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Abstract
Owing to their ability to both effectively integrate
information over long time horizons and scale to
massive amounts of data, self-attention architec-
tures have recently shown breakthrough success
in natural language processing (NLP). Harness-
ing the transformer’s ability to process long time
horizons of information could provide a similar
performance boost in partially observable rein-
forcement learning (RL) domains, but the large-
scale transformers used in NLP have yet to be suc-
cessfully applied to the RL setting. In this work
we demonstrate that the standard transformer ar-
chitecture is difficult to optimize, which was pre-
viously observed in the supervised learning set-
ting but becomes especially pronounced with RL
objectives. We propose architectural modifica-
tions that substantially improve the stability and
learning speed of the original Transformer and
XL variant. The proposed architecture, the Gated
Transformer-XL (GTrXL), surpasses LSTMs on
challenging memory environments and achieves
state-of-the-art results on the multi-task DMLab-
30 benchmark suite, exceeding the performance
of an external memory architecture. We show that
the GTrXL has stability and performance that con-
sistently matches or exceeds a competitive LSTM
baseline, including on more reactive tasks where
memory is less critical.

1. Introduction
It has been argued that self-attention architectures (Vaswani
et al., 2017) deal better with longer temporal horizons than
recurrent neural networks (RNNs): by construction, they
avoid compressing the whole past into a fixed-size hidden
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Figure 1. Transformer variants, showing just a single layer block
(there are L layers total). Left: Canonical Transformer(-XL) block
with multi-head attention and position-wise MLP submodules and
the standard layer normalization (Ba et al., 2016) placement with
respect to the residual connection (He et al., 2016a). Center:
TrXL-I moves the layer normalization to the input stream of the
submodules. Coupled with the residual connections, there is a
gradient path that flows from output to input without any trans-
formations. Right: The GTrXL block, which additionally adds a
gating layer in place of the residual connection of the TrXL-I.

state and they do not suffer from vanishing or exploding
gradients in the same way as RNNs. Recent work has em-
pirically validated these claims, demonstrating that self-
attention architectures can provide significant gains in per-
formance over the more traditional recurrent architectures
such as the LSTM (Dai et al., 2019; Radford et al., 2019; De-
vlin et al., 2019; Yang et al., 2019). In particular, the Trans-
former architecture (Vaswani et al., 2017) has had break-
through success in a wide variety of domains: language
modeling (Dai et al., 2019; Radford et al., 2019; Yang et al.,
2019), machine translation (Vaswani et al., 2017; Edunov
et al., 2018), summarization (Liu & Lapata, 2019), question
answering (Dehghani et al., 2018; Yang et al., 2019), multi-
task representation learning for NLP (Devlin et al., 2019;
Radford et al., 2019; Yang et al., 2019), and algorithmic
tasks (Dehghani et al., 2018).

The repeated success of the transformer architecture in do-
mains where sequential information processing is critical to
performance makes it an ideal candidate for partially observ-
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able RL problems, where episodes can extend to thousands
of steps and the critical observations for any decision often
span the entire episode. Yet, the RL literature is dominated
by the use of LSTMs as the main mechanism for providing
memory to the agent (Espeholt et al., 2018; Kapturowski
et al., 2019; Mnih et al., 2016). Despite progress at design-
ing more expressive memory architectures (Graves et al.,
2016; Wayne et al., 2018; Santoro et al., 2018) that perform
better than LSTMs in memory-based tasks and partially-
observable environments, they have not seen widespread
adoption in RL agents perhaps due to their complex imple-
mentation, with the LSTM being seen as the go-to solution
for environments where memory is required. In contrast to
these other memory architectures, the transformer is well-
tested in many challenging domains and has seen several
open-source implementations in a variety of frameworks 1.

Motivated by the transformer’s superior performance over
LSTMs and the widespread availability of implementations,
in this work we investigate the transformer architecture in
the RL setting. In particular, we find that the canonical
transformer is significantly difficult to optimize, often re-
sulting in performance comparable to a random policy. This
difficulty in training transformers exists in the supervised
case as well. Typically a complex learning rate schedule is
required (e.g., linear warmup or cosine decay) in order to
train (Vaswani et al., 2017; Dai et al., 2019), or specialized
weight initialization schemes are used to improve perfor-
mance (Radford et al., 2019). These measures do not seem
to be sufficient for RL. In Mishra et al. (2018), for example,
transformers could not solve even simple bandit tasks and
tabular Markov Decision Processes (MDPs), leading the
authors to hypothesize that the transformer architecture was
not suitable for processing sequential information. Our ex-
periments have also verified this observed critical instability
in the original transformer model.

