Stabilizing Transformers for Reinforcement Learning

Appendix
A. Gated Identity Initialization Ablation

All applicable gating variants in the main text were trained
with the gated identity initialization. We observed in initial
Memory Maze results that the gated identity initialization
significantly improved optimization stability and learning
speed. Figure 7 compares an otherwise identical 4-layer
GTrXL (GRU) trained with and without the gated identity
initialization. Similarly to the previous sensitivity plots,
we plot the ranked mean return of 10 runs at various times
during training. As can be seen from Fig. 7, there is a signif-
icant gap caused by the bias initialization, suggesting that
preconditioning the transformer to be close to Markovian
results in large learning speed gains.

B. Environment Details

Numpad: Numpad (Fig. 8, left) has three actions, two of
which move the sphere towards some direction in the x,y
plane and the third allows the agent to jump in order to get
over a pad faster. The observation consists of a variety of
proprioceptive information (e.g. position, velocity, accel-
eration) as well as which pads in the sequence have been
correctly activated (these will shut off if an incorrect pad
is later hit), and the previous action and reward. Episodes
last a fixed 500 steps and the agent can repeat the correct
sequence any number of times to receive reward. Observa-
tions were processed using a simple 2-layer MLP with tanh
activations to produce the transformer’s input embedding.

DMLab-30: Example image observations are shown in
Fig. 9. Ignoring the “jump” and “crouch” actions which
we do not use, an action in the native DMLab action space
consists of 5 integers whose meaning and allowed values are
given in Table 4. Following previous work on DMLab (Hes-
sel et al., 2018), we used the reduced action set given in
Table 5 with an action repeat of 4. Observations are 72 x 96
RGB images. Some levels require a language input, and for
that all models use an additional 64-dimension LSTM to
process the sentence.

In (Wayne et al., 2018), the DMLab Arbitrary Visuomotor
Mapping task was specifically used to highlight the MER-
LIN architecture’s ability to utilize memory. In Figure 10
we show that, given a similarly reduced action set as used in
(Wayne et al., 2018), see Table 6, the GTrXL architecture
can also reliably attain human-level performance on this
task.

Memory Maze: An action in the native Memory Maze
action space consists of 8 continuous actions and a single
discrete action whose meaning and allowed values are given
in Table 7. Unlike for DMLab, we used a hybrid continuous-
discrete distribution (Neunert et al., 2019) to directly output

ACTION NAME RANGE
LOOK_LEFT_RIGHT_PIXELS_PER_FRAME [-512,512]
LOOK_DOWN_UP_PIXELS_PER_FRAME [-512,512]
STRAFE_LEFT_RIGHT [-1, 1]
MOVE_BACK_FORWARD [-1,1]
FIRE [0, 1]
Table 4. Native action space for DMLab. See https:

//github.com/deepmind/lab/blob/master/docs/
users/actions.md for more details.

NATIVE DMLAB ACTION

0,
0,

ACTION

Forward (FW)
Backward (BW)

Strafe left
Strafe right

Small look left (LL)
Small look right (LR)
Large look left (LL)
Large look right (LR)

Look down
Look up

FW + small LL
FW + small LR
FW + large LL
FW + large LR

Fire

o
~

=
~

o
~

~

o
~

~

’
’
’
’

o
~
~ 0~

~

|
o O

O OO OO OO OO oo

~ 0~

~ 0~
~ 0~ 0~ 0~
S S S~ O~
~ N~ 0~ 0~

~ 0~
~ 0~
~ ~

10,
-10,

o O
~ 0~ 0~ 0~
~ 0~ 0~ 0~
~ S S~ 0~
~ 0~ N~ 0~

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

|
O PRPRPRE OO OO0 OO

~

H OO O0OO0O OO OO0 OO oo

O OO OO OO OO0 Oo =P

~

~

’

Table 5. Simplified action set for DMLab from Hessel et al. (2018).

