Reducing Sampling Error in Batch Temporal Difference Learning

Brahma S. Pavse' Ishan Durugkar' Josiah P. Hanna?? Peter Stone '

Abstract

Temporal difference (TD) learning is one of the
main foundations of modern reinforcement learn-
ing. This paper studies the use of TD(0), a canon-
ical TD algorithm, to estimate the value function
of a given policy from a batch of data. In this
batch setting, we show that TD(0) may converge
to an inaccurate value function because the up-
date following an action is weighted according to
the number of times that action occurred in the
batch — not the true probability of the action under
the given policy. To address this limitation, we
introduce policy sampling error corrected-TD(0)
(PSEC-TD(0)). PSEC-TD(0) first estimates the
empirical distribution of actions in each state in
the batch and then uses importance sampling to
correct for the mismatch between the empirical
weighting and the correct weighting for updates
following each action. We refine the concept of
a certainty-equivalence estimate and argue that
PSEC-TD(0) is a more data efficient estimator
than TD(0) for a fixed batch of data. Finally, we
conduct an empirical evaluation of PSEC-TD(0)
on three batch value function learning tasks, with
a hyperparameter sensitivity analysis, and show
that PSEC-TD(0) produces value function esti-
mates with lower mean squared error than TD(0).

1. Introduction

Reinforcement learning (RL) (Sutton & Barto, 2018) algo-
rithms have been applied to a variety of sequential-decision
making problems such as robot manipulation (Kober et al.,
2013; Gu et al., 2016) and autonomous driving (Sallab et al.,
2017). Many RL algorithms learn an optimal control policy
by estimating the value function, a function that gives the
expected return from each state when following a particular

The University of Texas at Austin 2School of Informatics,
University of Edinburgh *To be joining the Computer Sciences
Department, University of Wisconsin—Madison *Sony Al Corre-
spondence to: Brahma S. Pavse <brahmasp @cs.utexas.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

4

policy (Puterman & Shin, 1978; Bertsekas, 1987; Konda &
Tsitsiklis, 2000). These algorithms require accurate value
function estimation with finite data. A fundamental ap-
proach to value function learning is the temporal difference
(TD) algorithm (Sutton, 1988).

In this work, we focus on improving the accuracy of the
value function learned by batch TD, where TD updates for
a value function are computed from a fixed batch of data.
We show that batch TD(0) may converge to an inaccurate
value function since it ignores the known action probabili-
ties of the policy it is evaluating. For example, consider a
single state in which the evaluation policy selects between
action a; or as with probability 0.5. If, in the finite batch
of observed data, a; actually happens to occur twice as of-
ten as ay then TD updates following a; will receive twice
as much weight as updates following a2, even though in
expectation they should receive the same weight. We de-
scribe this finite-sample error in the value function estimate
as policy sampling error. To correct for policy sampling
error we propose to first estimate the maximum likelihood
policy from the observed data and then use importance sam-
pling (Precup et al., 2000a) to account for the mismatch
between the frequency of sampled actions and their true
probability under the evaluation policy. Variants of this tech-
nique have been successful in multi-armed bandits (Li et al.,
2015; Narita et al., 2018; Xie et al., 2018), policy evaluation
(Hanna et al., 2019), and policy gradient learning (Hanna
& Stone, 2019). However, we are the first to show that this
technique can be used to correct for policy sampling error in
value function estimation and the first to show the benefit of
importance sampling in on-policy value function estimation.
We show that by using the available policy information, our
approach is more data efficient than vanilla batch TD(0).
We call our new value function learning algorithm batch
policy sampling error corrected-TD(0) (PSEC-TD(0)).

The contributions of the paper are the following:

1. Show that the fixed point that batch TD(0) converges
to for a given policy is inaccurate with respect to the
true value function.

2. Introduce the batch PSEC-TD(0) algorithm that re-
duces the policy sampling error in batch TD(0).

3. Refine the concept of a certainty-equivalence estimate

Reducing Sampling Error in Batch Temporal Difference Learning

for TD(0) (Sutton, 1988) and provide theoretical justi-
fication that batch PSEC-TD(0) is more data efficient
than batch TD(0).

4. Empirically analyze batch PSEC-TD(0) in the tabular
and function approximation setting.

2. Background

This section introduces notation and formally specifies the
batch value function learning problem.

2.1. Notation and Definitions

Following the standard MDPNvV1 notation (Thomas, 2015),
we consider a Markov decision process (MDP) with state
space S, action space A, reward function R, transition dy-
namics function P, and discount factor ~ (Puterman, 2014).
In any state s, an agent selects stochastic actions according
to a policy , a ~ 7(-|s). After taking an action a in state
s the agent transitions to a new state s’ ~ P(:|s, a) and re-
ceives reward R(s, a, s’). We assume S and A to be finite;
however, our experiments also consider infinite sized S and
A. We consider the episodic, discounted, and finite horizon
setting. The policy and MDP jointly induce a Markov re-
ward process (MRP), in which the agent transitions between
states s and s’ with probability P(s’|s) and receives reward
R(s,s'). Finally, z(s) : S — R? gives a column feature
vector for each state s € S.

