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1. Experimental methods
The code used to generate all statistics and results for this
paper is available at

https://github.com/dylanpeifer/deepgroebner

with selected computed statistics and training run data at

https://doi.org/10.5281/zenodo.3676044

Statistics for First, Degree, Normal, Sugar, and Random
were generated using Macaulay2 1.14 on Ubuntu 18.04
while agent training was performed on c5n.xlarge instances
from Amazon Web Services using the Ubuntu 18.04 Deep
Learning AMI.

There were four primary training settings corresponding to
the four distributions in Table 3 from Section 5. In each set-
ting we performed three complete runs using the parameters
from Table 1 below. Model weights were saved every 100
epochs, and a single model was selected from the available
runs and save points in each setting based on best smoothed
training performance.

Table 1. Hyperparameters for primary evaluation runs.

HYPERPARAMETER VALUE

γ FOR GAE 0.99
λ FOR GAE 0.97
ε FOR PPO 0.2
OPTIMIZER ADAM

LEARNING RATE 0.0001
MAX POLICY UPDATES PER EPOCH 80

POLICY KL-DIVERGENCE LIMIT 0.01
HIDDEN LAYERS [128]

VALUE FUNCTION DEGREE AGENT
EPOCHS 2500

EPISODES PER EPOCH 100
MAX EPISODE LENGTH 500

Trained models were then evaluated on new sets of ideals
to produce Table 3 in Section 5, Table 5 in Section 5.3, and
Figure 6 in Section 5.3. The three models from Table 4 in
Section 5.2 were selected and evaluated in the same way,
but were trained with their respective modifications.

2. Hyperparameter tuning
In addition to the main evaluation runs for this paper, we
performed a brief hyperparameter search in two stages. Both
stages were trained in the 3-20-10 weighted distribution as
it gives the fastest training runs.

In the first stage we varied the parameters γ in {1.0, 0.99},
λ in {1.0, 0.97}, learning rate in {10−3, 10−4, 10−5}, and
network as a single hidden layer of 128 units or two hidden
layers of 64 units. Three runs were performed on each set
of parameters, for a total of 72 runs. The pairs left value
function was used in this search instead of the degree agent,
as it leads to significantly faster training. Learning rates of
10−4 showed best performance, though rates of 10−5 were
still improving at the end of the runs. Changes in γ, λ, and
network did not consistently change performance.

In the second stage we varied just the network shape. Single
hidden layer networks were tried with 4, 8, . . . , 256 units
and two hidden layer networks were tried with 4, 8, . . . ,
256 hidden units in each layer. One run was performed
on each network, for a total of 14 runs. Results showed
significant improvement in using at least 32 hidden units
and no major differences between one and two hidden lay-
ers. Small models were also surprisingly effective, with the
model with a single hidden layer of 4 units achieving mean
performance of around 100 polynomial additions during
training, compared to Degree selection at 136 and our full
model at 85.6.

3. Complexity analysis of Buchberger’s
algorithm

In this section, we consider upper and lower bounds for
the complexity of computing a Gröbner basis of an ideal
in a polynomial ring, and also describe what happens in
the ”generic” (random) case, giving more detail than in the
paper proper. We first consider the maximum degree of a
Gröbner basis element, then describe how that gives bounds
for the size of a minimal reduced Gröbner basis.

Let I = 〈f1, . . . , fs〉 ⊂ S = k[x1, . . . , xn], be an
ideal, with each polynomial fi of degree ≤ d. If > is
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a monomial order, and G = GB>(I) = {g1, . . . , gr}
is a Gröbner basis of I , G is called a minimal and re-
duced Gröbner basis if the lead coefficient of each gi is
one, and no monomial of gi is divisible by LT (gj), for
i 6= j. Given any Gröbner basis, it is easy to modify
G to obtain a minimal and reduced Gröbner basis of I .
Given the monomial order, each ideal I has precisely one
minimal reduced Gröbner basis with respect to this order.
We define degmax(GB>(I)) := max(deg g1, . . . ,deg gr),
where G = GB>(I) = {g1, . . . , gr} is the unique minimal
reduced Gröbner basis of I for the order >.