However in this work we succeed in stabilizing training
with a reordering of the layer normalization coupled with
the addition of a new gating mechanism to key points in
the submodules of the transformer. Our novel gated ar-
chitecture, the Gated Transformer-XL (GTrXL) (shown in
Figure 1, Right), is able to learn much faster and more reli-
ably and exhibit significantly better final performance than
the canonical transformer. We further demonstrate that the
GTrXL achieves state-of-the-art results when compared to
the external memory architecture MERLIN (Wayne et al.,
2018) on the multitask DMLab-30 suite (Beattie et al., 2016).
Additionally, we surpass LSTMs significantly on memory-
based DMLab-30 levels while matching performance on the
more reactive set of levels, as well as significantly outper-
forming LSTMs on memory-based continuous control and
navigation environments. We perform extensive ablations

1www.github.com/tensorflow/tensor2tensor

on the GTrXL in challenging environments with both con-
tinuous actions and high-dimensional observations, testing
the final performance of the various components as well as
the GTrXL’s robustness to seed and hyperparameter sensi-
tivity compared to LSTMs and the canonical transformer.
We demonstrate a consistent superior performance while
matching the stability of LSTMs, providing evidence that
the GTrXL architecture can function as a drop-in replace-
ment to the LSTM networks ubiquitously used in RL.

2. Transformer Architecture and Variants
The transformer network consists of several stacked blocks
that repeatedly apply self-attention to the input sequence.
The transformer layer block itself has remained relatively
constant since its original introduction (Vaswani et al., 2017;
Liu et al., 2018; Radford et al., 2019). Each layer consists
of two submodules: an attention operation followed by a
position-wise multi-layer network (see Figure 1 (left)). The
input to the transformer block is an embedding from the
previous layer E(l−1) ∈ RT×D, where T is the number
of time steps, D is the hidden dimension, and l ∈ [0, L]
is the layer index with L being the total number of layers.
We assume E(0) is an arbitrarily-obtained input embedding
of dimension [T,D], e.g. a word embedding in the case
of language modeling or a visual embedding of the per-
timestep observations in an RL environment.

Multi-Head Attention: The Multi-Head Attention (MHA)
submodule computes in parallel H soft-attention operations
for every time step. A residual connection (He et al., 2016a)
and layer normalization (LN) (Ba et al., 2016) are then
applied to the output (see Appendix D for more details):

Y (l) = LN(E(l−1) + MHA(E(l−1))) (1)

Multi-Layer Perceptron: The Multi-Layer Perceptron
(MLP) submodule applies a 1×1 temporal convolutional net-
work f (l) (i.e., kernel size 1, stride 1) over every step in the
sequence, producing a new embedding tensorE(l) ∈ RT×D.
As in (Dai et al., 2019), the network output does not include
an activation function. After the MLP, there is a residual
update followed by layer normalization:

E(l) = LN(Y (l) + f (l)(Y (l))) (2)

Relative Position Encodings: The basic MHA operation
does not take sequence order into account explicitly because
it is permutation invariant. Positional encodings are a widely
used solution in domains like language where order is an im-
portant semantic cue, appearing in the original transformer
architecture (Vaswani et al., 2017). To enable a much larger
contextual horizon than would otherwise be possible, we
use the relative position encodings and memory scheme
used in (Dai et al., 2019). In this setting, there is an addi-
tional T -step memory tensor M (l) ∈ RT ×D, which is held

www.github.com/tensorflow/tensor2tensor
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constant during weight updates. The MHA submodule then
becomes:

Y (l) = LN(E(l−1) + RMHA(SG(M (l−1)), E(l−1))) (3)

where SG is a stop-gradient function that prevents gradients
flowing backwards during backpropagation. We refer to
Appendix D for a more detailed description.

