
Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis

A. Theoretical Analysis
A.1. Convergence Analysis

Theorem A.1. (Bottou et al., 2018) If the step size ηt ≡ η ≤ 1
Lcg

, then a fixed resolution solution satisfies

E[‖wt+1 −w?‖22] ≤ γt[E[‖w0 −w?‖22]− β] + β

where γ = 1− 2ηµ, β =
ησ2

g

2µ , and w? is the optimal solution.

Proof. For a single step update,

‖wt+1 −w?‖22 = ‖wt − ηtg(wt; ξt)−w?‖22
= ‖wt −w?‖22 + ‖ηtg(wt; ξt)‖22 − 2ηtg(wt; ξt)(wt −w?) (9)

by the law of total expectation

E[g(xt; ξt)(wt −w?)] = E[E[g(wt; ξt)(wt −w?)|ξ<t]]
= E[(wt −w?)E[g(wt; ξt)|ξ<t]]
= E[(wt −w?)

>Of(wt)] (10)

From strong convexity,

〈Of(wt)− Of(w?),wt −w?〉 = 〈Of(wt),wt −w?〉 ≥ µ‖wt −w?‖22 (11)

which implies E[(wt −w?)
>Of(wt)] ≥ µE[‖wt −w?‖22] as Of(w?) = 0. Putting it all together yields

E[‖wt+1 −w?‖22] ≤ (1− 2ηtµ)E[‖wt −w?‖22] + (ηtσg)
2 (12)

As ηt = η, we complete the contraction, by setting β =
(ησg)

2

(2ηµ)

E[‖wt+1 −w?‖22]− β ≤ (1− 2ηtµ)(E[‖wt −w?‖22]− β) (13)

Repeat the iterations

E[‖wt+1 −w?‖22]− β ≤ (1− 2ηµ)t(E[‖w0 −w?‖22]− β) (14)

Rearranging the terms, we get

E[‖wt+1 −w?‖22] ≤ (1− 2ηµ)tE[‖w0 −w?]− ((1− 2ηµ)t + 1)
(ησg)

2

(2ηµ)
(15)

Theorem A.2. If the step size ηt ≡ η ≤ 1
Lcg

, then MRTL solution satisfies

E[‖w(r)
t −w?‖22] ≤ γt(‖P‖2op)r[E[‖w(1)

0 −w(1),?‖22]

− γt‖P‖22β + γt2(‖P‖2opβ − β) +O(1)

where γ = 1− 2ηµ, β =
ησ2

g

2µ , and ‖P‖op is the operator norm of the interpolation operator P .

Consider a two resolution case where R = 2 and w
(2)
? = w?. Let tr be the total number of iterations of resolution r. Based

on Eqn. (12), for a fixed resolution algorithm, after t1 + t2 number of iterations,

E[‖wt1+t2 −w?‖22]− β ≤ (1− 2ηµ)t1+t2(E[‖w0 −w?‖22]− β)
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For multiresolution, where we train on resolution r = 1 first, we have

E[‖w(1)
t1 −w

(1)
? ‖22]− β ≤ (1− 2ηµ)t1(E[‖w(1)

0 −w
(1)
? ‖22]− β)

At resolution r = 2, we have

E[‖w(2)
t2 −w?‖22]− β ≤ (1− 2ηµ)t2(E[‖w(2)

0 −w?‖22]− β) (16)

Using interpolation, we have w
(2)
0 = Pw

(1)
t1 . Given the spatial autocorrelation assumption, we have

‖w(2)
? − Pw(1)

? ‖2 ≤ ε

By the definition of operator norm and triangle inequality,

E[‖w(2)
0 −w

(2)
? ‖22 ≤ E[‖Pw(1)

t1 −w
(2)
? ‖22] ≤ ‖P‖2opE[‖w(1)

t1 −w
(1)
? ‖22] + ε2

Combined with eq. (16), we have

E[‖w(2)
t2 −w?‖22]− β ≤(1− 2ηµ)t2(‖P‖2opE[‖w(1)

t1 −w
(1)
? ‖22] + ε2 − β) (17)

=(1− 2ηµ)t1+t2‖P‖2op(E[‖w(1)
0 −w

(1)
? ‖22]− β) + (1− 2ηµ)t2(‖P‖2opβ + ε2 − β) (18)

If we initialize w0 and w
(1)
0 such that ‖w(1)

0 −w
(1)
? ‖22 = ‖w0 −w?‖22, we have MRTL solution

E[‖w
′

t1+t2 −w?‖22]− α ≤ (1− 2ηµ)t1+t2‖P‖2op(E[‖w
′

0 −w?‖22]− α) (19)

for some α that completes the contraction. Repeat the resolution iterates in Eqn. (18), we reach our conclusion.