ACTION NATIVE DMLAB ACTION

Small look left (LL) [-10, 0o, 0, 0, 0]
Small look right (LR) [10, 0, 0, 0, 0]
Look down [o, 10, 0, 0, 0]
Look up [o0, -10, 0, 0, 0]
No-op [0, 0, 0, 0, 0]

Table 6. Simplified action set for DMLab Arbitrary Visuomotor
Mapping (AVM). This action set is the same as the one used for
AVM in (Wayne et al., 2018) but with an additional no-op, which
may also be replaced with the Fire action.

policies in the game’s native action space. Observations are
72 x 96 RGB images. A visual description of the environ-
ment is shown in Fig. 8.

Image Encoder: For DMLab-30 and Memory Maze, we
used the same image encoder as in (Song et al., 2020) for
multitask DMLab-30. The ResNet was adapted from Hessel
et al. (2018) and each of its layer blocks consists of a (3 x 3,
stride 1) convolution, followed by (3 x 3, stride 2) max-
pooling, followed by 2 3 x 3 residual blocks with ReLLU
non-linearities.

https://github.com/deepmind/lab/blob/master/docs/users/actions.md
https://github.com/deepmind/lab/blob/master/docs/users/actions.md
https://github.com/deepmind/lab/blob/master/docs/users/actions.md

Stabilizing Transformers for Reinforcement Learning

Gated Identity Initialization Ablation (1.0B env steps) Gated Identity Initialization Ablation (2.0B env steps) Gated Identity Initialization Ablation (4.0B env steps)
Memory Maze Memory Maze

Memory Maze

g4 — GTrXL (GRU) w/ Gated Identity Init.
GTrXL (GRU) w/o Gated Identity Init.
Human

Mean return

Figure 7. Ablation of the gated identity initialization on Memory Maze by comparing 10 runs of a model run with the bias initialization
and 10 runs of a model without. Every run has independently sampled hyperparameters from a distribution. We plot the ranked mean
return of the 10 runs of each model at 1, 2, and 4 billion environment steps. Each mean return is the average of the past 200 episodes at
the point of the model snapshot. We plot human performance as a dotted line.

Figure 8. Left: The Numpad environment, showing the control-
lable “sphere” robot and a full 3x3 pad. Pads are activated when
the robot collides with their center. The robot can move on the
plane as well as jump to avoid pressing numbers. Right: Top
down view of “Memory Maze”: (1) Central chamber, (2) blocks
among which the apple is placed, (3) landmarks the agent can use
to locate the apple, (4) one of the possible location of the apple.

ACTION NAME RANGE
LOOK_LEFT_RIGHT [-1.0, 1.0]
LOOK_DOWN_UP [-1.0, 1.0]
STRAFE_LEFT_RIGHT [-1.0, 1.0]
MOVE_BACK_FORWARD [-1.0, 1.0]
HAND_ROTATE_AROUND_RIGHT [-1.0, 1.0]
HAND_ROTATE_AROUND_UP [-1.0, 1.0]
HAND_ROTATE_AROUND_FORWARD [-1.0, 1.0]
HAND_PUSH_PULL [-10.0, 10.0]
HAND_GRIP {0, 1}

Figure 9. A set of example observations taken from DMLab-30
Table 7. Hybrid action set for Memory Maze, consisting of 8 con- levels.
tinuous actions and a single discrete action.

Stabilizing Transformers for Reinforcement Learning

70 -

60 -

50

40 -

30 o

Episode reward

20 A

/chlab_arbitrary_visuomotor_mapping

— GTrXL (10)
Human

10 A

[
T T T
0.0 0.5 1.0 15 2.0

Environment (4xagent) steps (B)

Figure 10. Learning curves for the DMLab Arbitrary Visuomotor
Mapping task using a reduced action set.

Agent Output: As in (Song et al., 2020), in all cases we use
a 256-unit MLP with a linear output to get the policy logits
(for discrete actions), Gaussian distribution parameters (for
continuous actions) or value function estimates.