3. Gated Transformer Architectures
3.1. Motivation

While the transformer architecture has achieved break-
through results in modeling sequences for supervised learn-
ing tasks (Vaswani et al., 2017; Liu et al., 2018; Dai et al.,
2019), a demonstration of the transformer as a useful RL
memory has been notably absent. Previous work has high-
lighted training difficulties and poor performance (Mishra
et al., 2018). When transformers have not been used for
temporal memory but instead as a mechanism for attention
over the input space, they have had success—notably in the
challenging multi-agent Starcraft 2 environment (Vinyals
et al., 2019). Here, the transformer was applied solely across
Starcraft units and not over time.

In order to alleviate these difficulties, we propose the in-
troduction of powerful gating mechanisms in place of the
residual connections within the transformer block, coupled
with changes to the order of layer normalization in the sub-
modules. Our gated architecture is motivated by multi-
plicative interactions having been successful at stabilizing
learning across a wide variety of architectures (Hochreiter
& Schmidhuber, 1997; Srivastava et al., 2015; Cho et al.,
2014), and we empirically see these same improvements in
our proposed gated transformer.

Additionally, we propose that the key benefit of the “Iden-
tity Map Reordering”, where layer normalization is moved
onto the ”skip” stream of the residual connection, is that it
enables an identity map from the input of the transformer at
the first layer to the output of the transformer after the last
layer. This is in contrast to the canonical transformer, where
there are a series of layer normalization operations that non-
linearly transform the state encoding. One hypothesis as to
why the Identity Map Reordering improves results is, assum-
ing that the submodules at initialization produce values that
are in expectation near zero, the state encoding is passed
un-transformed to the policy and value heads, enabling the
agent to learn a Markovian policy at the start of training (i.e.,
the network is initialized such that π(·|st, . . . , s1) ≈ π(·|st)
and V π(st|st−1, . . . , s1) ≈ V π(st|st−1)). The original
positioning of the layer normalization, on the other hand,
would scale down at each layer the information flowing
through the skip connection, forcing the model to rely on the
residual path. In many environments, reactive behaviours

need to be learned before memory-based ones can be ef-
fectively utilized, i.e., an agent needs to learn how to walk
before it can learn how to remember where it has walked.
We provide a more in depth discussion and empirical re-
sults demonstrating the re-ordered layer norm allows un-
transformed state embeddings in App. F.

3.2. Identity Map Reordering

Our first change is to place the layer normalization on only
the input stream of the submodules, a modification described
in several previous works (He et al., 2016b; Radford et al.,
2019; Baevski & Auli, 2019). The model using this Identity
Map Reordering is termed TrXL-I in the following, and is
depicted visually in Figure 1 (center). Because the layer
norm reordering causes a path where two linear layers are
applied in sequence, we apply a ReLU activation to each
sub-module output before the residual connection (see Ap-
pendix D for equations). The TrXL-I already exhibits a
large improvement in stability and performance over TrXL
(see Section 4.3.1).

3.3. Gating Layers

We further improve performance and optimization stabil-
ity by replacing the residual connections in Equations 3
and 2 with gating layers. We call the gated architecture with
the identity map reordering the Gated Transformer(-XL)
(GTrXL). The final GTrXL layer block is written below:

Y
(l)

= RMHA( LN([SG(M (l−1)), E(l−1)]))

Y (l) = g
(l)
MHA(E(l−1),ReLU(Y

(l)
))

E
(l)

= f (l)(LN(Y (l)))

E(l) = g
(l)
MLP(Y (l),ReLU(E

(l)
))

where g is a gating layer function. A visualization of our
final architecture is shown in Figure 1 (right), with the mod-
ifications from the canonical transformer highlighted in red.
In our experiments we ablate a variety of gating layers with
increasing expressivity:

Input: The gated input connection has a sigmoid modula-
tion on the input stream, similar to the short-cut-only gating
from (He et al., 2016b):

g(l)(x, y) = σ(W (l)
g x)� x+ y

Output: The gated output connection has a sigmoid modu-
lation on the output stream:

g(l)(x, y) = x+ σ(W (l)
g x− b(l)g )� y

Highway: The highway connection (Srivastava et al., 2015)
modulates both streams with a sigmoid:

g(l)(x, y) = σ(W (l)
g x+ b(l)g )� x+ (1− σ(W (l)

g x+ b(l)g ))� y
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Sigmoid-Tanh: The sigmoid-tanh (SigTanh) gate (Van den
Oord et al., 2016) is similar to the Output gate but with an
additional tanh activation on the output stream:

g(l)(x, y) = x+ σ(W (l)
g y − b)� tanh(U (l)

g y)