We are concerned with computing the value function, v™ :
S — R, that gives the value of any state. The value of a
particular state is the expected discounted return, i.e. the
expected sum of discounted rewards when following policy
« from that state:

L
v (s) = Eg [Z ’7th+1¢+1

k=0

st:s],VSGS 1)

where L is the terminal time-step and the expectation is
taken over the distribution of future states, actions, and
rewards under 7 and P.

2.2. Batch Value Prediction

This work investigates the problem of approximating v™
given a batch of data, D, and an evaluation policy, .. Let
a single episode, 7, be defined as 7 := (sg, ag, 7o, 51, -+
SL._1,0L._4,TL._,), where L, is the length of the episode
7. The batch of data consists of m episodes, i.e., D :=
{m:}"1. The policy that generated the batch of data is
called the behavior policy, m,. If m, is the same as 7,
for all episodes then learning is said to be done on-policy;
otherwise it is off-policy.

In batch value prediction, a value function learning algo-
rithm uses a fixed batch of data to learn an estimate 0™
that approximates the true value function, v™<. In this work,

we introduce algorithmic and theoretical concepts with the
linear approximation of v™«:
™ (s) := wT x(s)

thus, in the linear case, we seek to find a weight vector
w, such that w’ x(s) approximates the true value, v™ (s).
However, our empirical study also considers the non-linear
approximation of v™¢. The error of the predicted value
function, 9™, with respect to the true value function, v™e,
is measured by calculating the mean squared value error
between v™<(s) and 9™ (s) Vs € S weighted by the pro-
portion of time spent in each state under policy 7., d;_ ().
Thus, we seek to find a weight vector w that minimizes:

2
MSVE(w) = > dx,(s) (v"ﬁ (s) — wT:c(s)) 2)
sES
In this work, we compare data efficiency between two
algorithms, X and Y, as follows:

Definition 1. Data Efficiency. A prediction algorithm X is
more data efficient than algorithm Y if estimates from X
have, on average, lower MSVE than estimates from'Y for a
given batch size.

2.3. Batch Linear TD(0)

A fundamental algorithm for value prediction is the single-
step temporal difference learning algorithm, TD(0). Al-
gorithm 1 gives pseudo-code for the batch linear TD(0)
algorithm described by Sutton (1988).

Algorithm 1 Batch Linear TD(0) to estimate v™«

1: Input: policy to evaluate 7., behavior policy 7, batch
D, linear value function, ¥ : S x R? — R, step-size
a > 0, convergence threshold A > 0

2: Initialize: weight vector wy arbitrarily (e.g.: wg := 0),
aggregation vector u := 0, batch process counter, 7 = 0

3: while |wi+1 — wZ| > 1-Ado

4 for each episode, 7 € D do

5 for each transition, (s, a,r,s’) € T do

6: g« r+ywlz(s)

T e D
8 u < u+ [pg — wlm(s)] z(s)
9 end for

10: end for

11: w;+1 < w; + au {batch update}

12: w < 0 {clear aggregation}

13: i+ 1+1

14: end while

{for on-policy, m, = 7.}

Sutton (1988) proved that batch linear TD(0) converges to
a fixed point in the on-policy case i.e. when 7, = m,. An
off-policy batch TD(0) algorithm uses importance sampling
ratios to ensure that the expected update is the same as it
would be if actions were taken with 7, instead of 7, (Precup

Reducing Sampling Error in Batch Temporal Difference Learning

et al., 2000a). Unlike on-policy TD(0), off-policy TD(0) is
not guaranteed to converge (Baird, 1995).

3. Convergence of Batch Linear TD(0)

In this section, we discuss the convergence of batch linear
TD(O0) to a fixed-point, the certainty equivalence estimate
(CEE) for the underlying Markov reward process (MRP).
We refine this concept to better reflect our objective of eval-
uating a policy in an MDP and then prove that batch TD(0)
converges to an equivalent fixed point that ignores knowl-
edge of the known evaluation policy, 7., leading to inaccu-
racy in the value function estimate. This result motivates
our proposed algorithm.

First, we introduce additional notation and assumptions. In
this section, we assume that we are in the on-policy setting
(mp, = m). Let S be the set of states and A be the set of
actions that appear in D and let R(s) be the mean reward
received when transitioning from state s in the batch D.
Finally, if the notation includes a hat ("), it is the maximum-
likelihood estimate (MLE) according to D. For example,
7 is the MLE of 7. Sutton (1988) proved that batch lin-
ear TD(0) converges to the CEE. That is, it converges to
the exact value function of the maximum likelihood MRP
according to the observed batch. This exact value function
can be calculated using dynamic programming (Bellman,
2003; Bertsekas, 1987) with the MLE MRP transition func-
tion. We call this value function estimate the Markov reward
process certainty equivalence estimate (MRP-CEE).
Definition 2. Markov Reward Process Certainty Equiva-
lence Estimate (MRP-CEE) Value Function. The MRP-CEE
is the value function ﬁMRp that, Vs,s' € S, satisﬁes:

+ ol Z P UMRP 3)

keS8

Vurp (

Having now defined the MRP-CEE value function, we prove
that batch TD(0) converges to the MRP-CEE value function.
This fact was first proven by Sutton (1988) (see Theorem 3
of Sutton (1988)), however the original proof only considers
rewards upon termination and no discounting. The extension
to rewards per-step and discounting is straightforward, but to
the best of our knowledge has not appeared in the literature
before. Following Sutton’s proof (Sutton, 1988), we first
prove the extension before extending the proof to an MDP,
where the data inefficiency of TD(0) becomes clear. Proof
details are in Appendix C.

