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Abstract

Humans have the ability to robustly recognize ob-
jects with various factors of variations such as
nonrigid transformations, background noises, and
changes in lighting conditions. However, train-
ing deep learning models generally require huge
amount of data instances under diverse variations,
to ensure its robustness. To alleviate the need of
collecting large amount of data and better learn
to generalize with scarce data instances, we pro-
pose a novel meta-learning method which learns
to transfer factors of variations from one class to
another, such that it can improve the classification
performance on unseen examples. Transferred
variations generate virtual samples that augment
the feature space of the target class during training,
simulating upcoming query samples with similar
variations. By sharing the factors of variations
across different classes, the model becomes more
robust to variations in the unseen examples and
tasks using small number of examples per class.
We validate our model on multiple benchmark
datasets for few-shot classification and face recog-
nition, on which our model significantly improves
the performance of the base model, outperforming
relevant baselines.

1. Introduction

Humans can robustly recognize and understand a concept
under various circumstances. For instance, we can learn a
new visual concept only by observing a few images. Hu-
mans can also accurately recognize the same concept with
large variations in shapes, lighting conditions, or with back-
ground changes. On the contrary, current deep learning
frameworks generally require huge amount of data under
diverse variations to robustly learn and recognize new con-
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cepts. However, collecting a complete dataset with all pos-
sible variations described for each instance is not feasible
for real-world problems. This is particularly the case when
dealing with large number of classes. In real-world settings,
it is more common to collect an imbalanced dataset with
a large discrepancy in the number of examples, or the cov-
erage of the observable variations for each class. A deep
neural network trained on such a dataset may not generalize
well to unseen variations at test time.

A popular solution to this problem is perturbing existing
samples during training, such that the perturbed examples
could account for unseen variations. It is well known that
conventional data augmentation methods such as random
cropping, flipping, and color jittering of images are helpful
for almost all computer vision applications. However, less
studies have focused on applying semantic perturbations to
training samples to simulate unseen variations in test data,
particularly variations which cannot be described by conven-
tional data augmentation and pre-defined transformations.

Some existing works (Goodfellow et al., 2014; Zhu et al.,
2017; Karras et al., 2019) have addressed this problem by
training generative models on a dataset with pre-defined
modes of variations. Such methods generate images of a
class with predefined variations. While this approach could
generate realistic and diverse samples, there are still limi-
tations. First, training such models requires an additional
dataset with annotations for the required pre-defined varia-
tions. Since obtaining human annotations on the variations
is costly, we can only obtain pre-defined types of variations,
which may not cover all possible variations of a single class.
Moreover, the images generated by the model do not guar-
antee improvements of the test accuracy, since it is trained
separately from the classification model.

However, such a way of generating data with annotation
to facilitate learning differs from the way of which hu-
mans learn. In fact, we presume that humans have a meta-
knowledge that can transfer variations from one visual class
to another, thus can imagine an unseen variation of a class.
For example, even when we see an animal that we have
never seen before, we can imagine how it will look with
different poses in different surroundings. This is presum-
ably due to the fact that there are certain types of variations
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that can be shared and transferred across different visual
concept classes. However, a variation could not always be
transferable from one class to another; for example, a mode
that describes a bird flying will not transfer to a dog.

Motivated by this intuition, we propose a novel augmenta-
tion method which transfers observed variations from one
class to another class, such that it could generate virtual sam-
ples for the target class to augment its feature space (Fig. 1).
The proposed method alleviates the need of collecting huge
datasets with an exhaustive set of possible variations. How-
ever, identifying meaningful directions of variations that can
actually yield improvements on the test examples is a diffi-
cult problem, since the variations are different for each class
and may not be compatible across classes. To resolve this
issue, we propose a meta-learning framework that learns to
transfer the variance of one class to another. It learns how
and what should be transferred from the observed variations
of a source class to the target class. Consequently, new
samples are generated that simulate the upcoming queries of
novel samples. The model learned with the generated sam-
ples improves the accuracy on test samples with variations
unseen from original training data. We additionally perform
a simple manifold regularization to facilitate knowledge
transfer of dominant variations that can be easily shared
across different categories. The key assumption in the suc-
cess of this model is that, although observed variations for
a class might be limited to fully represent the class, there
could be numerous other classes that can account for its
unseen variations, to help represent its distribution.

Our method differs from existing augmentation methods in
that it learns both class representation and the meta-learner
to transfer the variations simultaneously, such that it im-
proves the test accuracy. Also, we transfer the information
from the observed sample variance without attribute annota-
tions through the learned parameters to select the meaning-
ful variations. To confirm our assumption, we first perform
a proof-of-concept experiment, and further validate the pro-
posed method on multiple benchmark datasets for few-shot
classification. The results show that our Meta Variance
Transfer (MVT) significantly improves the performance of
the base model.

