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Abstract

Mixture of linear regressions is a popular learning
theoretic model that is used widely to represent
heterogeneous data. In the simplest form, this
model assumes that the labels are generated from
either of two different linear models and mixed
together. Recent works of Yin et al. and Krish-
namurthy et al., 2019, focus on an experimental
design setting of model recovery for this problem.
It is assumed that the features can be designed and
queried with to obtain their label. When queried,
an oracle randomly selects one of the two dif-
ferent sparse linear models and generates a label
accordingly. How many such oracle queries are
needed to recover both of the models simultane-
ously? This question can also be thought of as
a generalization of the well-known compressed
sensing problem (Candès and Tao, 2005, Donoho,
2006). In this work we address this query com-
plexity problem and provide efficient algorithms
that improves on the previously best known re-
sults.

1. Introduction
Suppose, there are two unknown distinct vectors β1, β2 ∈
Rn, that we want to recover. We can measure these vectors
by taking linear samples, however the linear samples come
without the identifier of the vectors. To make this statement
rigorous, assume the presence of an oracle O : Rn → R
which, when queried with a vector x ∈ Rn, returns the
noisy output y ∈ R:

y = 〈x, β〉+ ζ (1)

where β is chosen uniformly from {β1, β2} and ζ is additive
Gaussian noise with zero mean and known variance σ2 > 0.
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We will refer to the values returned by the oracle given these
queries as samples.

For a β ∈ Rn, the best k-sparse approximation β(k) is
defined to be the vector obtained from β where all except
the k-largest (by absolute value) coordinates are set to 0.
For each β ∈ {β1, β2}, our objective in this setting is to
return a sparse approximation of β̂ using minimum number
of queries such that

||β̂ − β|| ≤ c||β − β(k)||+ γ

where c is an absolute constant, γ is a user defined nonneg-
ative parameter representing the precision up to which we
want to recover the unknown vectors, and the norms are
arbitrary. For any algorithm that performs this task, the total
number of samples acquired from the oracle is referred to
as the query complexity.

If we had one, instead of two unknown vectors, then
the problem would exactly be that of compressed sensing
(Candès et al., 2006; Donoho, 2006). However having two
vectors makes this problem significantly different and chal-
lenging. Further, if we allow γ = Ω(‖β1 − β2‖), then we
can treat all the samples to be coming from the same vector
and output only a single vector as an approximation to both
vectors. So in practice, obtaining γ = o(‖β1−β2‖) is more
interesting.

On another technical note, under this setting it is always
possible to make the noise ζ negligible by increasing the
norm of the query x. To make the problem well-posed, let
us define the Signal-to-Noise Ratio (SNR) for a query x:

SNR(x) ,
E|〈x, β1 − β2〉|2

Eζ2

where the expectation is over the randomness of the
query. Furthermore define the overall SNR to be SNR :=
maxx SNR(x), where the maximization is over all the
queries used in the recovery process.

1.1. Most Relevant Works

Previous works that are most relevant to our problem are by
Yin et al. (Yin et al., 2019) and Krishnamurthy et al. (Kr-
ishnamurthy et al., 2019). Both of these papers address
the exact same problem as above; but provide results under
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some restrictive conditions on the unknown vectors. For
example, the results of (Yin et al., 2019) is valid only when,

• the unknown vectors are exactly k-sparse, i.e., has at
most k nonzero entries;

• it must hold that,

β1
j 6= β2

j for each j ∈ supp
(
β1
)
∩ supp

(
β2
)
,

where βj denotes the jth coordinate of β, and supp(β)
denotes the set of nonzero coordinates of β;

• for some ε > 0 , β1, β2 ∈ {0,±ε,±2ε,±3ε, . . .}n.

All of these assumptions, especially the later two, are
severely restrictive. While the results of (Krishnamurthy
et al., 2019) are valid without the first two assumptions, they
fail to get rid of the third, an assumption of the unknown
vectors always taking discrete values. This is in particular
unfavorable, because the resultant query/sample complex-
ities (and hence the time complexity) in both the above
papers has an exponential dependence on 1

ε .