Theorem 1 (Batch Linear TD(0) Convergence). For any
batch whose observation vectors {x(s)|s € S} are linearly
independent, there exists an € > 0 such that, for all positive
a < € and for any initial weight vector, the predictions for
linear TD(0) converge under repeated presentations of the
batch with weight updates after each complete presentation
to the fixed-point (3).

In RL, the transitions of an MRP are a function of the be-
havior policy and transition dynamics distributions. That is

Vs, s € S:
P(s's) = Y #(als)P(s'|s, a),

acA
R(s) = 3 #(als)R(s,a)

aeA
where R(s,a) is the mean reward observed in state s on
taking action a. We define a new certainty-equivalence esti-
mate that separates these two factors. We call this new value
function estimate the Markov decision process certainty
equivalent estimate (MDP-CEE).
Definition 3. Markov Decision Process Certainty Equiva-
lence Estimate (MDP-CEE) Value Fi unction. The MDP-CEE
is the value function, @;;TDP, that, Vs, s’ € S, satisfies:

Oupp (8) = Z #(als) (R(s,a) + Z ﬁ(s/s,a)@ﬁ)p(s')>

ac A s'e8S
(C))]

Given the definitions of P and R, the MRP-CEE (Definition
2) and MDP-CEE (Definition 3) are equivalent. Theorem
2 gives the convergence of batch TD(0) to the MDP-CEE
value function. Proof details are in Appendix D.

Theorem 2 (Batch Linear TD(0) Convergence) For any
batch whose observation vectors {x(s)|s € S} are linearly
independent, there exists an € > 0 such that, for all positive
«a < € and for any initial weight vector, the predictions for
linear TD(0) converge under repeated presentations of the
batch with weight updates after each complete presentation
to the fixed-point (4).

The MDP-CEE value function highlights two sources of es-
timation error in the value function estimate: P # P and/or
m. # . We describe the former as transition sampling
error and the latter as policy sampling error. Transition
sampling error may be unavoidable in a model-free setting
since we do not know P. However, we do know 7. and can
use this knowledge to potentially correct policy sampling
error. In the next section, we present an algorithm that uses
the knowledge of 7. to correct for policy sampling error and
obtain a more accurate value function estimate.

4. Batch Linear PSEC-TD(0)

In this section, we introduce the batch policy sampling er-
ror corrected-TD(0) (PSEC-TD(0)) algorithm that corrects
for the policy sampling error in batch TD learning. From
Theorem 2, batch TD(0) converges to the value function
for the maximum likelihood policy, 7, instead of 7. Under
this view, PSEC-TD(0) treats policy sampling error as an
off-policy learning problem and uses importance sampling
(Precup et al., 2000a) to correct the weighting of TD(0)

Reducing Sampling Error in Batch Temporal Difference Learning

updates from 7 to 7. Even though importance sampling is
usually associated with off-policy learning, this approach is
applicable in the on- and off-policy cases.

In addition to D and 7., we assume we are given a set of
policies, II. Batch PSEC-TD(0) first computes the maxi-
mum likelihood estimate of the behavior policy:

Lr_1
1= argmax Z Z log 7’ (a] |s])

el tep =0
This estimation can be done in a number of ways. For
example, in the tabular setting we could use the empirical
count of actions in each state. This count-based approach is
often intractable, and hence, in many problems of interest
we must rely on function approximation. When using func-
tion approximation, the policy estimate can be obtained by
minimizing a negative log-likelihood loss function. Once 7
is computed, the batch PSEC-TD algorithm is the same as
Algorithm 1 with 7 replacing 7}, in the importance sampling
ratio. That is, for transition (s, a,r,s’) in D, the contribu-
tion to the weight update is u < u + [p§ — w] x(s)] x(s),
where p = % is the PSEC weight (refer to Line 8
in Algorithm 1). Thus, PSEC makes an importance sam-
pling correction from the empirical to the evaluation policy

distribution.

4.1. Convergence of Batch Linear PSEC-TD(0)

Section 3 showed that batch TD(0) converges to two equiva-
lent certainty-equivalence estimates. We now define a new
certainty-equivalent estimate (CEE) to which our new batch
PSEC-TD(0) algorithm converges. Intuitively, the MDP-
CEE estimate (Definition 3) is the exact value function for
the MLE of the behavior policy, 7, in the MLE of the MDP
environment; our new algorithm converges to the exact
value function for 7. in the MLE of the MDP environment,
making it more data efficient than batch TD(0) once the
batch size is large enough.

We define this new CEE as the PSEC Markov Decision
Process Certainty Equivalence Estimate (PSEC-MDP-CEE)
Value Function.

Definition 4. PSEC Markov Decision Process Certainty
Equivalence Estimate (PSEC-MDP-CEE) Value Function.
The PSEC-MDP-CEE is the value function, Opsge_wpp, that,

Vs, s' € S, satisfies:
Opgac e (5) = Z me(als)[R(s,a)
ac A

+7 Z ﬁ(5l|57 @) Vpgac—wor (5))]
keS

(&)

Theorem 3 states that batch PSEC-TD(0) converges to the
new PSEC-MDP-CEE value function (Equation 5). Proof
details are in Appendix E.