C. Experimental details

For all experiments, beyond sampling independent random
seeds, each run also has V-MPO hyperparameters sampled
from a distribution (see Table 8). The sampled hyperparame-
ters are kept fixed across all models for a specific experiment,
meaning that if one of the €, sampled is 0.002, then all mod-
els will have 1 run with ¢, = 0.002 and so on for the rest
of the samples. The exception is for the DMLab-30 LSTM,
where a more constrained range was found to perform better
in preliminary experiments. Each model had 8 seeds started,
but not all runs ran to completion due to compute issues.
These hyperparameter settings were dropped randomly and
not due to poor environment performance. We report how
many seeds ran to completion for all models. At least 6
seeds finished for every model tested. We list architecture
details by section below. All LSTM models have residual
skip connections in depth. We used normal xavier initial-
ization (Glorot & Bengio, 2010) for all submodules except
the gating layers, which used truncated normal initialization
with standard error 1/+/D where D is the input dimension
of the weight matrix.

C.1. Training setup

All experiments in this work were carried out in an actor-
learner framework (Espeholt et al., 2018) that utilizes TF-
Replicator (Buchlovsky et al., 2019) for distributed training

Figure 11. The 25 hyperparameter settings sampled for the sensi-
tivity ablation (Sec. 4.3.2). X-axis is in log scale and values are
sampled from the corresponding ranges given in Table 8.

on TPUs in the 16-core configuration (Google, 2018). “Ac-
tors” running on CPUs performed network inference and
interactions with the environment, and transmitted the re-
sulting trajectories to the centralised “learner*.

D. Multi-Head Attention Details
D.1. Multi-Head Attention

The Multi-Head Attention (MHA) submodule computes
in parallel H soft-attention operations for every time step,
producing an output tensor Y) € RT*P, MHA operates
by first calculating the query QY € R *Txd keys K() ¢
RAXTxd “and values V) € REXT*d (where d = D/H)
through trainable linear projections Wg), WI((Z), and W‘(/l),
respectively, and then using the combined @, K, V, tensors
to compute the soft attention. A residual connection (He
et al., 2016a) to the resulting embedding E() is then applied
and finally layer normalization (Ba et al., 2016).

MHA (E(¢-1):

1) (- 1) (- 1) (-
QW KO v = Wé)E(l D, WI(()E(I D, W‘(,)E(l 1)

aﬁfﬁm = QntdKnma
W}Eltzn = MaskedSoftmax(a (), axis=m)

?gzlt)d — W(l) V(l)

htm " hmd
vy = pt=1 4 Linear(?m)
Yy = LN(Y®)

where we used Einstein summation notation to denote
the tensor multiplications, MaskedSoftmax is a causally-
masked softmax to prevent addressing future information,
Linear is a linear layer applied per time-step and we omit
reshaping operations for simplicity.

Stabilizing Transformers for Reinforcement Learning

Hyperparameter Environment
DMLab-30 Numpad Memory Maze
Batch Size 128 128 128
Unroll Length 95 95 95
Discount 0.99 0.99 0.99
Action Repeat 4 1 4
Pixel Control Cost 2x 1073 - -
Target Update Period 10 10 10
Initial n 1.0 10.0 1.0
Initial v 5.0 - 5.0
Initial o, - 1.0 1.0
Initial as - 1.0 1.0
€ 0.1 0.1 0.1
. LSTM [0.001, 0.025)
€a (log-uniform) —yosey Viriants [0.001, 0.1)] [0.001,0.1)
€a,, (log-uniform) - [0.005, 0.01) [0.005,0.01)
€ay, (log-uniform) - [5x107%,4x 107 [5x 1076, 4 x 107°)

Table 8. V-MPO hyperparameters per environment.

