) is β-Lipschitz, so by ε-sensitivity we get � �> � � 

2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ) E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) 

Z∼D(θ) Z∼D(θ0) Z∼D(θ0 ) Z∼D(θ0) 

6 2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) βεkθ − θ0k2 

Z∼D(θ0) Z∼D(θ0) 2 

6 2β2εkθ − θ0k22, 

where in the last step we again apply smoothness. Hence, 

2 
2

T3 6 (ε2β2 + 2β2ε) kθ − θ0k + E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ
0) .2 

Z∼D(θ0) Z∼D(θ0) 2 

Having bounded all the terms, we now conclude that � � 

kGgd(θ) − Ggd(θ
0)k2 

6 1 + η2ε2β2 + 2η2β2ε − 2η 
βγ 

+ 2ηβε kθ − θ0k22 
2 β + γ � � 2 

− 
2η − η2 E rθ ̀ (Z; θ) − E rθ ̀ (Z; θ

0) . 
β + γ Z∼D(θ0) Z∼D(θ0) 2 

2If we take the step size η to be small enough, namely η 6 , we getβ+γ � � 
2 βγ kGgd(θ) − Ggd(θ

0)k 6 1 + η2ε2β2 + 2η2β2ε − 2η + 2ηβε kθ − θ0k22.2 β + γ 

To ensure a contraction, we need 2η βγ − η2ε2β2 − 2η2β2ε − 2ηβε > 0. Canceling out ηβ, and assuming ε 6 1, it suffices β+γ 
2γ γto have − 3ηεβ − 2ε > 0. Therefore, if ε < 6 1, the map Ggd is contractive. In particular, we have β+γ (β+γ)(1+1.5ηβ) s� � �� 

βγ kGgd(θ) − Ggd(θ
0)k 6 1 − η 2 − ε(3ηβ2 + 2β) kθ − θ0k22 β + γ � � �� 

6 1 − η 
βγ − ε(1.5ηβ2 + β) kθ − θ0k2,

β + γ 

√ 
where we use the fact that 1 − x 6 1 − x for x ∈ [0, 1]. This completes the proof of part (a). 2 

Since we have shown Ggd is contractive, by the Banach fixed-point theorem we know that there exists a unique fixed point of 
Ggd. That is, there exists θPS such that EZ∼D(θPS ) rθ ̀ (Z; θPS) = 0. By convexity of the loss function, this means that θPS 
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is the optimum of EZ∼D(θPS) `(Z; θ) over θ, which in turn implies that θPS is performatively stable. Recursively applying 
the result of part (a) we get the rate of convergence of RRM to θPS: � � ��t 

kθt − θPSk2 6 1 − η 
βγ − ε(1.5ηβ2 + β) kθ0 − θPSk2

β + γ� � �� 

6 exp −tη 
βγ − ε(1.5ηβ2 + β) kθ0 − θPSk2,

β + γ 

−xwhere in the last step we use the fact that 1 − x 6 e . Setting this expression to be at most δ and solving for t completes 
the proof. 

E.4. Proof of Theorem 3.10 

Proof of (a): We introduce the main proof idea and then present the full argument. The proof proceeds by case analysis. 
First, we show that if kθt −θPSk2 > δ, performing ERM ensures that with high probability kθt+1 −θPSk2 6 2ε β kθt −θPSk2.γ 

γUsing our assumption that ε < , this implies that the iterate θt+1 contracts toward θPS.2β 

On the other hand, if kθt − θPSk2 6 δ, we show that while ERM might not contract, it cannot push θt+1 too far from 
εβθPS either. In particular, θt+1 must be in a 2γ δ-ball around θPS. The proof then concludes by arguing that θt for 

t > log(kθ0 −θPSk2/δ) must enter a ball of radius δ around θPS. Once this event occurs, no future iterate can exit the εβ δ-balllog(γ/2εβ) 2γ 
around θPS. 