Gated-Recurrent-Unit-type gating: The Gated Recurrent
Unit (GRU) (Chung et al., 2014) is a recurrent network that
performs similarly to an LSTM (Hochreiter & Schmidhuber,
1997) but has fewer parameters. We adapt its powerful
gating mechanism as an untied activation function in depth:

r = σ(W (l)
r y + U (l)

r x), z = σ(W (l)
z y + U (l)

z x− b(l)g )

ĥ = tanh(W (l)
g y + U (l)

g (r � x))

g(l)(x, y) = (1− z)� x+ z � ĥ.

Gated Identity Initialization: We have claimed that the
Identity Map Reordering aids policy optimization because
it initializes the agent close to a Markovian policy / value
function. If this is indeed the cause of improved stability,
we can explicitly initialize the various gating mechanisms to
be close to the identity map. This is the purpose of the bias
b
(l)
g in the applicable gating layers. We later demonstrate in

an ablation that initially setting b(l)g > 0 can greatly improve
learning speed.

4. Experiments
In this section, we provide experiments on a variety of
challenging single and multi-task RL domains: DMLab-
30 (Beattie et al., 2016), Numpad and Memory Maze (see
App. Fig. 8 and 9). Crucially we demonstrate that the
proposed Gated Transformer-XL (GTrXL) not only shows
substantial improvements over LSTMs on memory-based
environments, but suffers no degradation of performance
on reactive environments. The GTrXL also exceeds MER-
LIN (Wayne et al., 2018), an external memory architecture
which used a Differentiable Neural Computer (Graves et al.,
2016) coupled with auxiliary losses, surpassing its perfor-
mance on both memory and reactive tasks.

For all transformer architectures except when otherwise
stated, we train relatively deep 12-layer networks with em-
bedding size 256 and memory size 512. These networks are
comparable to the state-of-the-art networks in use for small
language modeling datasets (see enwik8 results in (Dai et al.,
2019)). We chose to train deep networks in order to demon-
strate that our results do not necessarily sacrifice complexity
for stability, i.e. we are not making transformers stable for
RL simply by making them shallow. Our networks have
receptive fields that can potentially span any episode in the
environments tested, with an upper bound on the receptive
field of 6144 (12 layers × 512 memory (Dai et al., 2019)).
Future work will look at scaling transformers in RL even

Model Mean HNR Mean HNR,
100-capped

LSTM 99.3 ± 1.0 84.0 ± 0.4
TrXL 5.0 ± 0.2 5.0 ± 0.2

TrXL-I 107.0 ± 1.2 87.4 ± 0.3
MERLIN@100B 115.2 89.4
GTrXL (GRU) 117.6 ± 0.3 89.1 ± 0.2
GTrXL (Input) 51.2 ± 13.2 47.6 ± 12.1

GTrXL (Output) 112.8 ± 0.8 87.8 ± 0.3
GTrXL (Highway) 90.9 ± 12.9 75.2 ± 10.4
GTrXL (SigTanh) 101.0 ± 1.3 83.9 ± 0.7

Table 1. Final human-normalized return (HNR) averaged across
all 30 DMLab levels for baselines and GTrXL variants. We also
include the 100-capped score where the per-level mean score is
clipped at 100, providing a metric that is proportional to the per-
centage of levels that the agent is superhuman. We see that the
GTrXL (GRU) surpasses LSTM by a significant gap and exceeds
the performance of MERLIN (Wayne et al., 2018) trained for
100 billion environment steps. The GTrXL (Output) and the pro-
posed reordered TrXL-I also surpass LSTM but perform slightly
worse than MERLIN and are not as robust as GTrXL (GRU) (see
Sec. 4.3.2). We sample 6-8 hyperparameters per model. We in-
clude standard error over runs.

further, e.g. towards the 52-layer network in (Radford et al.,
2019). See App. C for experimental details.

