Regularized Optimal Transport is Ground Cost Adversarial

A. Proofs
A.1. Proof for Proposition 1

Proof. Let 7, be a minimizer of (3). Then using the op-
timality condition for sup,cc(y2) [ cdr — F*(c), any ¢
such that m, € OF*(c) is a best response to m,. But
by Fenchel-Young inequality, such c are exactly those in
OF(my) = {VF(m,)}. Since VF(m,) is the unique best
response to m,, it is necessarily optimal in (4). Conversely,
if there is a unique maximizer c,, then as a result of the
above, ¢, = VF(m,) for some minimizer m, of the primal.
Then VF*(c,) is optimal in the primal. O

A.2. Proof for Remark 2
Proof. As in the proof of Theorem 1:

inf F(r)= inf —(—F)"(n)

weIl(p,v) weIl(p,v)
= inf — sup /cd7r —(=F)*(¢)
m€ll(p,v)  cec(x2)
= inf inf —cdr 4+ (=F)*(c)

mell(p,v) ceC(X?2)
= inf inf /cd7r+ (=F)*(—c¢)
mell(p,v) ceC(X2)

= ot Teluv v) + (=F)"(=c).

A.3. Proof for Proposition 2

Proof. As in the proof of Theorem 1, we use Sion’s mini-

max theorem to get
— Co;
(c,m) —¢ E R} ( i )

(¢, —EZR (C”_ECO”)
ij

Since the optimization in ¢ € R,*" is separable, we only
need to consider this optimization coordinate by coordinate,
i.e. we only need to compute Sup., cp, i;jCij — I3 (cij)

forall i, j € [n], where f}(ci;) = eRj; (m)

g

sup min
ceRL*"™ well(p,v)

= min sup
well(p,v) ceRP*™

Fix m € II(p,v) and i,j € [n], and define g;; : R >
Cij = T;;Ci5 — fJ(CU)
Suppose that z;; = f];(mi;) > 0. Then

fij(miz) = fz] (mij) = 9ij(zi5) = sup gij(cij),

c;j€R
and since Zij > O, SupcijERJr gij(cij) = fij(ﬂ'ij)~ This

means that éij‘(ﬂ'ij) = R;;(mi;).

Suppose now that z;; = f/.(7;;) < 0. This means that

J

sup  gi;(cij) < sup gij(cij)-
ci; ER ci; €ER
Since g;; is concave, this shows that sup,, ¢, 9ij(cij) =
. 35 —Co4j
gij(O) = - ;}(0), l.e. Rij(ﬂij) = 50 Jﬂ'ij —
" (5
Since R;; is convex, R

R;‘J' Furthermore, the optlmahty condition in the convex
conjugate problem gives, for any a € R:

is increasing with pseudo-inverse

R;‘j(a) =qa X R;jl(a) — R0 Rfj/(a).

. . . —CQ; 4 .
So if R;; is of class cl, taking o = %, as x increases

to R;‘j/ (fco—])

€

Rij(z )HRZJOR*/(—%) ZﬁijOR‘*'/(—%)a

meaning that ﬁij is of class C'*. O

A.4. Proof for Example 3

Proof. We denote by sgn(z) the set {+1}if 2 > 0, {1}
ifx < 0and [—1,1] if z = 0. We apply Corollary 1 with
R : R"™ — R defined as R(7) = 7||7r||w p» for which
we need to compute its convex conjugate

R*(c)= sup (m,c f];Zw”|7rlj|
ij

ﬂ-e]Ran
Subdifferentiating with respect to 7;;:
Ci.; € EW 9 ‘ﬂ-,,|p
-1
= wi; sgn(mi;)|mi; |’

This implies that sgn(;;) = sgn(c;;), so:

ci; |97"
Trij = sgn(cij) z_j‘
ij
Finally,
g—1 q
Cij 1 Cij
R*(c) = c;isgn(c 4 — Zwy |2
() %:z]g(zj) Wij p (] Wij
o> el
=- g
95 Wi
= Zllelgar,
O
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A.5. Proof for Example 6

Proof. Since w € I(p,v), 3, m;j = 1 so we can drop

it for now and only consider the term R(w) = _—||=||{
which is separable in the coordinates of 7:
= flmy)
ij
where we have defined the convex function
1 .
fla) = {q_lxq e
400 otherwise.
‘We compute its convex conjugate:
ROR
=supq zy — x
Y ng Y q— 1
P
_ (%) ify <0
400  ify>0
where p = qzl < 01is such that 1/p 4+ 1/¢ = 1. Then
R*(c) = +o0 if ¢ has a positive entry, and over R™*":

-Tre) -3 ()
=;<‘“;ﬂ‘>
=(-p)"Y (_;j)p.

ij

Adding the term 1=
lary 1, we find that Tsallis regularized OT is equal to:

sup Z(p,v)—eR" (C_CO>+ c

ccRnXxn 1> 1-— q
-p
= sup Ze(u,v) - [ }
ceR™X™ Z Coi; — Cij
c<co
n g
I—q
-p
ceR™X™ ¢ Z CO'L] Cij
c<cgp
n g
l—q
a 1 -
= sup Fe(p,v) —eTi(—p)”"
ceR™ X" Cop—C —p
c<cgp
g
1—q

A.6. Proof for Subsection 7.2

Entropic OT In the case of entropic OT,

F(m) = (mw,co) + 527%- [logm;; — 1],

ij
COZ_])

—5Zexp(

VF*(c) = {exp (CJ_ECOJ)]]

Then the system of equations (13) (14) is:

. d)*i + Q/J*J - cOij
Vi, py = Ej:eXp ( . )
= exp(@,,/c) [K exp(¥, /e));
: G +%s; — Coyj
vy, Vj:ZGXP( 5] J)
= exp('(/J*j /5) [KT eXp(d)*/E)}j
where K = exp(—cg/e) € R™*™ and exp is taken elemen-

twise. Then solving alternatively for ¢ and 1) is exactly
Sinkhorn algorithm.

SO

and

Quadratic OT In the case of quadratic OT, using the no-
tations and results from example 8:

F(m) = (m, co) + epa(mmij),

and ) )
F*(C) = 2—6 Z |:(C7‘7 — COij)+:| .

ij
Then: 1
VF*(c) = B (c—co), -

The system of equations (13) (14) is:

Vi, ep = (cbﬂ- ty - COij)+

J

Vioevy =3 (fu ., —eoi) |

which is what (Blondel et al., 2018) solve in their appendix
B.