Theorem 3 (Batch Linear PSEC-TD(0) Convergence). For

any batch whose observation vectors {x(s)|s € S} are
linearly independent, there exists an € > 0 such that, for
all positive o < € and for any initial weight vector, the
predictions for linear PSEC-TD(0) converge under repeated
presentations of the batch with weight updates after each
complete presentation to the fixed-point (5).

We remark that convergence has only been shown for the on-
policy setting. While PSEC-TD(0) can be applied in the off-
policy setting, it may, like other semi-gradient TD methods,
diverge when off-policy updates are made with function
approximation (Baird, 1995). It is possible that combining
PSEC-TD(0) with Emphatic TD (Mahmood et al., 2015) or
Gradient-TD (Sutton et al., 2009) may result in provably
convergent behavior with off-policy updates, however, that
study is outside the scope of this work.

4.2. Extending PSEC to other TD Variants

In general, PSEC can improve any value function learning
algorithm that computes the TD-error, d, or equivalent errors.
As an example, we consider the off-policy least-squares TD
(LSTD) algorithm (Bradtke & Barto, 1996; Ghiassian et al.,
2018), which analytically computes the exact parameters
that minimize the TD-error in a batch of data using the
following steps:

A= Y [pee) @) -]

(s,a,s’")ED

b= Z R(s,a, s)z(s)
(s,a,s’")ED

w=A""b,

where p is the PSEC weight. Even though we primar-
ily consider TD(0) in this work, the extension to LSTD
demonstrates that PSEC-TD can be extended to other value
function learning algorithms.

5. Empirical Study

In this section, we empirically study PSEC-TD to answer
the following questions:

1. Does batch PSEC-TD(0) lower MSVE compared to
batch TD(0)?

2. Does batch linear PSEC-TD(0) empirically converge
to its certainty-equivalence solution?

3. Does PSEC yield benefit when applied to LSTD?

4. What factors does PSEC’s data efficiency depend on
in the function approximation setting?

We briefly describe the RL domains used in our experiments.

e Gridworld: In this domain, an agent navigates a 4 x 4
grid to reach a corner. The state and action spaces are

Reducing Sampling Error in Batch Temporal Difference Learning

discrete and we use a tabular representation for 0.
PSEC-TD(0) uses count-based estimation for 7. The
ground truth value function is computed with dynamic
programming and the MSVE computation uniformly
weights the error in each state. In Section 5.1, we
consider a deterministic gridworld, where there is no
transition dynamics sampling error.

e CartPole: In this domain, an agent controls a cart to
balance a pole upright. The state space is continuous
and action space is discrete. We only consider the
on-policy setting. The evaluation policy is a neural
network trained using REINFORCE (Williams, 1992).
It has 2 hidden layers with 16 neurons. We evaluate
PSEC with varying linear and neural network repre-
sentations for the value function. 7 maps the raw state
features to a softmax distribution over the actions with
varying linear and neural network architectures. Since
the true value function is unknown, we follow Pan
et al. (2016) and use Monte Carlo rollouts from a fixed
number of states sampled from episodes following the
evaluation policy to approximate the ground-truth state-
values of those states. We then compute the MSVE
between the learned values and the average Monte
Carlo return from these sampled states.

e InvertedPendulum: This domain is similar to Cart-
Pole, and the objective is the same — to balance a pole
upright. However, the state and action spaces are both
continuous. We only consider the on-policy setting.
The evaluation policy is a neural network trained by
PPO (Schulman et al., 2017). The network has 2 hid-
den layers with 64 neurons each. We evaluate PSEC
with varying linear and neural network representations
for the value function. The 7 estimate consists of two
components: 1) a linear or neural network mapping
from raw state features to the mean vector of a Gaus-
sian distribution, and 2) parameters representing the
log standard deviation of each element of the output
vector. As in CartPole, we compute Monte Carlo roll-
outs for sampled states.

In all experiments, the value function learning algorithm
iterates over the whole batch of data until convergence, after
which the MSVE of the final value function is computed.
Some experiments include a parameter sweep over the hy-
perparameters, which can be found in Appendix G.

5.1. Tabular Setting
In this set of experiments, we consider two variants of PSEC-

TD that differ in the placement of the PSEC weight:

e PSEC-TD-Estimate: Multiplies p by the new estimate:
§=R+ywlz(s).

e PSEC-TD: Multiplies p by the TD error: § = (R +
ywTz(s')) —wlz(s).

For off-policy TD(0), these placements of p are equivalent
in expectation although the method using the TD-error has
been reported to perform better in practice (Ghiassian et al.,
2018). In this section, we focus on the on-policy results.
Appendix F.1 includes off-policy results.

5.1.1. DATA EFFICIENCY

Figure 1 answers our first and third empirical questions, and
shows that PSEC lowers MSVE compared to batch TD(0),
and a variant of TD(0), LSTD(0). The gap between PSEC
and its TD counterpart increases dramatically with more
data; we discuss this observation in Section 5.1.2.

103 T — —
oo e,
1073

10-°

MSVE

107°

10712

10-15) PSEC-TD
PSEC-TD-Estimate

10° 10!
Number of Episodes (m)

(a) On-policy (PSEC-)TD(0)

—— TD(0)

103

102
10!