Our contributions can be summarized as follows:

e We propose a novel meta-learning framework that
transfers the observed variance of one class to another
class such that it simulates upcoming queries and im-
proves the test accuracy.

e We introduce an additional meta-learner that learns
meaningful variance from one class to transfer it to an-
other class without additional annotation. Accordingly,
the feature space is augmented to better represent the
data distribution.

Meta-Learning
with Feature
Augmentation

O Observed
@ Mean feature

@ Transferred

Class Il

Figure 1. The key idea of the proposed Meta Variance Transfer.
The observed variations are transferred from one class to other
classes in the feature space. The feature space of each class is
enclosed within a solid line circle. An imbalance in the dataset can
be seen, as each class contains different variations. Class I, II, and
III are mainly composed of features of exclusive variations in pose,
expression, and illumination, respectively. The proposed method
conceptually transfers the pose variance information from Class
I to class II. Class II transfers expression variance information to
Class III. In retrospect, each class generates the received variance-
based feature around the mean feature value of the class itself.

e We additionally perform a simple manifold regulariza-
tion to facilitate transferring dominant directions of
variations through a linear auto-encoder with learnable
parameters.

e We perform a proof of concept on a simplified problem
on face recognition and validate the method on multi-
ple benchmark datasets for few-shot classification that
shows our model significantly improves the baseline
performance.

2. Related work

Meta learning methods. The two most popular ap-
proaches for few-shot meta-learning are: metric-based and
initialization-based methods. Metric-based meta learning
methods (Koch, 2015; Vinyals et al., 2016; Snell et al., 2017;
Oreshkin et al., 2018; Mishra et al., 2017) address the few-
shot classification problem by learning a shared metric space.
On the learned metric space, distance or similarity is used
to determine the class label. Matching networks (Vinyals
et al., 2016) employed cosine similarity to measure the sim-
ilarity between the support and the query examples, while
Prototypical networks (Snell et al., 2017) used Euclidean
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distance. The other popular approach is based on the model
initialization for fast adaptation. The methods (Finn et al.,
2017; 2018; Li et al., 2017; Lee & Choi, 2018; Zintgraf
et al., 2019) in this approach try to put a model in a proper
initial point so that the model can rapidly adapt to new tasks
with a few gradient descent updates. There are also sev-
eral methods (Ravi & Larochelle, 2016; Munkhdalai & Yu,
2017) that learn an optimizer. Those replace the stochastic
gradient decent optimizer or weight-update mechanism. In
this paper, we adopt the metric learning approach (Vinyals
et al., 2016) with a modification for our experiments.

Generative adversarial network. Generative adversarial
networks (GANs) (Goodfellow et al., 2014) are generative
models that are trained to generate realistic samples from
a given dataset, via a minimax game between a generator
and a discriminator. It is also relevant to our work since
samples generated by GANSs can be also used for data aug-
mentation. There has been dramatic advance of GANs in
image generation (Radford et al., 2015; Karras et al., 2017;
2019) which led to their successful application to various
real-world problems (Zhu et al., 2017; Ledig et al., 2017;
Pascual et al., 2017; Luc et al., 2016).

Some recent works (Zhang et al., 2018; Gao et al., 2018;
Shmelkov et al., 2018; Shrivastava et al., 2017; Antoniou
et al., 2017) have further investigated ways to use generated
images from GANs to improve on the image classification
performance of a target model. Especially, DAGAN (An-
toniou et al., 2017) augments a classifier with fake images
generated from a separately-trained generative adversar-
ial network. The DAGAN performs transfer from seen
classes to unseen classes, while our method performs trans-
fer between unseen classes. In the generative model-based
methods, sample generation and learning of the classifier
is decoupled. On the other hand, ours is meta-learned to
explicitly lower the classification loss on unseen classes.

Hallucination-based methods. The most relevant ap-
proach to the proposed method is the hallucination-based
methods (Miller et al., 2000; Hariharan & Girshick, 2017;
Wang et al., 2018; Schwartz et al., 2018; Chen et al.,
2019c;b; Tsutsui et al., 2019). Early work by (Miller et al.,
2000) used a density over transforms as a prior knowledge
for the general deformations of different classes. Beyond
the character recognition, (Hariharan & Girshick, 2017) pro-
posed a method for generic categories to transfer modes of
variation from base classes to novel ones. (Dixit et al., 2017)
leveraged an additional dataset of images with hand-labeled
attributes. However, those works require heuristic steps or
human-labeled annotations. (Wang et al., 2018) proposed
an end-to-end method in a meta-learning framework. A
meta-learner takes both a random noise and an instance as
input and then learns to generate new images.