For all experiments, we used V-MPO (Song et al., 2020), an
on-policy adaptation of Maximum a Posteriori Policy Opti-
mization (MPO) (Abdolmaleki et al., 2018a;b) that performs
approximate policy iteration based on a learned state-value
function V (s) instead of the state-action value function used
in MPO. Rather than directly updating the parameters in the
direction of the policy gradient, V-MPO uses the estimated
advantages to first construct a target distribution for the pol-
icy update subject to a sample-based KL constraint, then
calculates the gradient that partially moves the parameters
toward that target, again subject to a KL constraint. V-MPO
was shown to achieve state-of-the-art results for LSTM-
based agents on multi-task DMLab-30. As we want to focus
on architectural improvements, we do not alter or tune the
V-MPO algorithm differently than the settings originally
presented in that paper for the LSTM architecture, which
included hyperparameters sampled from a wide range.

4.1. Transformer as Effective RL Memory Architecture

We first present results of the best performing GTrXL vari-
ant, the GRU-type gating, against a competitive LSTM
baseline, demonstrating a substantial improvement on the
DMLab-30 domain (Beattie et al., 2016). DMLab-30
(shown in App. Fig. 9) is a large-scale, multitask benchmark
comprising 30 first-person 3D environments with image ob-
servations and has been widely used as a benchmark for
architectural and algorithmic improvements (Wayne et al.,
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Figure 2. Average return on DMLab-30, re-scaled such that a human has mean 100 score on each level and a random policy has 0. Left:
Results averaged over the full DMLab-30 suite. Right: DMLab-30 partitioned into a “Memory” and “Reactive” split (described in
Table 14, Appendix). The GTrXL has a substantial gain over LSTM in memory-based environments, while even slightly surpassing
performance on the reactive set. We plot 6-8 hyperparameter settings per architecture (see Appendix C). MERLIN scores obtained from
personal communication with the authors.

2018; Espeholt et al., 2018; Kapturowski et al., 2019; Hessel
et al., 2018). The levels test a wide range of agent compe-
tencies such as language comprehension, navigation, han-
dling of partial observability, memory, planning, and other
forms of long horizon reasoning, with episodes lasting over
4000 environment steps. We choose the DMLab-30 bench-
mark over Atari-57 (Bellemare et al., 2013) due to tasks in
DMLab-30 explicitly being constructed to test an agent’s
memory and long-horizon reasoning, in contrast to Atari-57
which contains mostly fully-observable games. Neverthe-
less, we also report Atari-57 results in App. E. Figure 2
shows mean return over all levels as training progresses,
where the return is human normalized as done in previous
work (meaning a human has a per-level mean score of 100
and a random policy has a score of 0), while Table 1 has
the final performance at 10 billion environment steps. The
GTrXL has a significant gap over a 3-layer LSTM baseline
trained using the same V-MPO algorithm. Furthermore, we
included the final results of a previously-published exter-
nal memory architecture, MERLIN (Wayne et al., 2018).
Because MERLIN was trained for 100 billion environment
steps with a different algorithm, IMPALA (Espeholt et al.,
2018), and also involved an auxiliary loss critical for the
memory component to function, the learning curves are
not directly comparable and we only report the final per-
formance of the architecture as a dotted line. Despite the
differences, our results demonstrate that the GTrXL can
match the previous state-of-the-art on DMLab-30. An in-
formative split between a set of memory-based levels and
more reactive ones (listed in App. Table 14) reveals that our
model specifically has large improvements in environments

where memory plays a critical role. Meanwhile, GTrXL
also shows improvement over LSTMs on the set of reactive
levels, as memory can still be used in some of these levels.

4.2. Scaling with Memory Horizon

We next demonstrate that the GTrXL scales better compared
to an LSTM when an environment’s temporal horizon is
increased, using the “Numpad” continuous control task of
(Humplik et al., 2019) which allows an easy combinatorial
increase in the temporal horizon. In Numpad, a robotic
agent is situated on a platform resembling the 3x3 number
pad of a telephone (generalizable toN×N pads). The agent
can interact with the pads by colliding with them, causing
them to be activated (visualized in the environment state as
the number pad glowing). The goal of the agent is to acti-
vate a specific sequence of up to N2 numbers, but without
knowing this sequence a priori. The only feedback the agent
gets is by activating numbers: if the pad is the next one in
the sequence, the agent gains a reward of +1, otherwise all
activated pads are cleared and the agent must restart the se-
quence. Each correct number in the sequence only provides
reward once, i.e. each subsequent activation of that number
will no longer provide rewards. Therefore the agent must
explicitly develop a search strategy to determine the correct
pad sequence. Once the agent completes the full sequence,
all pads are reset and the agent gets a chance to repeat the
sequence again for more reward. This means higher reward
directly translates into how well the pad sequence has been
memorized. An image of the scenario is provided in App.
Figure 8. There is the restriction that contiguous pads in the
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Figure 3. Learning curves for the gating mechanisms, along with MERLIN score at 100 billion frames as a reference point. We can see
that the GRU performs as well as any other gating mechanism on the reactive set of tasks. On the memory environments, the GRU gating
has a significant gain in learning speed and attains the highest final performance at the fastest rate. We plot both mean (bold) and the
individual 6-8 hyperparameter samples per model (light).