Case 1: kθt − θPSk2 > δ. If the current iterate is outside the ball, we show that with high probability the next iterate 
contracts towards a performatively stable point. In particular, 

kθt+1 − θPSk2 6 
2εβ kθt − θPSk2. 
γ 

To prove this claim, we begin by showing that 

W1(Dnt (θt), D(θPS)) 6 2εkθt − θPSk2, with probability 1 − 
π 
6 
2 

p

t2 
. (3) 

Since the W1-distance is a metric on the space of distributions, we can apply the triangle inequality to get 

W1(Dnt (θt), D(θPS)) 6 W1(Dnt (θt), D(θt)) + W1(D(θt), D(θPS)). 

The second term is bounded deterministically by εkθt − θPSk2 due to ε-sensitivity. By Theorem 2 of Fournier & Guillin � � 
1 t π2 c1 6p(2015), for nt > log 

2 

, the probability that the first term is greater than εδ is less that Here, the c2(εδ)m 6p t2π2 . 
positive constants c1, c2 depend on α, µ, ξα,µ and m. Therefore, 

W1(Dnt (θt), D(θPS)) 6 εδ + εkθt − θPSk2 6 2εkθt − θPSk2, with probability 1 − 
π 
6 
2 

p

t2 
. 

Using this, we can now prove that the iterates contract. Following the first steps of the proof of Theorem 3.5, we have that � � 
>

(Gnt (θt) − G(θPS)) E rθ ̀ (Z; G
nt (θt)) − E rθ ̀ (Z; G

nt (θt)) 
Z∼Dnt (θt) Z∼D(θPS)� � (4)

>
+(Gnt (θt) − G(θPS)) E rθ ̀ (Z; G

nt (θt)) − E rθ ̀ (Z; G(θPS)) 6 0. 
Z∼D(θPS ) Z∼D(θPS) 

Like in the proof of Theorem 3.5, the term (Gnt (θt) − G(θPS))> EZ∼Dnt (θt) rθ ̀ (Z; Gnt (θt)) is kGnt (θt) − G(θPS)k2 · β 
Lipschitz in Z. Using equation (3), with probability 1 − 6p we can bound the first term by π2t2 � � 

>
(Gnt (θt) − G(θPS)) E rθ ̀ (Z; G

nt (θt)) − E rθ ̀ (Z; G
nt (θt)) 

Z∼Dnt (θt) Z∼D(θPS) 

> − 2εβ kGnt (θt) − G(θPS)k2 kθt − θPSk2. 
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And by strong convexity, � � 
>

(Gnt (θt) − G(θPS)) E rθ ̀ (Z; G
nt (θt)) − E rθ ̀ (Z; G(θPS)) 

Z∼D(θPS) Z∼D(θPS) 

> γkGnt (θt) − G(θPS)k22. 

Plugging back into equation (4), we conclude that with high probability 

kθt+1 − θPSk2 6 
2εβ kθt − θPSk2. 
γ 

Applying a union bound, we conclude that the iterates contract at every iteration where kθt − θPSk2 > δ with probability at � �−1 � �P∞ 6p 1 − 2εβ kθ0−θPSk2least 1 − = 1 − p. Therefore, for t > log steps we have t=1 π2t2 γ δ � �t � �t � � �� 
2εβ 2εβ 2εβ kθt − θPSk2 6 kθ0 − θPSk2 6 kθ0 − θPSk2 6 exp −t 1 − kθ0 − θPSk2 6 δ, 
γ γ γ 

−xwhere we use 1 − x 6 e . This implies that θt eventually contracts to a ball of radius δ around θPS. 

Case 2: kθt − θPSk2 6 δ. We show that the RERM iterates can leave a ball of radius δ around θPS only with negligible 
probability. We begin by applying the triangle inequality just as we did in the previous case, 

W1(Dnt (θt), D(θPS)) 6 W1(Dnt (θt), D(θt)) + W1(D(θt), D(θPS)) 6 W1(Dnt (θt), D(θt)) + εδ. 