There are several works (Chen et al., 2019¢;b; Tsutsui et al.,

2019) that learn to deform images by fusing two real images.
(Chen et al., 2019c¢;b) deforms two real images to augment
a support set. They additionally use samples from base
classes during test phase. (Tsutsui et al., 2019) uses pre-
trained image generator to generate slightly different images
from the original image and fuse them for augmentation.
In contrast, our method transfers variations in the feature
domain.

Similarly to ours, there are some methods (Schwartz et al.,
2018; Gao et al., 2018) that directly synthesizing new in-
stances in the feature domain. (Schwartz et al., 2018) trains
an encoder that learns transferable intra-class deformations
between pairs of the same base class and synthesizes novel
samples by applying the deformations to the samples of
novel class during test phase. This method requires defor-
mation for training samples from the classes seen during
training and the generator is trained explicitly by the re-
construction loss. (Gao et al., 2018) trains an adversarial
augmentation network that transfers the covariance of base
class that is similar to the novel class. Ours differs from
those in that we do not refer the information in base classes
during test phase. Recently (Lee et al., 2020) proposed a
meta-learning method that perturbs a sample to simulate the
query data by adding noises to activations. The perturbation
depends on the data itself, while the proposed method refers
the actual observed variations of other classes.

3. Method

In this section, we first define the problem setting and the
notations used throughout the paper. Then, we describe the
proposed meta variance transfer method and its procedures
in detail.

3.1. Few-shot learning problem

Here we define our few-shot learning problem setting for
meta-learning to augment from the observed data. The
goal of meta-learning is to learn a model that generalizes
well over a task distribution p(7"), such that it can obtain a
good performance on an unseen task from the same distri-
bution. To this end, we train the model over larger number
of episodes, where the model trains on the task 7, ~ p(T)
at each episode 7. For few-shot classification, each episode
is a w-way k-shot classification task, where the model re-
quires to classify the given sample into one of the w classes
with only k training instances per class. The detailed prob-
lem setting and the notations are as follows. For w-way
k-shot learning, we have a training dataset D = {(x;, y;)},
where z; is the data instance and y; is its corresponding
label. Given the dataset, we first randomly select w classes
and map them to one of the w labels | € {1,2,...,w} for
w-way classification. Then, we sample k support and m
query samples from each class. The training set for each
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Figure 2. The overall framework of our Meta Variance Transfer from a source category (s) to a target category (t). This framework
includes Manifold Regularization, Transfer Variance Estimation, Transfer Sampling, and Augmentation for the basic w-way / k-shot
learning problem. 3* denotes the transferred variance from the source s to the target £.

episode T consists of the support set S = {S;}}” |, where
Sy = {(z4,1)}¥_, and the query set Q = {Q;}"“,, where
Qi = {(x;,1)}™,. The goal of few shot learning here is to
learn from the support set S to correctly classify the queries
@ to one of the classes in the support set. What makes the
problem difficult is that the number of support samples is
small. Thus, those samples in each class usually contain a
limited set of variations for the given class, which makes
it hard to learn the model that could generalize well to the
queries with unseen variations. In the following subsections,
we describe a method which alleviates this problem by trans-
ferring the variations observed in each class across classes
to account for missing variations for each class.

3.2. Learning to augment from the others

The key idea of our method is that the observed varia-
tions of real data (e.g. geometric deformation, background
changes, simple noise) could hint on unseen variations in
other classes. Based on this idea, we introduce a meta
learner that learns how and what to transfer the modes of
variations between classes to improve the test accuracy,
while simultaneously learning the representation space.

We consider the variations in the latent feature space which
captures semantic information about the given sample. For-
mally, we denote the semantic variations v} = el — u(el) as
the displacement between an i-th embedding vector el and
the mean vector 4! of class [ in the feature space. Then the
proposed model learns to transfer the variance in the feature
space by selecting the variations that could be helpful in
simulating the unseen test examples for the target class. The
overall loss function consists of two terms:

£9,¢,5 = Eclass + )\‘Cmcmifoldz (1

where 0, ¢, and ¢ represent the parameters for represen-

tation learning, variance transfer, and regularization (sec.
3.4), respectively. Each term and specific procedures are
explained in the following subsections.