sequence must be contiguous in space, i.e. the next pad in
the sequence can only be in the Moore neighborhood of the
previous pad. No pad can be pressed twice in the sequence.

We present two results in this environment in Figure 5. The
first measures the final performance of the trained models as
a function of the pad size. We can see that LSTM performs
badly on all 3 pad sizes, and performs worse as the pad size
increases from 2 to 4. The GTrXL performs much better,
and almost instantly solves the environment with its much
more expressive memory. On the center and right images,
we provide learning curves for the 2× 2 and 4× 4 Numpad
environments, and show that even when the LSTM is trained
twice as long it does not reach GTrXL’s performance.

4.3. Gating Variants + Identity Map Reordering

We demonstrated that the GRU-type-gated GTrXL can
achieve state-of-the-art results on DMLab-30, surpassing
both a deep LSTM and an external memory architecture,
and also that the GTrXL has a memory which scales better
with the memory horizon of the environment. However, the
question remains whether the expressive gating mechanisms
of the GRU could be replaced by simpler alternatives. In
this section, we perform extensive ablations on the gating
variants described in Section 3.3, and show that the GTrXL
(GRU) has improvements in learning speed, final perfor-
mance and optimization stability over all other models, even
when controlling for the number of parameters.

4.3.1. PERFORMANCE ABLATION

We first report the performance of the gating variants in
DMLab-30. Table 1 and Figure 3 show the final perfor-
mance and training curves of the various gating types in
both the memory / reactive split, respectively. The canonical
TrXL completely fails to learn, while the TrXL-I improves

Model Mean Human
Norm. Score

# Param.
Millions

LSTM 99.3 ± 1.0 9.25M
Large LSTM 103.5 ± 0.9 51.3M

TrXL 5.0 ± 0.2 28.6M
TrXL-I 107.0 ± 1.2 28.6M

Thin GTrXL (GRU) 111.5 ± 0.6 22.4M
GTrXL (GRU) 117.6 ± 0.3 66.4M
GTrXL (Input) 51.2 ± 13.2 34.9M

GTrXL (Output) 112.8 ± 0.8 34.9M
GTrXL (Highway) 90.9 ± 12.9 34.9M
GTrXL (SigTanh) 101.0 ± 1.3 41.2M

Table 2. Parameter-controlled ablation. We report standard error
of the means of 6-8 runs per model.

Model % Diverged
LSTM 0%
TrXL 0%

TrXL-I 16%
GTrXL (GRU) 0%

GTrXL (Output) 12%

Table 3. Percentage of the 25 parameter settings where the training
loss diverged within 2 billion env. steps. We do not report numbers
for GTrXL gating types that were unstable in DMLab-30. For
diverged runs we plot the returns in Figure 6 as 0 afterwards.

over the LSTM. Of the gating varieties, the GTrXL (Out-
put) can recover a large amount of the performance of the
GTrXL (GRU), especially in the reactive set, but as shown
in Sec. 4.3.2 is generally far less stable. The GTrXL (Input)
performs worse than even the TrXL-I, reinforcing the iden-
tity map path hypothesis. Finally, the GTrXL (Highway)
and GTrXL (SigTanh) are more sensitive to the hyperpa-
rameter settings compared to the alternatives, with some
settings doing worse than TrXL-I.
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Figure 4. Learning curves comparing a thinner GTrXL (GRU) with half the embedding dimension of the other presented gated variants
and TrXL baselines. The Thin GTrXL (GRU) has fewer parameters than any other model presented but still matches the performance of
the best performing counterpart, the GTrXL (Output), which has over 10 million more parameters. We plot both mean (bold) and 6-8
hyperparameter settings (light) per model.