For our choice of nt, with probability at least 1 − 6p this quantity is upper bounded by π2 t2 

W1(Dnt (θt), D(θPS)) 6 2εδ. 

With this information, we can now apply the exact same steps as in the previous case, but now using the fact that 
W1(Dnt (θt), D(θPS)) 6 2εδ instead of W1(Dnt (θt), D(θPS)) 6 2εkθt − θPSk2, to conclude that with probability at least 

6p1 − π2t2 

kθt+1 − θPSk2 6 2ε
β
δ 6 δ. 

γ 

As before, a union bound argument proves that the entire analysis holds with probability 1 − p. 

Proof of (b): The only difference between part (b) in relation to part (a) is the fact that one needs to invoke the steps of 
Theorem 3.8 rather than Theorem 3.5. 

E.5. Proof of Proposition 4.2 

We make a slight modification to Example 2.2 to prove the proposition. As in the example, D(θ) is given as follows: X 
1is a single feature supported on {±1} and Y | X ∼ Bernoulli( 1 + µX + εθX), where Θ = [0, 1]. We let ε > , and2 2 

1constrain µ to satisfy |µ + ε| 6 1 . We assume that outcomes are predicted according to the model fθ(x) = θx + and that 2 2 

performance is measured via the squared loss, `(z; θ) = (y − fθ(x))2 . This loss has condition number β = 1.γ 

A direct calculation demonstrates that the performative risk is a quadratic in θ: 

PR(θ) = 
1 − 2θµ + (1 − 2ε)θ2 . 
4 � � 

1 γTherefore, if ε ∈ , 1 , the performative risk is a concave function of θ, even though ε < .2 β 

E.6. Proof of Theorem 4.3 

By definition of performative optimality and performative stability we have that: 

DPR(θPO, θPO) 6 DPR(θPS, θPS) 6 DPR(θPS, θPO). 
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We claim that DPR(θPS, θPO) − DPR(θPS, θPS) > γ kθPO − θPSk22 . By definition of DPR, we can write2 � � 
DPR(θPS, θPO) − DPR(θPS, θPS) = E `(Z; θPO) − `(Z; θPS) . 

Z∼D(θPS) 

Since `(z; θPO) > `(z; θPS) + rθ ̀ (z; θPS)>(θPO − θPS) + γ 
2 kθPO − θPSk22 for all z, we have that � � � � γ

E `(Z; θPO) − `(Z; θPS) > E rθ ̀ (Z; θPS)
>(θPO − θPS) + kθPO − θPSk22. (5) 

Z∼D(θPS ) Z∼D(θPS) 2 � � 
Now, by Lemma D.1, EZ∼D(θPS ) rθ ̀ (Z; θPS)>(θPO − θPS) > 0, so we get that equation (5) implies � � γ

E `(Z; θPO) − `(Z; θPS) > kθPO − θPSk22. 
Z∼D(θPS) 2 

Since the population distributions are ε-sensitive and the loss is Lz -Lipschitz in z, we have that DPR(θPS, θPO) − 
γkθPO−θPSk2 γDPR(θPO, θPO) 6 LzεkθPO − θPSk2. If ε < 2Lz 

then we have that LzεkθPO − θPSk2 < 2 kθPO − θPSk22 which 
is a contradiction since it must hold that 

DPR(θPS, θPO) − DPR(θPO, θPO) > DPR(θPS, θPO) − DPR(θPS, θPS). 

E.7. Proof of Corollary 5.1 

By Theorem 3.8 we know that repeated risk minimization converges at a linear rate to a performatively stable point θPS. 
Furthermore, by Theorem 4.3, this performatively stable point is close in domain to the institution’s Stackelberg equilibrium 
classifier θSE, 

2Lz ε kθSE − θPSk2 6 . 
γ 

We can then use the fact that the loss is Lipschitz to show that this performatively stable classifier is close in objective value 
to the Stackelberg equilibrium: 

PR(θPS) − PR(θSE) 6 PR(θPS) − DPR(θPS, θSE) + DPR(θPS, θSE) − PR(θSE) 

6 LθkθSE − θPSk2 + LzεkθSE − θPSk2 

2Lzε(Lθ + Lz ε)6 
γ 

Here, we have used the Kantorovich-Rubinstein Lemma (D.3) to bound the second term. 