3.3. Meta Variance Transfer

The overall procedures of our MVT are as follows. Given
the data in each episode 7, we first compute the embedding
vector e = fp(x), where fy(-) is a backbone network with
the parameter 6, then compute the sample mean and covari-
ances of the embedding vectors for each class. Then, we
randomly sample a source and target class pair and feed
the meta-learner g4(-) the concatenated sample statistics of
the source class (u°, ¥*) and the target class (uf, $). The
learner then learns from the statistics to output the trans-
ferred variation Xt = g, (cat[p®, X%, ut, X'*]) for the target
class. We sample from a Gaussian distribution with the
target mean and transferred variation N (u:¢, 33t) to augment
the virtual support embedding vectors et to the real support
embedding vector set. Finally, we build a classifier A(-)
using both real and virtual support vectors through any ex-
isting methods such as MatchingNet (Vinyals et al., 2016)
and compute the cross entropy (C'E) classification loss by

ZCE x),8:0,6,8),y). (2

For sampling, we use reparameterization trick to compute
the gradients by following (Kingma & Welling, 2013). Al-
though our variance transfer can be applied to any layer
with a vector representation, as it is depicted in Figure 2,
we transfer the embedding features before the final layer for
our experiments unless otherwise noted. This is because
while MVT aims to transfer semantic variations in the fea-
ture domains, the goal of final layer is to aggregate all the
observed support samples to a point for each class such that
the final feature eliminates the observed variations. For ex-

class
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ample, reconstructing the original image from the final layer
for face recognition would only yield frontal faces. On the
other hand, features below the final layer capture sufficient
amount of semantic variations for the variance transfer to
be meaningful. We perform variance transfer not only at
the meta-training but also at meta-test time, to augment the
data for unseen classes. Further details of the method are
described in section 3.5.

3.4. Manifold regularization

The second term, L,,qnifo1q Tegularizes the manifold of the
features and the mode of variations. Without any regular-
ization, the variations can be scattered arbitrarily on the
feature space, which may make it difficult to learn and trans-
fer the meaningful variations to the other classes. To better
facilitate the variation transfer, we regularize and learn the
directions of variation to be transferred. We simply learn a
linear auto-encoder with the parameter § by minimizing the
following reconstruction loss:

Emamﬁfold = Z |Ui - {)L‘ = Z |rUf - W6TW6U71 , 3
S S

where v = el — i(e!) represents the feature displacement.
W is a matrix form of the FC layer having the parameter 9.
Note that we omit the summation along feature dimension
for simplicity. Instead of v, we then transfer the projected
variation v = W(;T Wsv. This projection will suppress the
variations that are difficult to be shared or less meaningful
for the target class. Then, we replace ¥(v) with 3(9) to
compute g in section 3.3. The overall framework of our
MVT is depicted in detail in Figure 2.

3.5. Implementation details

Here we describe the implementation details of our method.
As for the meta-learner ¢ which performs the variance trans-
fer, we use an MLP with leakyReLU activation functions.
Specifically, ¢ contains the parameter for the FC layer with
the number of channels less than those of the feature vector,
leakyReLLU with the slope of 0.01, and another FC layer
with the same number of channels with those of the original
feature. For the sample covariance matrix, we assume a
diagonal matrix to reduce the model complexity and sim-
ply compute the variance of each feature, from which the
dimension for variance is reduced to the number of embed-
ding feature dimension. Even though it may seem like a
strong assumption, transferred variance can still properly
represent semantic variations by combining different fea-
ture variances. We block the back-propagation through the
g4 to the embedding feature such that the transfer module
can focus on learning to transfer given observed embedding
features. In the PyTorch implementation, we detach the
embedding features before feeding them to g.

Algorithm 1 Meta Variance Transfer

Input: Training set D = {(z;,v:)}
for each episode 7 do
Random sample S = {S;}}*; and Q = {Q;}}*,
Compute embedding features e! for every sample i
Compute zi! and the feature displacement v} = el — 1!
Compute the manifold loss
Lunanifold = s [0} = 0} = Yo [vf — Wi Wi
Compute X! (1)
for s = 1towdo
Sample target class t # s randomly
Compute 53 = g, ([, £°(;), !, £ (7))
Sample z transferred samples et from N (ut, it)
Augment et to the embedding feature set of S;
Compute the final feature vectors f* and f¢
end for
Compute the classification loss L.;qss in Eq. 5
Optimile £9,q5,6 = Eclass + )\Emanifold
end for

Our method is applicable to different types of classifiers
h. In our experiments, we use a simpler version of Match-
ingNet (Vinyals et al., 2016) such that we compute the
softmax over the Euclidean distance between the query and
each support samples. Specifically, we first compute the
average Euclidean distance d between a query ¢ and the
augmented support set for every classes. Then we compute
the softmax over the negative of the distances to compute
the cross entropy loss:

k

() = g (@

~ £ill) +Z||f - £},

“4)

exp(—dy(q))
class Z CE Zl emp ( )) )7 (5)

where y in d,, represents the target label for the query and 2
is the number of augmented samples. Here we denote the
final representations of the original and augmented samples
by f' and f!, respectively. For the hyper-parameter \ in
equation 1, we used 0.1 throughout the experiments. We
found that our method is robust to changes in the A value,
if its scale is within certain ranges (from 0.01 to 1). The
detailed procedures are summarized in Algorithm 1.