Upper bounds

We have the following upper bound for degmax(GB>(I)).

Theorem 1 ((Dubé, 1990)). Given I as above, then

degmax(GB>(I)) ≤ 2 (
d2

2
+ d)2

n−1

If I is homogeneous (i.e. each polynomial fi is homoge-
neous), we may replace the n− 1 by n− 2 in this bound.

Such a bound is called double exponential (in the number
of variables). This result seems to give an incredibly bad
bound, but it is unfortunately fairly tight, which we will
discuss next.

Lower bounds

All known double exponential examples (e.g. (Bayer &
Stillman, 1988), (Koh, 1998), (Mora, 2005)) are based es-
sentially on the seminal and important construction of (Mayr
& Meyer, 1982). Each is a sequence of ideals Jn where the
n-th ideal Jn is in roughly 10n or 20n variables, generated
in degrees ≤ d, where each fi is a pure binomial (i.e. a
difference of two monomials). The following version of
(Koh, 1998) is a sequence of ideals generated by quadratic
pure binomials.

Theorem 2 ((Koh, 1998)). For each n ≥ 1, there exists
an ideal Jn, generated by quadratic homogeneous pure
binomials in 22n− 1 variables such that for any monomial
order >,

22
n−1−1 ≤ degmax(GB>(Jn))

(Koh, 1998) shows that there is a minimal syzygy in degree
22

n−1

. It is well known (see e.g. (Mora, 2005), section 38.1)
that this implies that there must be a minimal Gröbner basis
element of degree at least half that, giving the stated bound.
Thus there are examples of ideals whose Gröbner basis
has maximum degree bounded below by roughly 22

n/22

(where now n is the number of variables). Some of the other
modifications of the Mayr-Meyer construction have slightly
higher lower bounds (e.g.22

n/10

).

Better bounds

Given these very large lower bounds, one might conclude
that Gröbner bases cannot be used in practice. However, in
many cases, there exist much lower upper bounds for the
size of a grevlex Gröbner basis. The key is to relate these
degree bounds to the regularity of the ideal.

Given a homogeneous ideal I = 〈f1, . . . , fs〉 ⊂ S =
k[x1, . . . , xn], with each polynomial of degree ≤ d, sev-
eral notions which often appear in complexity bounds and
are also useful in algebraic geometry are:

• the dimension dim(I) of I .

• the depth depth(I). This is an integer in the range 0 ≤
depth(I) ≤ dim(I). In many commutative algebra
texts, this is denoted as depth(S/I), not depth(I),
but in (Mora, 2005), depth(I) is the notation. This
is the length of a maximal S/I-regular sequence in
(x1, . . . , xn).

• the (Castelnuovo-Mumford) regularity, reg(I) of the
ideal I , see (Eisenbud, 1995) or (Mora, 2005).

The regularity reg(I) should be considered as a measure of
complexity of the ideal.

GENERIC CHANGE OF COORDINATES

Let’s consider a homogeneous, linear, change of coordinates
φ = φA, where A ∈ kn×n is a square n by n matrix over k,
with

φA(xi) =

n∑
j=1

Aijxj .

Let φA(I) := {f(φA(x1), . . . , φA(xn)) | f ∈ I} be the
ideal under a change of coordinates. Consider the n2-
dimensional parameter space V (where a point A = (Aij)
of V corresponds to a homogeneous linear change of coor-
dinates φA). It turns out that there is a polynomial F in the
polynomial ring (with n2 variables) k[Aij ], such that for all
points A ∈ V such that F (A) 6= 0, then LTgrevlex(φA(I))
is the same ideal. This monomial ideal is called the generic
initial ideal of I (in grevlex coordinates), and is denoted by
gin(I). Basically, for a random homogeneous linear change
of coordinates, one always gets the same size Gröbner basis,
with the same lead monomials.