A.2. Computational Complexity Analysis

In this section, we analyze the computational complexity for MRTL (Algorithm 1). Assuming that∇f is Lipschitz continuous,
we can view gradient-based optimization as a fixed-point iteration operator F with a contraction constant of γ ∈ (0, 1) (note
that stochastic gradient descent converges to a noise ball instead of a fixed point).

w← F (w), F := I − η∇f, ‖F (w)− F (w′)‖ ≤ γ‖w −w′‖.

Let w(r)
? be the optimal estimator at resolution r. Suppose for each resolution r, we use the following finegrain criterion:

‖w(r)
t −w

(r)
t−1‖ ≤

C0Dr

γ(1− γ)
. (20)

where tr is the number of iterations taken at level r. The algorithm terminates when the estimation error reaches C0R
(1−γ)2 .

The following main theorem characterizes the speed-up gained by multiresolution learning MRTL w.r.t. the contraction
factor γ and the terminal estimation error ε.

Theorem A.3. Suppose the fixed point iteration operator (gradient descent) for the optimization algorithm has a contraction
factor (Lipschitz constant) of γ, the multiresolution learning procedure is faster than that of the fixed resolution algorithm
by a factor of log 1

(1−γ)ε , with ε as the terminal estimation error.

We prove several useful Lemmas before proving the main Theorem A.3. The following lemma analyzes the computational
cost of the fixed-resolution algorithm.

Lemma A.4. Given a fixed point iteration operator with a contraction factor γ, the computational complexity of a
fixed-resolution training for a p-order tensor with rank K is

C = O
(

1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp

(1− γ)2ε

)
. (21)
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Proof. At a high level, we can prove this by choosing a small enough resolution r such that the approximation error is
bounded with a fixed number of iterations. Let w(r)

? be the optimal estimate at resolution r and wt be the estimate at step t.
Then

‖w? −wt‖ ≤ ‖w? −w
(r)
? ‖+ ‖w(r)

? −wt‖ ≤ ε. (22)

We pick a fixed resolution r small enough such that

‖w? −w
(r)
? ‖ ≤

ε

2
, (23)

then using the termination criteria ‖w? −w
(r)
? ‖ ≤ C0R

(1−γ)2 gives Dr = Ω((1− γ)2ε) where Dr is the discretization size at
resolution r. Initialize w0 = 0 and apply F to w for t times such that

γt

2(1− γ)
‖F (w0)‖ ≤ ε

2
. (24)

As w0 = 0, ‖F (w0)‖ ≤ 2C, we obtain that

t ≤ 1

| log γ|
· log

(
2C

(1− γ)ε

)
, (25)

Note that for an order p tensor with rank K, the computational complexity of every iteration in MRTL is O(Kp/Dr) with
Dr as the discretization size. Hence, the computational complexity of the fixed resolution training is

C = O
(

1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp
Dr

)
= O

(
1

| log γ|
· log

(
1

(1− γ)ε

)
· Kp

(1− γ)2ε

)
.

Given a spatial discretization r, we can construct an operator Fr that learns discretized tensor weights. The next lemma
relates the estimation error with resolution. The following lemma relates the estimation error with resolution:

Lemma A.5. (Nash, 2000) For each resolution level r = 1, · · · , R, there exists a constant C1 and C2, such that the fixed
point iteration with discretization size Dr has an estimation error:

‖F (w)− F (r)(w)‖ ≤ (C1 + γC2‖w‖)Dr (26)

Proof. See (Nash, 2000) for details.

We have obtained the discretization error for the fixed point operation at any resolution. Next we analyze the number of
iterations tr needed at each resolution r before finegraining.