4. Experiments

Datasets. We extensively validate our method on diverse
few-shot classification datasets. For fine-grained few-shot
classification, we use CUB dataset (Wah et al., 2011) and
face recognition datasets: VGGface2 (Cao et al., 2018) and
CASIA-webface (Yi et al., 2014) datasets. We also use
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Figure 3. t-SNE visualization of the features trained with the pro-
posed MVT of 2 subjects from the Multi-PIE dataset. Note that
a few samples among the augmented samples well simulate the
upcoming query samples.

minilmageNet dataset (Deng et al., 2009; Vinyals et al.,
2016; Ravi & Larochelle, 2016) which is widely used as a
few-shot meta-learning benchmark.

The CUB dataset consists of 200 bird classes with 11,788
images. Following (Chen et al., 2019a), we use 100, 50, and
50 classes for base, validation, and novel classes, respec-
tively. The VGGface?2 dataset originally contains around 3.3
million images of 9,131 subjects and the CASIA-webface
dataset consists of 494,414 images with 10,575 subjects.
We randomly select 300 subjects for each dataset and split
them to 200, 50, and 50 subjects for seen, validation, and
unseen datasets, respectively. For CASIA-webface we only
sampled subjects with more than 50 images because the
dataset contains subjects with less than 15 images. We call
those two datasets as mini-VGG and mini-CASIA datasets.
Finally, the minilmageNet contains 100 classes with 600
images for each class. For a fair comparison, we use the
same split of (Ravi & Larochelle, 2016).

Training and evaluation protocols. To train our model, we
follow the settings of (Chen et al., 2019a). We use 84 x84
images for the Conv4 network, and 224 x224 images for
ResNet-based networks, as done in many previous works.
Moreover, similarly to existing works, we apply simple data
augmentations such as random crop and flip. We train the
model by using the Adam optimizer (Kingma & Ba, 2014)
for about 110k iterations with the initial learning rate of
0.001, and decay it by 0.1 at 70k and 90k iterations. We set
the number of queries during both meta-training and meta-
testing as 15 following the convention, and report 5-way
results unless otherwise mentioned. We select the model that
obtains the best accuracy on the validation dataset during
meta-training and use it for the meta-test. We evaluate the
model for 600 test episodes and report the mean accuracy
as well as the 95% confidence intervals. We used a single
NVIDIA P40 GPU for training the model. For the Conv4
network, we mainly use the Conv4 with an additional FC
layer (Conv4,.) to aggregate the variations as we mentioned
in section 3.3 and report the results of the original Conv4
as well. Right before the FC layer, we reduce the spatial

Figure 4. Decoded images of the original support features (Top)
and those of the transferred and augmented features (Bottom).

dimension of the feature map with a 3 x3 pooling with the
stride of 2. We set the number of augmented samples z to
the same number of real support samples k.

4.1. Proof of concept

We first perform a proof-of-concept experiment to provide
evidence for the validity of the proposed meta-learning
framework for variance transfer. To this end, we constructed
a synthetic dataset to clearly evaluate whether the proposed
method works in the way we intend to. At each episode,
we explicitly sample half of the classes with limited num-
ber of predefined types of variations, while we sample the
other classes randomly from the whole data distribution.
By this experiment, we can evaluate whether the variations
in the classes sampled in half are indeed transferred to the
classes with limited variations. For this proof-of-concept
experiments, we adopt the multi-PIE face dataset (Gross
et al., 2010), which contains images of subjects with 15
different viewpoints and 19 illumination conditions, with
diverse facial expressions (e.g. smiling). We preprocess the
dataset by cropping out only the face regions using a face
detector (Zhang et al., 2016). We sample the half of k-way
classes from the frontal images only with illumination and
subtle facial expression changes.

We use two visualization methods to verify whether the pro-
posed meta-learner is able to transfer the variations across
classes as intended. First, we visualize the feature space
by projecting the features onto a 2D space through t-SNE
(Maaten & Hinton, 2008). Figure 3 shows this visualization.
Secondly, we project the transferred features onto the image
domain, by training an auxiliary decoder to reconstruct the
original image from the feature embeddings augmented by
our meta-variance transfer. Figure 4 shows the reconstruc-
tion of the augmented features.