10°

MSVE

1071
1072

-3
10 —— LSTD —— PSEC-LSTD

100 10!
Number of Episodes (m)

(b) On-Policy (PSEC-)LSTD(0)

Figure 1. Deterministic Gridworld experiments. Both axes are log-
scaled. Errors are computed over 200 trials with 95% confidence
intervals. Asymmetric confidence intervals are due to log-scaling.
Figure 1(a) and Figure 1(b) compare the data efficiency of PSEC-
TD(0) and PSEC-LSTD(0) with their respective TD equivalents.
Lower MSVE is better.

Reducing Sampling Error in Batch Temporal Difference Learning

5.1.2. CONVERGENCE TO THE
PSEC-CERTAINTY-EQUIVALENCE

To address our second empirical question, we empirically
verify that both variants of batch linear PSEC, PSEC-TD and
PSEC-TD-Estimate, converge to the dynamic programming
computed PSEC-MDP-CEE value function (5) in Gridworld.
According to Theorem 3, batch linear PSEC-TD-Estimate
converges to the fixed-point (5) for all batch sizes.

—-— PSEC-TD-Estimate PSEC-TD

__5000

4000

MSVE (vs. PSEC-MDP-CEE
= N w
o o o
S S S
=) S =)

10° 101
Number of Episodes (m)

(a)

")
e o o o o
N W U o

©
=

Fraction of Unvisited (s,a,s

o
=)

100 10! 107
Number of Episodes (m)

(b)

Figure 2. Additional Gridworld experiments. Errors are computed
over 50 trials with 95% confidence intervals. Figure 2(a) shows
MSVE achieved by variants of linear batch PSEC-TD(0), PSEC-
TD and PSEC-TD-Estimate, with respect to the PSEC-MDP-CEE
(5). Figure 2(b) shows the fraction of unvisited (s, a, s") tuples.

We also empirically confirm that the other variant of PSEC,
PSEC-TD converges to the same fixed-point (5) when the
following condition holds true: only when all non-zero
probability actions for each state in the batch have been
sampled at least once. We note that when this condition
is false, PSEC-TD-Estimate treats the value of taking that

action as 0. For example, if a state, s, appears in the batch
and an action, a, that could take the agent to state s’ does
not appear in the batch, then PSEC-TD-Estimate treats the
new estimate R + yw? z(s’) as 0, which is also done by
the dynamic programming computation (5). We note that
PSEC-TD converges to the fixed-point (5) only when this
condition is true since the PSEC weight requires a fully
supported probability distribution when applied to the TD-
error estimate. From Figure 2(a) and Figure 2(b), we can
see that this condition holds at batch size of 10 episodes.
We also note that PSEC-TD(0) corrects policy sampling
error for each (s, a,s’) transition. Thus, when all such
transitions are visited, PSEC fully corrects for all policy
sampling error, which occurs at batch size of 10 episodes in
this deterministic gridworld.

5.2. Function Approximation Setting

In this set of experiments, we answer our first and fourth
empirical questions concerning function approximation in
PSEC. Our experiments focus on applying only the second
variant of PSEC, PSEC-TD, since we found that PSEC-TD-
Estimate diverges. The results shown below are for the
on-policy case. In addition to results of PSEC as a function
of data size, we conduct experiments on a fixed batch size
to better understand how components of the PSEC training
process impact performance. Finally, we give a practical
recommendation for use of batch PSEC-TD(0).

In these experiments, we have three function approximators:
one for the value function; one to estimate the behavior
policy; and the pre-learned behavior policy itself. When
any are referred to as “fixed", it means its architecture is
unchanged. Due to space constraints, we only show a subset
of results from CartPole and Inverted Pendulum; however, a
fuller set of experiments can be found in Appendix F.2 and
F.3. Note that in all PSEC training settings, PSEC performs
gradient steps using the full batch of data, uses a separate
batch of data as the validation data, and terminates training
according to early stopping. Statistical significance is de-
termined by Welch’s test (Welch, 1947) with a significance
level of 0.05. For hyperparameter details refer to Appendix
F.2 and F.3.

5.2.1. DATA EFFICIENCY

In CartPole, PSEC produced statistically significant im-
provement over TD in all batch sizes except 500. In In-
vertedPendulum, like in Gridworld, the improvement was
marginal for smaller batch sizes, but produced statistically
significant improvement with larger batch sizes. As data
gets larger, we observe that both methods perform similarly
for two reasons: 1) the PSEC weight approaches 1, which
effectively becomes TD(0) and 2) saturation in value func-
tion representation capacity, which we discuss in Section

Reducing Sampling Error in Batch Temporal Difference Learning

5.2.2. Note that while a thorough parameter sweep can
achieve better performance, it is computationally expensive.
The results shown here are with sweeps over only the value
function model class and PSEC learning rate.

—— PSEC-TD(0) —— TD(0)
102
w
>
wn
=
101! 102 10°
Number of Episodes (m)
(a) CartPole
—— PSEC-TD(0) — TD(0)
103
L
>
wn
=
102
101! 102 103

Number of Episodes (m)

(b) InvertedPendulum

Figure 3. Comparing data efficiency of PSEC and TD on different
batch sizes. Results for Figure 3(a) and Figure 3(b) are averaged
over 400 and 250 trials resp. with shaded region of 95% confi-
dence. Both axes are log-scaled. Lower MSVE is better.