F. Approximately Minimizing Performative Risk via Regularization 
Recall that in Proposition 3.6 we have shown that RRM might not converge at all if the objective is smooth and convex, 
but not strongly convex. In this section, we show how adding a small amount of quadratic regularization to the objective 
guarantees that RRM will converge to a stable point which approximately minimizes the performative risk on the original 
loss. 

To do so, we additionally require that the space of model parameters Θ be bounded with diameter D = supθ,θ0∈Θ kθ − θ0k2. 
We can assume without loss of generality that D = 1. 

Proposition F.1. Suppose that the loss `(z; θ) is Lz-Lipschitz iz z and Lθ-Lipschitz in θ, β-jointly smooth (A1) and 
convex (but not necessarily strongly convex). Furthermore, suppose that distribution map D(·) is ε-sensitive with ε < 1, 
and that the set Θ is bounded with diameter 1. Then, there exists a choice of α, such that running RRM with loss 
`reg(z; θ) 

def 
= `(z; θ) + α kθ − θ0k22 converges to a performatively stable point θreg which satisfies the following 2 PS � √ � 

PR(θreg ε 
PS) 6 min PR(θ) + O . 

θ 1 − ε 

We note that in the case where ε = 0, the limit point θreg of regularized repeated risk minimization is also performatively PS 
optimal. 
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Proof. First, we observe that the regularized loss function `reg(z; θ) is α-strongly convex and α + β-jointly smooth. Since √αε < 1, we can then choose an α such that ε < . In particular, we choose α = εβ/(1 − ε).α+β 

From our choice of α, we have that ε is smaller than the inverse condition number. Hence, by Theorem 3.5 repeated risk 
minimization converges at a linear rate to a performatively stable solution θreg of the regularized objective. PS 

To finish the proof, we show that the objective value at the θreg is close to the objective value at the performative optima of PS 
the original objective θPO. We do so by bounding their difference using the triangle inequality: 

`reg(Z; θreg `reg(Z; θreg `reg(Z; θreg E ) − E `(Z; θPO) = E ) − E )PS PS POreg reg reg Z∼D(θ ) Z∼D(θPO) Z∼D(θ ) Z∼D(θ )PS PS PO 

`reg(Z; θreg + E ) − E `(Z; θPO)reg PO 
Z∼D(θ ) Z∼D(θPO)PO 

We can bound the first difference via Lipschitzness: 

`reg(Z; θreg `reg(Z; θreg `reg(Z; θreg `reg(Z; θreg E ) − E ) = E ) − E )PS PO PS POreg reg reg reg Z∼D(θ ) Z∼D(θ ) Z∼D(θ ) Z∼D(θ )PS PO PS PS 

`reg(Z; θreg `reg(Z; θreg + E ) − E )
reg PO reg PO 

Z∼D(θ ) Z∼D(θ )PS PO 

reg reg 6 (Lθ + α sup kθ − θ0k2)kθ − θ k2PS PO 
θ,θ0∈Θ 

reg reg + εLzkθ − θ k2PS PO 
reg reg = (Lθ + α + εLz )kθ − θ k2PS PO 

2(Lθ + α + εLz)Lz ε6 . 
α 

In the last two lines, we have applied the fact that D = supθ,θ0∈Θ kθ − θ0k2 = 1 as well as Theorem 4.3. For the second 
difference, by definition of performative optimality we have that, 