Figure 3 shows the embeddings of the two subjects from
the Multi-PIE dataset: The original support samples (filled
markers), query samples (hollowed markers), and the addi-
tional support samples augmented by the proposed MVT
(filled markers of different shape). From the figure, we
can observe that most of the augmented samples overlap
or are located close to the upcoming queries in the t-SNE
2D-projected space. This implies that the proposed MVT
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Table 1. Few-shot classification accuracy on MinilmageNet and CUB dataset. * denotes that the model is our reproduction of the original
model, and | denotes that the model uses Conv4. network architecture as the backbone network, which has an additional FC layer to the
base Conv4. We use our simple version of MatchingNet (MATCHING™ and MATCHING?,) as our baseline. We report the mean accuracy

and the 95% confidence intervals for 600 test episodes.

MINIIMAGENET CUB

METHOD 5 SHOT 10 SHOT 5 SHOT 10 SHOT
PROTONET (SNELL ET AL., 2017) 64.24+0.72 - 76.39+0.64 -
MAML (FINN ET AL., 2017) 64.55+0.52 - 75.754+0.76 -
META-SGD (L1 ET AL., 2017) 65.55£0.56 - - -
REPTILE (NICHOL ET AL., 2018) 65.99+0.58 - - -
CAVIA (ZINTGRAF ET AL., 2019) 65.85£0.55 - - -

B++ (CHEN ET AL., 2019A) 66.43+0.63 - 79.34+0.61 -
MATCHING (VINYALS ET AL., 2016) 63.48+0.66 - 75.29+0.75 -
MATCHING™ 64.63+£0.70  68.90+ 0.64 | 75.63+0.68 79.04+ 0.60
MATCHING 64.88+0.68 68.85+0.68 | 76.98+0.67 81.194+ 0.59
MAML+META-DROP (LEE ET AL., 2020) 67.42+0.52 - - -
MAML+META-DROP* 67.06+0.74  70.72+ 0.66 | 76.17+£0.65 79.994 0.59
MAML+META-DROP}} 67.24+0.68  70.72+ 0.69 | 75.31£0.65 79.844+ 0.57
MATCHING*+MVT (OURS) 65.24+0.68 71.81+0.62 | 77.33+£0.64 81.174+0.58
MATCHING} +MVT (OURS) 67.67+0.70 71.83+ 0.67 | 80.33+£0.60 83.09+ 0.51

can simulate the test environment and reflect it during the
meta-learning transfer stage. Even if the additional support
samples augmented by the proposed MVT do not simulate
the real-world data, it still can help obtain discriminative
representations.

Figure 4 shows the examples of decoded images of the
embeddings of a certain class (subject). Top row shows
the decoded images of the original support features. The
bottom row shows the decodings of the transferred and aug-
mented features. The class originally contained a limited set
of variations which only account for illumination changes.
However, the transferred variations with MVT are decoded
back to images with variations in the pose and facial ex-
pression. These results validate that our MVT can learn to
transfer the semantic variations from one class to another.
While the reconstruction is not perfect, note that generating
actual image samples is not the focus of this paper. Rather,
the main purpose of MVT is to transfer the variation infor-
mation in the feature domain such that it can help improve
classification accuracy without the overhead required to
generate and train on additional image samples.

4.2. Few-shot classification evaluation

We now conduct a comparative study of our model against
existing works in few-shot classification settings.

Table 1 reports the results of the proposed Meta-Variance
Transfer compared to existing methods. As the proposed
method requires to transfer the variances, we report the
accuracy on 5-shot and 10-shot classification experiments
rather than on one-shot classification. We used a simple
MatchingNet (Matching™®) as a base model (Sec. 3.5) due to

its simplicity and compatibility to our method. We observe
that our method outperforms all the baselines with the same
backbone networks, including the original MatchingNet and
the simplified version of MatchingNet (Matching™).