5.2.2. ARCHITECTURE MODEL SELECTION

Figure 4(a) illustrates the impact of different value function
classes on the data efficiency of TD and PSEC, while hold-
ing the PSEC model and behavior policy architectures fixed,
on CartPole. We generally found that more expressive value
function representations resulted in better data efficiency
by both algorithms. We also found that the gap between
PSEC and TD increased as the VF representation became
more expressive. We hypothesize that even though PSEC
finds a more accurate fixed point than TD in the space of

200 EE TD(0)
BN PSEC-TD(0)

100 ‘
0

®)
S
S

MSVE

0-0 1-128 1-256 1-512
VE Model Architecture
(@)
100
=
=
)
= 50 I I I
0
0-0 1-16 2-16 3-16 TD(0)

PSEC Model Architecture
(b)

Figure 4. Figure 4(a) and Figure 4(b) compare data efficiency of
PSEC, with varying VF model architectures, and PSEC, with
varying model arch, respectively against TD on CartPole. Both
use a batch size of 10 episodes, and results shown are averaged
over 300 trials with error bars of 95% confidence. Darker shades
represent statistically significant results. The label on the x axis
shown is (# hidden layers - # neurons). Lower MSVE is better.

all value functions, the shown difference between the two
algorithms is dependent on the space of representable value
functions — a more representable function class can capture
the difference between the two algorithms better. The lighter
shades mean that any difference between PSEC and TD was
statistically insignificant.

Figure 4(b) compares the data efficiency of PSEC against
TD with varying PSEC neural network model architectures,
while the value function and behavior policy architectures
are fixed, on CartPole. In general, we found that more ex-
pressive network models produced better PSEC weights
since they were able to better capture the MLE of the policy
from the data. Unlike the NN PSEC policies, the linear func-
tion PSEC policy did not produce a statistically significant
improvement over TD.

5.2.3. SENSITIVITY STUDIES

Due to space limitations, we defer the empirical analysis of
other effects to Appendices F.2 and F.3. Figure 7 and Figure
12 indicate that a small learning rate for the PSEC model is
preferred. Figure 9 and 14 indicate that some overfitting by

Reducing Sampling Error in Batch Temporal Difference Learning

the PSEC model is tolerable, and perhaps, preferable, but
extreme overfitting can degrade performance.

Practical Recommendation Based on our experiments,
we recommend the following: 1) an expressive value func-
tion that can represent the more accurate fixed-point of
PSEC-TD, 2) a PSEC model class that can represent the
true behaviour policy but with awareness that extreme over-
fitting may hamper performance, and 3) a small learning
rate.

6. Related Work

In this section, we discuss the literature on importance sam-
pling with an estimated behavior policy and reducing sam-
pling error in reinforcement learning.

The approach in this work has been motivated by prior work
showing that importance sampling with an estimated behav-
ior policy can lower variance when estimating an expected
value in RL. Hanna et al. (2019) introduce a family of meth-
ods called regression importance sampling methods (RIS)
and show that they have lower variance than importance
sampling with the true behavior policy. Hanna & Stone
(2019) show that a similar technique led to more sample-
efficient policy gradient learning. These works are related to
work in the multi-armed bandit (Li et al., 2015; Narita et al.,
2018; Xie et al., 2018), causal inference (Hirano et al., 2003;
Rosenbaum, 1987), and Monte Carlo integration (Henmi
et al., 2007; Delyon & Portier, 2016) literature. In contrast,
our work focuses on value function learning, where the fo-
cus is on learning the expected return at every state visited
by the agent instead of across a set of actions (multi-armed
bandit) or for some start states that are a subset of all the
states the agent visits.

PSEC-TD(0) corrects policy sampling error through impor-
tance sampling with an estimated behavior policy. Other
works avoid policy sampling error entirely by computing
analytic expectations. Expected SARSA (van Seijen et al.,
2009), learns action-values by analytically computing the
expected return of the next state during bootstrapping as
opposed to using the value of the sampled next action. The
Tree-backup algorithm (Precup et al., 2000b) extends Ex-
pected SARSA to a multi-step algorithm. Q (o) (Asis et al.,
2017) unifies SARSA (Sutton, 1996; Rummery & Niran-
jan, 1994), Expected SARSA, and Tree-backups, to find a
balance between sampling and analytic expectation compu-
tation. Our work is distinct from these in that we focus on
learning state values which may be preferable for predic-
tion as well as a variety of actor-critic approaches (Konda
& Tsitsiklis, 2000; Mnih et al., 2016). To the best of our
knowledge, no other approach exists for correcting policy
sampling error when learning state values.

7. Summary and Discussion

In batch value function approximation, we observed that
TD(0) may converge to an inaccurate estimate of the value
function due to policy sampling error. We proposed batch
PSEC-TD(0) as a method to correct this error and showed
that it leads to a more data efficient estimator than batch
TD(0). In this paper, we theoretically analyzed PSEC-TD
and empirically evaluated it in the tabular and function ap-
proximation settings. Our empirical study validated that
PSEC converges to a more accurate fixed point than TD,
and studied how the numerous components in the PSEC
training setup impact its data efficiency with respect to TD.