`reg(Z; θreg `reg(Z; θPO) 6 
α

E ) 6 E E `(Z; θPO) + . 
reg PO 

Z∼D(θ ) Z∼D(θPO) Z∼D(θPO) 2 
PO 

Where we have again used the fact that D = 1 for the last inequality. Combining these two together, we can bound the total 
difference: 

`reg(Z; θreg 2(Lθ + α + εLz )Lz ε α
E ) − E `(Z; θPO) 6 + .PSreg Z∼D(θ ) Z∼D(θPO) α 2 

PS 

√ 
εβPlugging in α = completes the proof. �1−ε 

G. Experimental Details 
Base distribution. The base distribution consists of the Kaggle data set (Kaggle, 2012). We subsample n = 18, 357 points 
from the original training set such that both classes are approximately balanced (45% of points have y equal to 1). There are 
a total of 10 features, 3 of which we treat as strategic features: utilization of credit lines, number of open credit lines, and 
number of real estate loans. We scale features in the base distribution so that they have zero mean and unit variance. 

Verifying ε-sensitivity. We verify that the map D(·), as described in Section 5, is ε-sensitive. To do so, we analyze 
W1(D(θ), D(θ0)), for arbitrary θ, θ0 ∈ Θ. Fix a sample point x ∈ Rm−1 from the base dataset. Because the base distribution 
D is supported on n points, we can upper bound the optimal transport distance between any pair of distributions D(θ) and 
D(θ0) by the Euclidean distance between the shifted versions of x in D(θ) and D(θ0). 

In our construction, the point x is shifted to x − εθ and to x − εθ0 in D(θ) and D(θ0) respectively. The distance between 
these two shifted points is kx − εθ − x + εθ0k2 = εkθ − θ0k2. Since the same relationship holds for all other samples x in 
the base dataset, the optimal transport from D(θ) to D(θ0) is at most εkθ − θ0k2. 
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Verifying joint smoothness of the objective. For the experiments described in Figure 1, we run repeated risk minimization 
and repeated gradient descent on the logistic loss with ` 2 regularization: 

nX1 � � γ −yiθ> xi + log 1 + exp(θ> xi) + kθk2 (6)2 n 2 
i=1 

For both the repeated risk minimization and repeated gradient descent we set γ = 1000/n, where n is the size of the base 
dataset. 

For a particular feature-outcome pair (xi, yi), the logistic loss is 1 kxik2 smooth (Shalev-Shwartz & Ben-David, 2014).P 4 2 
n1Therefore, the entire objective is kxik22 + γ smooth. Due to the strategic updates, xBR = x − εθ, the norm of4n i=1 

individual features change depending on the choice of model parameters. 

Theoretically, we can upper bound the smoothness of the objective by finding the implicit constraints on Θ, which can be 
revealed by looking at the dual of the objective function for every fixed value of ε. However, for simplicity, we simply 
calculate the worst-case smoothness of the objective, given the trajectory of iterates {θt}, for every fixed ε. 

Furthermore, we can verify the logistic loss is jointly smooth. For a fixed example z = (x, y), the gradient of the regularized 
logistic loss with respect to θ is, 

exp(θ>x) rθ ̀ (z; θ) = yx + x + γθ, 
1 + exp(θ>x) 

which is 2-Lipschitz in z due to y ∈ {0, 1}. Hence, the overall objective is β-jointly smooth with parameter 

n� 1 X 
β = max 2, kxik22 + γ . 

4n 
i=1 

For RRM, ε is less than γ only in the case that ε = 0.01. For RGD, ε is never smaller than the theoretical cutoff of β 
γ 

(β+γ)(1+1.5ηβ) . 

Optimization details. The definition of RRM requires exact minimization of the objective at every iteration. We 
approximate this requirement by minimizing the objective described in expression (6) to small tolerance, 10−8 , using 
gradient descent. We choose the step size at every iteration using backtracking line search. 

In the case of repeated gradient descent, we run the procedure as described in Definition 3.7 with a fixed step size of 
2η = .β+γ 