We also report the accuracy of the Matching network with an
additional final FC layer (Matching? ), which obtains similar
results on minilmageNet and achieves higher accuracy on
CUB. We further compare against Meta-dropout (Lee et al.,
2020), which is highly relevant to the proposed method
since it also perturbs the training instances to help obtain im-
proved performance on the meta-test case. The difference is
that meta-dropout transfers from the tasks in meta-training
to tasks in meta-test, while our MVT transfers across classes
in the task given at meta-test time. We reproduce and re-
port the results of Meta-drop under both the original setting
and the same settings as ours. The results show that our
MVT obtain the comparable or slightly better accuracy on
the 5-shot minilmageNet classification, but outperforms it
in all other cases. Even when considering that our base-
line model (Matching” ) works better than MAML used
in Meta-drop (MAML), the significant accuracy gap be-
tween the two approaches still validates the effectiveness
of our method. For the 5-shot CUB, we also report the
accuracy of the method (B++) proposed in (Chen et al.,
2019c). Our MVT outperformed the other methods on both
datasets. Note that the larger accuracy gap between the
two of ours (Matching*+MVT and Matching % +MVT) than
those between the two baselines (Matching™ and Matching
%) justifies the selection of our transfer layer mentioned in
section 3.3 (i.e., the layer before the final layer). Our method
also achieves more performance gain on CUB, since our
variation transfer could be more helpful in fine-grained clas-
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Table 2. Ablation study. Baseline is our simple MatchingNet. The VAR denotes the variation transfer by simply adding v; of one class to

the mean of another class without learning. The MANIFOLD represents the usage of manifold loss.

MINIIMAGENET CUB

METHOD 5 SHOT 5 SHOT

BASELINE 64.88+0.68 76.984+0.67
BASELINE+VAR 32.764+0.58 29.0940.49
BASELINE+MANIFOLD 64.37+0.70 76.741+0.65
BASELINE+MANIFOLD+ VAR 31.59+0.57 32.21+0.56
META VARIANCE TRANSFER (A = 0) 66.68+0.69 79.9240.61
META VARIANCE TRANSFER (PROPOSED) 67.67+£0.70 80.33+0.60

Table 3. Results of MVT with and without conventional augmen-
tations. AG. denotes the random crop, flip, and color jittering

Table 5. Results with different backbones.

augmentations. CUB
NETWORK ~ MVT 5 SHOT 10 sHOT
RESNET-10+ Conv4 x  76.9840.67 81.1940.59
DATASET  AG/MVT  5-sHoT 20-suot CONv4 v 80.33£0.60 83.09+0.51
RESNET-10 X 84.01+0.57 85.67+0.54
cuB N 7161075 7T6.01L 0.05 RESNET-10 o/ 85.35:0.55 88.41+ 0.44
VI 84.01+ 0.57 87.52+ 0.45 RESNET-34 X 85.244+0.55 88.71+0.46
ViJ 8535055 88.67+ 0.42 RESNET-34  /  87.07+0.51 89.68+ 0.41
MINIVGG X/ 90.23+£0.47  92.8940.38
x1y/ 91.22+0.39 93.244+ 0.31
NZAS 91.54+0.43 93.784+0.32
VIV 91.87+ 0.41 94.85+ 0.30 Table 4, we observe that DAGAN obtains no performance
MINICASIA N 80.22L0.60 83.55+10.47 gain on VGGFace, which agrees with the results reported
x/y/ 82.314+0.59 85.83+ 0.45 in the paper (Antoniou et al., 2017). This is because in DA-
VI 87.25+£0.48  90.77+ 0.37 GAN, the generator is separately trained from the classifier
VIV 88.90+ 0.45 92.07+ 0.34

Table 4. Comparison with generative model-based augmentation.

OMNIGLOT MINI-VGG
METHOD 20 WAY 2 SHOT | 5 WAY 5 SHOT
MATCHING}. 96.86+0.18 85.95+0.56
DAGAN 97.03£0.16 84.76+ 0.57
MATCHING} +MVT 97.18+0.15 87.13+ 0.52

sification tasks where the classes share diverse semantic
variations. However, we do not necessarily assume that the
classes should be relevant because our method can flexi-
bly control the amount of transfer between classes using
the meta-learned transfer module, which explains why our
method also works well on minilmageNet.

We further compare our MVT against DAGAN(Antoniou
et al., 2017), which utilizes a generative model for data aug-
mentation. The DAGAN first trains a generative adversarial
network on the training data and trains a classifier with ad-
ditional fake images generated from a separately-trained
generator. We train a classifier with additionally generated
images from DAGAN. To reduce the training time of the
generator, we resized the images of miniVGG to 36x36. In

with the hope that it helps generalization on the target do-
mains while MVT is meta-learned to transform and transfer
only the meaningful variations that can lower the classifica-
tion loss on unseen classes. Another obvious advantage of
using MVT over DAGAN or any other image generation-
based augmentation methods, is that MVT does not require
a separate image generator which is costly to train and hold
in memory, and can transfer variations in the latent feature
space of the classifier in a single training phase.