Define G(I) to be the maximum degree of a minimal gener-
ator of gin(I). This is the maximum degree of an element
of the unique minimal and reduced Gröbner basis of the
ideal φA(I) under almost all change of coordinates φA (i.e.
those for which F (A) 6= 0).

The reason this is important is that we have more control
over Gröbner bases in generic coordinates. For instance



Theorem 3 ((Bayer & Stillman, 1987)). If the base field is
infinite, then

reg(I) = reg(gin(I))

If the characteristic of k is zero, then

G(I) = reg(I)

If the characteristic of k is positive, then

1

n
reg(I) ≤ G(I) ≤ reg(I)

It is know that reg(I) ≤ reg(LT>(I)), for every monomial
order >. This result states that in fact in generic coordinates,
equality is obtained for the grevlex order. The Gröbner basis,
after a random change of coordinates, always has maximum
degree at most reg(I).

In particular, if an ideal I has small regularity, as often hap-
pens for ideals coming from algebraic geometric problems,
then the corresponding Gröbner basis in grevlex order will
have much smaller size than the double exponential upper
bounds suggest.
Theorem 4. If the homogeneous ideal I = 〈f1, . . . , fs〉 ⊂
S has dim(I) = depth(I) (this includes the case when
dim(I) = 0, then

reg(I) ≤ (d− 1)min(s, n− dim(I))) + 1

This follows from two basic facts about regularity: First, if
dim I = 0, then the regularity of I is the first degreem such
that the degree m polynomials in I consist of all degree m
polynomials. Second, if I has depth r and y1, . . . , yr is a
regular sequence of linear forms mod I , then the regular-
ity of I is the regularity of the ideal I := IS/(y1, . . . , yr).
Since the depth and dimension of I are equal, the ideal I
is of dimension 0, and contains a complete intersection of
polynomials each of degree d. This implies by a Hilbert
function argument, or by the Koszul complex, that the reg-
ularity of I is at most (d − 1)(n − r) + 1 (see (Eisenbud,
1995) for these kinds of arguments).

This implies that G(I) ≤ (d − 1)min(s, n − dim(I)) +
1 ≤ dn, a dramatic improvement on the double exponential
bounds!

Ideals generated by random, or generic, polynomials

What happens for random homogeneous ideals generated by
s polynomials each of degree d? For fixed n, d, s, the space
of possible inputs, i.e., the space V of coefficients for each
of the s generators, is finite dimensional. There is a subset
X ⊂ V , a closed algebraic set (so having measure zero, if
the base field is R or C), such that for any point outside X ,
the corresponding ideal I satisfies dim(I) = depth(I), and
therefore,

G(I) ≤ (d− 1)min(s, n) + 1.

In characteristic zero, equality holds.

If instead of homogeneous ideals, we consider random in-
homogeneous ideals, generated by s polynomials each of
degree d. The same method holds: the homogenization of
these polynomials puts us into the situation in the previ-
ous paragraph. Therefore for such inhomogeneous ideals,
whose coefficient point is outside of X , then the ideal J
generated by the homogenization of the fi with respect to a
new variable satisfies dim(J) = depth(J), and therefore,

G(I) = G(J) ≤ (d− 1)min(s, n+ 1) + 1.

In characteristic zero, equality holds.

Bounds on the size of the reduced minimal Gröbner
basis

In the unique reduced minimla Gröbner basis of an ideal I ,
there can not be two generators with identical lead mono-
mials. It follows that if all generators in this Gröbner basis
have degree ≤ D, then there are at most

#{monomials of degree ≤ D} =
(
D + n
n

)
= O

(
(n+D)min(n,D)

)
generators in the Gröbner basis. If one combines this
with the upper bound above on the maximum degree,
D = (d− 1)min(s, n+1)+ 1, one finds the following up-
per bound on the size of the minimal reduced Gröbner basis
of a generic ideal generated by s polynomials of degree ≤ d
in n variables:

#{Gröbner basis generators} ≤ O ((n+ 1)ndn) ,

where the simplification comes from approximating
min(s, n+1) ≤ n+1, so that our bound is independent of
s, and assuming d ≥ 2.
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