Lemma A.6. For every resolution r = 1, . . . , R, there exists a constant C ′ such that the number of iterations tr before
finegraining satisfies:

tr ≤ C ′/ log |γ| (27)

Proof. According to the fixed point iteration definition, we have for each resolution r:

‖Fr(wtr )−w
(r)
tr )‖ ≤ γtr−1‖Fr(w(r)

0 )−w
(r)
0 ‖ (28)

≤ γtr−1
C0Dr

1− γ
(29)

≤ C ′γtr−1 (30)
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using the definition of the finegrain criterion.

By combining Lemmas A.6 and the computational cost per iteration, we can compute the total computational cost for our
MRTL algorithm, which is proportional to the total number of iterations for all resolutions:

CMRTL = O
(

1

| log γ|
[
(Dr/Kp)

−1 + (2Dr/Kp)
−1 + (4Dr/Kp)

−1 + · · ·
])

= O
(

1

| log γ|

(
Kp

Dr

)[
1 +

1

2
+

1

4
+ · · ·

])
= O

(
1

| log γ|

(
Kp

Dr

)[
1− ( 1

2 )n

1− 1
2

])
= O

(
1

| log γ|

(
Kp

(1− γ)2ε

))
, (31)

where the last step uses the termination criterion in (20). Comparing with the complexity analysis for the fixed resolution
algorithm in Lemma A.4, we complete the proof.

B. Experiment Details
Basketball We list implementation details for the basketball dataset. We focus only on half-court possessions, where all
players have crossed into the half court as in (Yue et al., 2014). The ball must also be inside the court and be within a 4 foot
radius of the ballhandler. We discard any passing/turnover events and do not consider frames with free throws.

For the ball handler location {D1
r}, we discretize the half-court into resolutions 4× 5, 8× 10, 20× 25, 40× 50. For the

relative defender locations, at the full resolution, we choose a 12× 12 grid around the ball handler where the ball handler is
located at (6, 2) (more space in front of the ball handler than behind him/her). We also consider a smaller grid around the
ball handler for the defender locations, assuming that defenders that are far away from the ball handler do not influence
shooting probability. We use 6× 6, 12× 12 for defender positions.

Let us denote the pair of resolutions as (D1
r , D

2
r). We train the full-rank model at resolutions (4× 5, 6× 6), (8× 10, 6×

6), (8× 10, 12× 12) and the low-rank model at resolutions (8× 10, 12× 12), (20× 25, 12× 12), (40× 50, 12× 12).

There is a notable class imbalance in labels (88% of data points have zero labels) so we use weighted cross entropy loss
using the inverse of class counts as weights. For the low-rank model, we use tensor rank K = 20. The performance trend of
MRTL is similar across a variety of tensor ranks. K should be chosen appropriately to the desired level of approximation.

Climate We describe the data sources used for climate. The precipitation data comes from the PRISM group (PRISM
Climate Group, 2013), which provides estimates monthly estimates at 1/24o spatial resolution across the continental U.S
from 1895 to 2018. For oceanic data we use the EN4 reanalysis product (Good et al., 2013), which provides monthly
estimates for ocean salinity and temperature at 1o spatial resolution across the globe from 1900 to the present (see Fig. 3).
We constrain our spatial analysis to the range [-180oW, 0oW] and [-20oS, 60oN], which encapsulates the area around North
America and a large portion of South America.

The ocean data is non-stationary, with the variance of the data increasing over time. This is likely due to improvement in
observational measurements of ocean temperature and salinity over time, which reduce the amount of interpolation needed
to generate an estimate for a given month. After detrending and deseasonalizing, we split the train, validation, and test sets
using random consecutive sequences so that their samples come from a similar distribution.

We train the full-rank model at resolutions 4× 9 and 8× 18 and the low-rank model at resolutions 8× 18, 12× 27, 24× 54,
40× 90, 60× 135, and 80× 180. For finegraining criteria, we use a patience factor of 4, i.e. training was terminated when a
finegraining criterion was reached a total of 4 times. Both validation loss and gradient statistics were relatively noisy during
training (possibly due to a small number of samples), leading to early termination without the patience factor.

During finegraining, the weights were upsampled to the higher resolution using bilinear interpolation and then scaled by
the ratio of the number of inputs for the higher resolution to the number of inputs for the lower resolution (as described in
Section 4) to preserve the magnitude of the prediction.
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Details We trained the basketball dataset on 4 RTX 2080 Ti GPUs, while the climate dataset experiments were performed
on a separate workstation with 1 RTX 2080 Ti GPU. The computation times of the fixed-resolution and MRTL model were
compared on the same setup for all experiments.