4.3.2. HYPERPARAMETER AND SEED SENSITIVITY

Beyond improved performance, we next demonstrate a sig-
nificant reduction in hyperparameter and seed sensitivity for
the GTrXL (GRU) compared to baselines and other GTrXL
variants. We use the “Memory Maze” environment (App.
Fig.8), a memory-based navigation task in which the agent
must discover the location of an apple randomly placed in
a maze. The agent receives a positive reward for collecting
the apple and is then teleported to a random location in the
maze, with the apple’s position held fixed. The agent can
make use of landmarks situated around the room to return
as quickly as possible to the apple for subsequent rewards.
Therefore, an effective mapping of the environment results
in more frequent returns to the apple and higher reward.

We chose to perform the sensitivity ablation on Memory
Maze because (1) it requires the use of long-range mem-
ory to be effective and (2) it includes both continuous and
discrete action sets (details in Appendix B) which makes
optimization more difficult. In Figure 6, we sample 25 inde-
pendent V-MPO hyperparameter settings from a wide range
of values and train the networks to 2 billion environment
steps (see Appendix C). Then, at various points in training
(0.5B, 1.0B and 2.0B), we rank all runs by their mean return
and plot this ranking. Models with curves which are both
higher and flatter are thus more robust to hyperparameters
and random seeds. Our results demonstrate that (1) the
GTrXL (GRU) can learn this challenging memory environ-
ment in much fewer environment steps than LSTM, and
(2) that GTrXL (GRU) beats the other gating variants in
stability by a large margin, thereby offering a substantial
reduction in necessary hyperparameter tuning. The values
in Table 3 list what percentage of the 25 runs per model had
losses that diverged to infinity. The only model reaching
human performance in 2 billion environment steps is the
GTrXL (GRU), with 10 runs having a mean score > 8.

4.3.3. PARAMETER COUNT-CONTROLLED
COMPARISONS

For the final gating ablation, we compare transformer vari-
ants while tracking their total parameter count to control for
the increase in capacity caused by the introduction of addi-
tional parameters in the gating mechanisms. To demonstrate
that the advantages of the GTrXL (GRU) are not solely due
to an increase in parameter count, we halve the number of at-
tention heads (which also effectively halves the embedding
dimension due to the convention that the embedding size
is the number of heads multiplied by the attention head di-
mension). The effect is a substantial reduction in parameter
count, resulting in less parameters than even the canonical
TrXL. Fig. 4 and Tab. 2 compare the different models to
the “Thin” GTrXL (GRU), with Tab. 2 listing the parameter
counts. We include a parameter-matched LSTM model with
12 layers and 512 hidden size. The Thin GTrXL (GRU)
surpasses every other model except the GTrXL (GRU), even
surpassing the next best-performing model, the GTrXL (Out-
put), with over 10 million less parameters.

5. Related Work
Gating has been shown to be effective to address the vanish-
ing gradient problem and thus improve the learnability of
recurrent models. LSTM networks (Hochreiter & Schmid-
huber, 1997; Graves, 2013) rely on an input, forget and
output gate that protect the update of the cell. GRU (Chung
et al., 2014; Cho et al., 2014) is another popular gated recur-
rent architecture that simplifies the LSTM cell, reducing the
number of gates to two. Finding an optimal gating mecha-
nism remains an active area of research, with other existing
proposals (Krause et al., 2016; Kalchbrenner et al., 2015;
Wu et al., 2016), as well as works trying to discover opti-
mal gating by neural architecture search (Zoph & Le, 2017)
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Figure 5. Numpad results demonstrating that the GTrXL has much better memory scaling properties than LSTM. Left: As the Numpad
environment’s memory requirement increases (because of larger pad size), the GTrXL suffers much less than LSTM. However, because of
the combinatorial nature of Numpad, the GTrXL eventually also starts dropping in performance at 4x4. We plot mean and standard error
of the last 200 episodes after training each model for 0.15B, 1.0B and 2.0B environment steps for Numpad size 2, 3 and 4, respectively.
Center, Right: Learning curves for the GTrXL on 2 × 2 and 4 × 4 Numpad. Even when the LSTM is trained for twice as long, the
GTrXL still has a substantial improvement over it. We plot 5 hyperparameter settings per model for learning curves.