Despite the data efficiency benefits that batch PSEC-TD(0)
introduced, there are limitations. First, it requires knowl-
edge of the evaluation policy, which on-policy TD(0) does
not. This comparative disadvantage is only for the on-policy
setting as both TD(0) and PSEC-TD(0) require knowledge
of the evaluation policy for the off-policy setting. Addition-
ally, PSEC-TD(0), in the off-policy case, has the advantage
of not requiring knowledge of the behavior policy 7. Sec-
ond, the policy estimation step required by PSEC-TD(0)
could potentially be computationally expensive. For in-
stance, requiring the computation and storage of O(|S||.A|)
parameters in the tabular setting.

There are several directions for future work. First, our work
focused on batch TD(0). We expect that a variant of PSEC
can improve value function learning with n-step TD and
TD(A). Second, with an improved value function learning
algorithm, it would be interesting to see if an agent can learn
better control policies. Third, it would be interesting to the-
oretically and empirically study PSEC when learning the
state-action values. Finally, automatically finding the opti-
mal training setting for PSEC in the function approximation
setting is another important direction for future work.

Acknowledgements

We thank Darshan Thaker, Elad Liebman, Reuth Mirsky,
Sanmit Narvekar, Scott Niekum, Sid Desai, Yunshu Du, and
the anonymous reviewers for reviewing our work and for
their helpful comments. This work has taken place in the
Learning Agents Research Group (LARG) at the Artificial
Intelligence Laboratory, The University of Texas at Austin.
LARG research is supported in part by grants from the
National Science Foundation (CPS-1739964, 11S-1724157,
NRI-1925082), the Office of Naval Research (NO0014-18-
2243), Future of Life Institute (RFP2-000), Army Research
Office (W911NF-19-2-0333), DARPA, Lockheed Martin,
General Motors, and Bosch. The views and conclusions
contained in this document are those of the authors alone.
Peter Stone serves as the Executive Director of Sony Al
America and receives financial compensation for this work.

Reducing Sampling Error in Batch Temporal Difference Learning

The terms of this arrangement have been reviewed and ap-
proved by the University of Texas at Austin in accordance
with its policy on objectivity in research.

References

Asis, K. D., Hernandez-Garcia, J. F., Holland, G. Z., and
Sutton, R. S. Multi-step reinforcement learning: A unify-
ing algorithm, 2017.

Baird, L. Residual algorithms: Reinforcement learning
with function approximation. In Proceedings of the 12th
International Conference on Machine Learning (ICML).
1995.

Bellman, R. E. Dynamic Programming. Dover Publications,
Inc., USA, 2003. ISBN 0486428095.

Bertsekas, D. P. Dynamic Programming: Deterministic and
Stochastic Models. Prentice-Hall, Inc., USA, 1987. ISBN
0132215810.

Bradtke, S. and Barto, A. Linear least-squares algorithms
for temporal difference learning. Machine Learning, 22:
33-57, 03 1996. doi: 10.1007/BF00114723.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
ArXiv, abs/1606.01540, 2016.

Delyon, B. and Portier, F. Integral approximation by kernel
smoothing. Bernoulli, 22(4):217772208, Nov 2016. ISSN

1350-7265. doi: 10.3150/15-bej725. URL http://dx.

doi.org/10.3150/15-BEJ725.

Gerschgorin, S. Uber die abgrenzung der eigenwerte einer
matrix. Izvestija Akademii Nauk SSSR, Serija Matematika,
7(3):749-754, 1931.

Ghiassian, S., Patterson, A., White, M., Sutton, R. S., and
White, A. Online off-policy prediction, 2018.

Glorot, X. and Bengio, Y. Understanding the diffi-
culty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M. (eds.), Proceed-
ings of the Thirteenth International Conference on Ar-
tificial Intelligence and Statistics, volume 9 of Pro-
ceedings of Machine Learning Research, pp. 249—
256, Chia Laguna Resort, Sardinia, Italy, 13—15 May

2010. PMLR. URL http://proceedings.mlr.

press/v9/glorotl0a.html.

Gu, S., Holly, E., Lillicrap, T. P., and Levine, S. Deep
reinforcement learning for robotic manipulation. CoRR,
abs/1610.00633, 2016. URL http://arxiv.org/
abs/1610.00633.

Hanna, J. and Stone, P. Reducing sampling error in the
monte carlo policy gradient estimator. In Proceedings of
the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), May 2019.

Hanna, J., Niekum, S., and Stone, P. Importance sampling
policy evaluation with an estimated behavior policy. In
Proceedings of the 36th International Conference on Ma-
chine Learning (ICML), June 2019.

Henmi, M., Yoshida, R., and Eguchi, S. Im-
portance sampling via the estimated sam-
pler. Biometrika, 94(4):985-991, 2007. URL

https://EconPapers.repec.org/RePEc:
oup:biomet:v:94:y:2007:1:4:p:985-991.

Hirano, K., Imbens, G. W., and Ridder, G. Ef-
ficient estimation of average treatment effects us-
ing the estimated propensity score. Econometrica,
71(4):1161-1189, 2003. doi: 10.1111/1468-0262.
00442. URL https://onlinelibrary.wiley.
com/doi/abs/10.1111/1468-0262.00442.

Kemeny, J. G., Snell, J. L., et al. Finite markov chains,
volume 356. van Nostrand Princeton, NJ, 1960.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. International Conference on Learning Rep-
resentations, 12 2014.

Kober, J., Bagnell, J., and Peters, J. Reinforcement learn-
ing in robotics: A survey. The International Journal
of Robotics Research, 32:1238-1274, 09 2013. doi:
10.1177/0278364913495721.