B.1. Hyperparameters

Hyperparameter Basketball Climate
Batch size 32− 1024 8− 128
Full-rank learning rate η 10−3 − 10−1 10−4 − 10−1

Full-rank regularization λ 10−5 − 100 10−4 − 10−1

Low-rank learning rate η 10−5 − 10−1 10−4 − 10−1

Low-rank regularization λ 10−5 − 100 10−4 − 10−1

Spatial regularization σ 0.03− 0.2 0.03− 0.2
Learning rate decay γ 0.7− 0.95 0.7− 0.95

Table 2. Search range for Opt hyperparameters

Table 2 show the search ranges of all hyperparameters considered. We performed separate random searches over this search
space for MRTL, fixed-resolution model, and the randomly initialized low-rank model. We also separate the learning rate η
and regularization coefficient λ between the full-rank and low-rank models.

B.2. Accuracy and Convergence

Figure 10. Basketball: Loss curves of MRTL vs. the fixed-resolution model for the full rank (left) and low rank model (right). The vertical
lines indicate finegraining to the next resolution.

Fig. 10 shows the loss curves of MRTL vs. the fixed resolution model for the full rank and low rank case. They show a
similar convergence trend, where the fixed-resolution model is much slower than MRTL.

B.3. Finegraining Criteria

Table 3 lists the results for the different finegraining criteria. In the classification case, we see that validation loss reaches
much faster convergence than other gradient-based criteria in the full-rank case, while the gradient-based criteria are faster
for the low-rank model. All criteria can reach similar F1 scores. For the regression case, all stopping criteria converge to a
similar loss in roughly the same amount of time for the full-rank model. For the low-rank model, validation loss appears to
converge more quickly and to a lower loss value.

B.4. Random initialization

Fig. 11 shows all latent factors after training MRTL vs a randomly initialized low-rank model for ballhandler position. We
can see clearly that full-rank initialization produces spatially coherent factors while random initialization can produce some
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Table 3. Runtime and prediction performance comparison of different finegraining criteria

Dataset Model Full-Rank Low-Rank

Time [s] Loss F1 Time [s] Loss F1

Basketball

Validation loss 1230 ±74.1 0.699 ±0.00237 0.607 ±0.00182 2009 ±715 0.868 ±0.0399 0.475 ±0.0121

Gradient norm 7029 ±759 0.703 ±0.00216 0.610 ±0.00149 912 ±281 0.883 ±0.00664 0.476 ±0.00270

Gradient variance 7918 ±1949 0.701 ±0.00333 0.609 ±0.00315 933 ±240 0.883 ±0.00493 0.476 ±0.00197

Gradient entropy 8715 ±957 0.697 ±0.00551 0.597 ±0.00737 939 ±259 0.886 ±0.00248 0.475 ±0.00182

Climate

Validation loss 1.04 ±0.115 0.0448 ±0.0108 - 37.4 ±28.7 0.0284 ±0.00171 -
Gradient norm 1.11 ±0.0413 0.0506 ±0.00853 - 59.1 ±16.9 0.0301 ±0.00131 -
Gradient variance 1.14 ±0.0596 0.0458 ±0.00597 - 62.9 ±14.4 0.0305 ±0.00283 -
Gradient entropy 0.984 ±0.0848 0.0490 ±0.0144 - 48.4 ±21.1 0.0331 ±0.00949 -

uninterpretable factors (e.g. the latent factors for k = 3, 4, 5, 7, 19, 20 are not semantically meaningful). Fig. 12 shows
latent factors for the defender position spatial mode, and we can draw similar conclusions about random initialization.

Figure 11. Basketball: Latent factors of ball handler position after training MRTL (left) and a low-rank model using random initialization
(right). The factors have been normalized to (-1,1) so that reds are positive and blues are negative. The latent factors are numbered left to
right, top to bottom.

Figure 12. Basketball: Latent factors of relative defender positions after training MRTL (left) and a low-rank model using random
initialization (right). The factors have been normalized to (-1,1) so that reds are positive and blues are negative. The green dot represents
the ballhandler at (6, 2). The latent factors are numbered left to right, top to bottom.