Figure 6. Sensitivity analysis of GTrXL variants versus TrXL and LSTM baselines. We sample 25 different hyperparameter sets and seeds
and plot the ranked average return at 3 points during training (0.5B, 1.0B and 2.0B environment steps). Higher and flatter lines indicate
more robust architectures. The same hyperparameter sampling distributions were used across models (see Appendix C). We plot human
performance as a dotted line.

More generally, gating and multiplicative interactions have a
long history (Rumelhart et al., 1986). Gating has been inves-
tigated previously for improving the representational power
of feedforward and recurrent models (Van den Oord et al.,
2016; Dauphin et al., 2017), as well as learnability (Srivas-
tava et al., 2015; Zilly et al., 2017). Initialization has played
a crucial role in making deep models trainable (LeCun et al.,
1998; Glorot & Bengio, 2010; Sutskever et al., 2013).

There has been a wide variety of work looking at improving
memory in reinforcement learning agents. External memory
approaches typically have a regular feedforward or recur-
rent policy interact with a memory database through read
and write operations. Priors are induced through the design
of the specific read/write operations, such as those resem-
bling a digital computer (Wayne et al., 2018; Graves et al.,
2016) or an environment map (Parisotto & Salakhutdinov,
2018; Gupta et al., 2017). An alternative non-parametric
perspective to memory stores an entire replay buffer of the
agent’s past observations, which is made available for the

agent to itself reason over either through fixed rules (Blun-
dell et al., 2016) or an attention operation (Pritzel et al.,
2017). Others have looked at improving performance of
LSTM agents by extending the architecture with stacked
hierarchical connections / multiple temporal scales and aux-
iliary losses (Jaderberg et al., 2019; Stooke et al., 2019)
or allowing an inner-loop update to the RNN weights (Mi-
coni et al., 2018). Other work has examined self-attention
in the context of exploiting relational structure within the
input-space (Zambaldi et al., 2019) or within recurrent mem-
ories (Santoro et al., 2018).

Concurrent with this paper, several works have exam-
ined stabilizing transformers in the supervised learning set-
ting. (Xiong et al., 2020) demonstrated that the ”pre-norm”
placement, which we referred to as ”TrXL-I” in this work,
provided stabilization benefits and avoided the otherwise
necessary use of a learning rate schedule for large language
models. They further provided some theoretical analysis
on the gradient path when using the different layer norm
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placements. A similar examination was done by (Nguyen &
Salazar, 2019), which showed that the prenorm placement
improved stability but sometimes at the cost of lower final
performance. Finally, Working Memory Graphs (Loynd
et al., 2019) applied a transformer over a recurrent mem-
ory bank and demonstrated similar improvements in RL
applications over LSTM baselines.

6. Conclusion
In this paper we provided evidence that confirms previous
observations in the literature that standard transformer mod-
els are unstable to train in the RL setting and often fail to
learn completely (Mishra et al., 2018). We presented a new
architectural variant of the transformer model, the GTrXL,
which has increased performance, more stable optimization,
and greater robustness to initial seed and hyperparameters
than the canonical architecture. The key contributions of
the GTrXL are reordered layer normalization modules and
a gating layer instead of the standard residual connection.
We performed extensive ablation experiments testing the ro-
bustness, ease of optimization and final performance of the
gating layer variations, as well as the effect of the reordered
layer normalization. These results empirically demonstrate
that the GRU-type gating performs best across all metrics,
exhibiting comparable robustness to hyperparameters and
random seeds as an LSTM while still maintaining a per-
formance improvement. Furthermore, the GTrXL (GRU)
learns faster, more stably and achieves higher final perfor-
mance (even when controlled for parameters) than the other
gating variants on the challenging multitask DMLab-30
benchmark suite. Having demonstrated substantial and con-
sistent improvement in DMLab-30, Numpad and Memory
Maze over the ubiquitous LSTM architectures currently in
use, the GTrXL makes the case for wider adoption of trans-
formers in RL. A core benefit of the transformer architecture
is its ability to scale to very large and deep models, and to
effectively utilize this additional capacity in larger datasets.
In future work, we hope to test the limits of the GTrXL’s
ability to scale in the RL setting by providing it with a large
and varied set of training environments.
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