Konda, V. R. and Tsitsiklis, J. N. Actor-critic al-
gorithms. In Solla, S. A., Leen, T. K., and
Miiller, K. (eds.), Advances in Neural Information
Processing Systems 12, pp. 1008-1014. MIT Press,
2000. URL http://papers.nips.cc/paper/
1786-actor-critic-algorithms.pdf.

Li, L., Munos, R., and Szepesvéri, C. Toward minimax
off-policy value estimation. In AISTATS, 2015.

Mahmood, A. R., Yu, H., White, M., and Sutton, R. S.
Emphatic temporal-difference learning. arXiv preprint
arXiv:1507.01569, 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In

International conference on machine learning, pp. 1928—
1937, 2016.

Narita, Y., Yasui, S., and Yata, K. Efficient coun-
terfactual learning from bandit feedback. CoRR,
abs/1809.03084, 2018. URL http://arxiv.org/
abs/1809.03084.

http://dx.doi.org/10.3150/15-BEJ725
http://dx.doi.org/10.3150/15-BEJ725
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1610.00633
http://arxiv.org/abs/1610.00633
https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:4:p:985-991
https://EconPapers.repec.org/RePEc:oup:biomet:v:94:y:2007:i:4:p:985-991
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00442
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00442
http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
http://arxiv.org/abs/1809.03084
http://arxiv.org/abs/1809.03084

Reducing Sampling Error in Batch Temporal Difference Learning

Pan, Y., White, A. M., and White, M. Acceler-
ated gradient temporal difference learning. CoRR,
abs/1611.09328, 2016. URL http://arxiv.org/
abs/1611.09328.

Precup, D., Sutton, R. S., and Singh, S. Eligibility traces for
off-policy policy evaluation. In Proceedings of the 17th
International Conference on Machine Learning (ICML),
pp. 759-766, 2000a.

Precup, D., Sutton, R. S., and Singh, S. P. Eligibility traces
for off-policy policy evaluation. In International Confer-
ence on Machine Learning (ICML), 2000b.

Puterman, M. L. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons,
2014.

Puterman, M. L. and Shin, M. C. Modified policy itera-
tion algorithms for discounted markov decision problems.
Management Science, 24(11):1127-1137, 1978. ISSN
00251909, 15265501. URL http://www.jstor.
org/stable/2630487.

Rosenbaum, P. R. Model-based direct adjustment. Journal
of the American Statistical Association, 82(398):387-394,
1987. ISSN 01621459. URL http://www. jstor.
org/stable/2289440.

Rummery, G. A. and Niranjan, M. On-line g-learning using
connectionist systems. Technical report, 1994.

Sallab, A. E., Abdou, M., Perot, E., and Yogamani, S. Deep
reinforcement learning framework for autonomous driv-
ing. Electronic Imaging, 2017(19):70-76, 2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017. URL http://arxiv.
org/abs/1707.06347.

Sutton, R. S. Learning to predict by the methods of temporal
differences. Machine learning, 3(1):9-44, 1988.

Sutton, R. S. Generalization in reinforcement learning: Suc-
cessful examples using sparse coarse coding. In Touret-
zky, D. S., Mozer, M. C., and Hasselmo, M. E. (eds.),
Advances in Neural Information Processing Systems 8,
pp. 1038—-1044. MIT Press, 1996.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book—-2nd.html.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Sil-
ver, D., Szepesviri, C., and Wiewiora, E. Fast gradient-
descent methods for temporal-difference learning with

linear function approximation. In Proceedings of the 26th
Annual International Conference on Machine Learning,
pp- 993-1000, 2009.

Thomas, P. S. A notation for markov decision processes.
CoRR, abs/1512.09075, 2015. URL http://arxiv.
org/abs/1512.09075.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,

pp. 5026-5033, 2012.

van Seijen, H., van Hasselt, H., Whiteson, S., and Wiering,
M. A theoretical and empirical analysis of expected
sarsa. In 2009 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, pp. 177-184,
March 2009. doi: 10.1109/ADPRL.2009.4927542.

Welch, B. L. The Generalization Of Student’s Problem
When Several Different Population Variances Are In-
volved. Biometrika, 34(1-2):28-35, 01 1947. ISSN 0006-
3444, doi: 10.1093/biomet/34.1-2.28. URL https:
//doi.org/10.1093/biomet/34.1-2.28.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach.
Learn., 8(374):2297256, May 1992. ISSN 0885-6125.
doi: 10.1007/BF00992696. URL https://doi.org/
10.1007/BF00992696.

Xie, Y., Liu, B., Liu, Q., Wang, Z., Zhou, Y., and Peng, J.
Off-policy evaluation and learning from logged bandit
feedback: Error reduction via surrogate policy. CoRR,
abs/1808.00232, 2018. URL http://arxiv.org/
abs/1808.00232.

http://arxiv.org/abs/1611.09328
http://arxiv.org/abs/1611.09328
http://www.jstor.org/stable/2630487
http://www.jstor.org/stable/2630487
http://www.jstor.org/stable/2289440
http://www.jstor.org/stable/2289440
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
http://arxiv.org/abs/1512.09075
http://arxiv.org/abs/1512.09075
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://arxiv.org/abs/1808.00232
http://arxiv.org/abs/1808.00232