4.3. Ablation study

In Table 2, we justify our design decisions through an abla-
tion study. The baseline represents the simple MatchingNet.
The VAR denotes the variation transfer by simply adding
each variation v; of one class to the mean vector of another
class. The results of the second and fourth row show that
such a simple variation transfer without learning causes the
training to fail. This indicates that learning how and what
to transfer is important. By comparing the first and third
row, we can see that simply adding the manifold loss alone
also does not improve the accuracy. The fifth row shows
that the variance transfer with meta learning without the
manifold regularization obtains improved accuracy, but still
largely underperforms the full MVT model with manifold
regularization, which achieves the best accuracy.
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Table 6. Results with varying ways.

MINIIMAGENET CUB
METHOD 10 wAy 20 WAY 10 wAY 20 WAY
MATCHING?, 49.76+0.45 35.294+0.24 | 66.33+0.62 53.46+ 0.33
MATCHING} +MVT (OURS) 52.56+0.44 38.01+ 0.24 | 69.93+0.48 56.17+ 0.32
Table 7. Results with varying shots.
MINIIMAGENET
METHOD 2 SHOT 3 SHOT 4 SHOT 20 SHOT
MATCHING?,. 56.12+0.73 60.15£0.76 62.824+0.74 72.70+£ 0.60
MATCHING} +MVT (OURS) 57.74+0.77 61.48+0.76 64.75+0.71  75.20+ 0.59
CUB
METHOD 2 SHOT 3 SHOT 4 SHOT 20 SHOT
MATCHING?,. 69.72+0.77 74.39+£0.74 76.07+0.66 83.03+ 0.54
MATCHING} +MVT (OURS) 71.32+0.79 75.93+£0.70  78.10+£0.68 84.37+ 0.51

4.4. MVT with conventional augmentations

In Table 3, we show the comparative results with and with-
out the conventional data augmentation methods. Here
we additionally report the results of 20-shots and we use
ResNet-10 for the results. We evaluated the results on fine-
grained classification datasets, namely CUB, miniVGG, and
miniCASIA. For the face datasets, we used 112x112 im-
ages, extracted the facial region using a face detector (Zhang
et al., 2016), and skipped the max pooling to match the spa-
tial dimension of the feature of 224 x224 CUB data. During
meta-training, we used random crop and flip on each image
as the conventional augmentations for the CUB data. How-
ever, for the face dataset, we use color jittering instead of
random crop because the face images are well aligned in
all datasets. The results confirm that our MVT is orthogo-
nal to conventional augmentations, and can bring in further
performance enhancement when used together. On small
datasets, the conventional augmentation is more effective,
but its performance improvement diminishes on a larger
dataset (miniVGG). On the contrary, the proposed MVT
method achieves consistent performance improvements any
datasets regardless of their sizes.

4.5. Generalization to different backbone networks

We validate if the proposed MVT could generalize to dif-
ferent backbone networks. In Table 5, we report the results
of different backbone architectures with and without the
proposed MVT. We used the network for all the results.
The results show that the proposed MVT method consis-
tently improved the accuracy regardless of the architectures
of the backbone networks. Interestingly, MVT-augmented
models with 5-shot classification obtain comparable results
with 10-shot classification performance of the backbone
networks. For example, ResNet-10 with 5 shots using MVT

(85.35) obtain similar performance to ResNet-10 with 70
shots (85.67). The results also show that the proposed MVT
with a certain backbone results in performance comparable
to a deeper version of that backbone. For example, ResNet-
10 with 10 shots using MVT (88.41) obtain comparable
performance to ResNet-34 with 10 shots (88.71).

4.6. Results with varying ways and shots

In addition to the common experimental setting of 5-way
classification with 5- and 10- shots, we conducted experi-
ments with varying ways and shots to see the robustness of
our method to different settings. Table 6 shows the results
with 10, 20-way using 5 shots, while the Table 7 shows
the results of varying shots from 2 to 20 shots with 5-way.
Note that our MVT requires at least two shots to compute a
variance. Overall, the results show that our method robustly
improves the accuracy in all settings.

5. Conclusion

We proposed a novel meta-learning framework for classifi-
cation models, Meta-Variance Transfer (MVT) which learns
to transfer factors of variations from one class to another,
such that it improves the overall classification performance.
Specifically, we capture the variations for each class as the
difference of each sample from the class prototype, and
meta-learn a network to transform it to another class such
that the transformed virtual point helps lower the classifi-
cation loss for the target class. We first perform a proof of
concept of the model with a face recognition dataset, which
shows that MVT is able to transfer meaningful factors of
variations across classes. Further experimental validation
on few-shot classification and face recognition shows that
MVT significantly improves the performance of a model,
orthogonally to existing data augmentation methods.
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