. Hidden . Runs

Model # Layers Head Dim. # Heads Dim. Memory Size Completed
LSTM 3 - - 256 - 8
Large LSTM 12 - - 512 - 6
TrXL 12 64 8 512 512 6
TrXL-I 12 64 8 512 512 6
GTrXL (GRU) 12 64 8 512 512 8
GTrXL (Input) 12 64 8 512 512 6
GTrXL (Output) 12 64 8 512 512 7
GTrXL (Highway) 12 64 8 512 512 7
GTrXL (SigTanh) 12 64 8 512 512 6
Thin GTrXL (GRU) 12 64 4 256 512 8

Table 9. DMLab-30 Ablation Architecture Details. We report the number of runs per model that ran to completion (i.e. 10 billion
environment steps). We follow the standard convention that the hidden/embedding dimension of transformers is equal to the head
dimension multiplied by the number of heads. (Sec. 4.1 & Sec. 4.3).

. Hidden . Runs
Model # Layers Head Dim. # Heads Dim. Memory Size Completed
LSTM 3 - - 256 - 5
GTrXL (GRU) 12 64 8 256 512 5

Table 10. Numpad Architecture Details. (Sec. 4.2).

Model #Layers Head Dim. # Heads H];?ifn Memory Size
LSTM 3 - - 256 -
TrXL 12 64 8 256 512
TrXL-I 12 64 8 256 512
GTrXL (GRU) 12 64 8 256 512
GTrXL (Output) 12 64 8 256 512

Table 11. Sensitivity ablation architecture details (Sec. 4.3.2).

Stabilizing Transformers for Reinforcement Learning

. Hidden . Runs
Model #Layers Head Dim. # Heads Dim Memory Size Completed
GTrXL (GRU) 4 64 4 256 512 8

Table 12. Gated identity initialization ablation architecture details (Sec. A).

D.2. Relative Multi-Head Attention

The basic MHA operation does not take sequence order into
account explicitly because it is permutation invariant, so
positional encodings are a widely used solution in domains
like language where order is an important semantic cue,
appearing in the original transformer architecture (Vaswani
et al., 2017). To enable a much larger contextual horizon
than would otherwise be possible, we use the relative posi-
tion encodings and memory scheme described in (Dai et al.,
2019). In this setting, there is an additional 7 -step memory
tensor M) € R7*P which is treated as constant during
weight updates.

RMHA (M (=1 pU=1):

B0 = (a0, g
QW KO, v = W pu=1 w® Et-1 wd fe-n
l
R=wlao

!
aéﬁm = Qntalnma + QniaRnma
+ UnsdKntm + VixaBnmd

W,Elt)m = MaskedSoftmax(a!), axis=m)

() l l
Yita = Wy szn)Ld

htm
vy = pt=1 4 Linear(?w)
YO = LN(Y®)

where @ is the standard sinusoid encoding matrix,
u®, v € RH*? are trainable parameters, the * repre-
sents the broadcast operation, and W, is a linear projection
used to produce the relative location-based keys (see (Dai
et al., 2019) for a detailed derivation).

D.3. Identity Map Reordering

The Identity Map Reordering modifies the standard trans-
former formulation as follows: the layer norm operations are
applied only to the input of the sub-module and a non-linear
ReLU activation is applied to the output stream.

v = RMHA(LN(SG(M =1, EC-D))) @4
y() — p-1) —|—ReLU(?(l)) o)
EY = fOaNy®)) ©)
ED =y® 4 ReLU(EY) (7

See Figure 1 (Center) for a visual depiction of the TrXL-I.

Model | Median HNR
LSTM | 136.6 =34
GTrXL | 137.1 =£5.0

Table 13. Final human-normalized median return across all 57
Atari levels for LSTM and GTrXL at 11.4 billion environment
steps (equivalent to 200 million per individual game). Both models
are 256 dimensions in width. We include standard error over runs.

160 - Atari-57

140
120 o R
100 4 7
80 -
60 -
40

GTrxL
L5TM

20 4

Median Human Normalized Scores

O _| T T
0.0 02 04

0.8 1.0
1lel0

T
0.6
Env. Steps

Figure 12. Median human-normalized returns as training pro-
gresses for both GTrXL and LSTM models. We run 8 hyper-
parameter settings per model.

E. Atari-57 Results

In this section, we run the GTrXL on the multitask Atari-57
benchmark (see Fig. 12 and Tab. 13). Although Atari-57
was not designed specifically to test an agent’s memory ca-
pabilities, we include these results here to demonstrate that
we suffer no performance regression on a popular environ-
ment suite, providing further evidence that GTrXL can be
used as an architectural replacement to the LSTM.

The LSTM and GTrXL are matched in width at 256 dimen-
sions. The GTrXL is 12 layers deep to show our model’s
learning stability even at large capacity. The LSTM archi-
tecture matches the one reported in (Song et al., 2020). We
train for 11.4 billion environment steps, equivalent to 200
million per environment. We run 8 hyperparameter settings
per model.

Stabilizing Transformers for Reinforcement Learning

Alignment between embedding and layer output

1.0+

0.8

0.6 1

0.4 4

cosine alignment

0.2
—— nonorm

prenorm
0.04 — postnorm
—— bothnorm

T
0 5 10 15 20 25
layer depth

Figure 13. Alignment between embedding (network input) and
layer features for a randomly-initialized deep linear residual net-
work. We can see that the only layer norm placement which main-
tains high alignment is the identity map re-ordering (prenorm for
short in the legend). Averaged over 1000 random 256-dimensional
embeddings sampled from a standard Gaussian. Shaded regions
represents standard error.

F. Motivating the Identity Map Re-ordering

In this section, we present further evidence corroborating
the hypothesis that the identity map re-odering of the layer
normalization operation can enable an initial reactive policy
compared to other placements of the layer norm.

To show this, we sampled a randomly-initialized deep
residual network. For simplicity, we used a single fully-
connected layer in each residual stream in place of the MLP
or MHA sub-module in the transformer blocks. Each layer
is randomly initialized using the PyTorch (Paszke et al.,
2019) “torch.nn.Linear” default initializer and does not use
non-linear activations. Let x be the input to a residual block,
f(x) the residual module, and y the output of the residual
block. We consider 4 different placements of layer normal-
ization within these randomly-initialized networks.

1. nonorm (y = x+ f(x)): represents a standard residual
network without any normalization operations.

2. prenorm (y = x + f(LN(x))): is shorthand for the
identity map re-ordering, where layer normalization is
applied only before input to the residual stream fully-
connected layer.

3. postnorm (y = LN (z + f(z))): is the original trans-
former layer norm placement, applied after residual
recombination.

4. bothnorm (y = LN(z + f(LN(z))): combines
prenorm and postnorm, i.e. applies 2 layer norms

per residual block: one applied on the input to the
residual stream, and the other applied after residual
recombination.

We design an experiment to measure how easily an input
state embedding will pass unchanged to the policy output
layer for each layer norm placement described above. To
do this, we sample 1000 256-dimensional embeddings from
a standard Gaussian and pass it through a 24-layer linear
residual network, constructed as described earlier. We then
evaluate the cosine alignment of the input embedding to
each layer’s feature embedding, to see how much noise is
injected as the embedding progresses through the residual
blocks. We show in Fig. 13 that the only layer norm place-
ment that maintains high alignment to the input embedding
as a function of depth is the prenorm placement, or identity
map re-ordering. In particular, we can see that the postnorm,
bothnorm and to a lesser extent nonorm placements exhibit
a very rapid decay of initial feature alignment, meaning
by the 12th layer extracting information directly from the
state becomes much more difficult. In contrast, prenorm is
almost always aligned to the initial embedding, with barely
any degradation throughout the entire 24-layers.