1.2. Our Main Result

In contrast to these earlier results, we provide a generic
sample complexity result that does not require any of the
assumptions used by the predecessor works. Our main result
is following.
Theorem 1. [Main Result] Let NF := γ

σ (the noise factor)
where γ > 0 is a parameter representing the desired recov-
ery precision and σ > 0 is the standard deviation of ζ in
Eq. (1).

Case 1. For any γ <
∣∣∣∣β1 − β2

∣∣∣∣
2
/2, there exists an algo-

rithm that makes

O

(
k log n log k

⌈ log k

log(
√
SNR/NF)

⌉⌈ 1

NF4
√
SNR

+
1

NF2

⌉)
queries to recover β̂1, β̂2, estimates of β1, β2, with high
probability such that , for i = 1, 2,

||β̂i − βπ(i)||2 ≤
c||βi − βi(k)||1√

k
+O(γ)

where π : {1, 2} → {1, 2} is some permutation of {1, 2}
and c is a universal constant.

Case 2. For any γ = Ω(
∣∣∣∣β1 − β2

∣∣∣∣
2
), there exists an

algorithm that makes O
(
k log n

⌈
log k
SNR

⌉)
queries to recover

β̂, estimates of both β1, β2, with high probability such that ,
for both i = 1, 2,

||β̂ − βi||2 ≤
c||βi − βi(k)||1√

k
+O(γ)

where c is a universal constant.

For a γ = Θ(
∣∣∣∣β1 − β2

∣∣∣∣
2
) the first case of the Theorem

holds but using the second case may give better result in
that regime of precision. The second case of the theorem
shows that if we allow a rather large precision error, then
the number of queries is similar to the required number
for recovering a single vector. This is expected, because
in this case we can find just one line approximating both
regressions.

The recovery guarantee that we are providing (an `2-`1 guar-
antee) is in line with the standard guarantees of the com-
pressed sensing literature. In this paper, we are interested in
the regime log n ≤ k � n as in compressed sensing. Note
that, our number of required samples scales linearly with k
and has only poly-logarithmic scaling with n, and polyno-
mial scaling with the noise σ. In the previous works (Yin
et al., 2019), (Krishnamurthy et al., 2019), the complexities
scaled exponentially with noise.

Furthermore, the query complexity of our algorithm de-
creases with the Euclidean distance between the vectors (or
the ‘gap’) - which makes sense intuitively. Consider the
case when when we want a precise recovery (γ very small).
It turns out that when the gap is large, the query complex-
ity varies as O((log gap)−1) and when the gap is small the
query complexity scale as O((gap log gap)−1).

Remark 1 (The zero noise case). When σ = 0, i.e., the
samples are not noisy, the problem is still nontrivial, and
is not covered by the statement of Theorem 1. However
this case is strictly simpler to handle as it will involve only
the alignment step (as will be discussed later), and not the
mixture learning step. Recovery with γ = 0 is possible with
only O(k log n log k) queries (see Appendix F for a more
detailed discussion on the noiseless setting).

1.3. Other Relevant Works

The problem we address can be seen as the active learning
version of learning mixtures of linear regressions. Mixture
of linear regressions is a natural synthesis of mixture models
and linear regression; a generalization of the basic linear
regression problem of learning the best linear relationship
between the labels and the feature vectors. In this general-
ization, each label is stochastically generated by picking a
linear relation uniformly from a set of two or more linear
functions, evaluating this function on the features and pos-
sibly adding noise; the goal is to learn the set of unknown
linear functions. The problem has been studied at least
for past three decades, staring with De Veaux (De Veaux,
1989) with a recent surge of interest (Chaganty & Liang,
2013; Faria & Soromenho, 2010; Städler et al., 2010; Kwon
& Caramanis, 2018; Viele & Tong, 2002; Yi et al., 2014;
2016). In this literature a variety of algorithmic techniques
to obtain polynomial sample complexity were proposed. To
the best of our knowledge, Städler et al. (Städler et al., 2010)
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were the first to impose sparsity on the solutions, where each
linear function depends on only a small number of variables.
However, many of the earlier papers on mixtures of linear
regression, essentially consider the features to be fixed, i.e.,
part of the input, whereas recent works focus on the query-
based model in the sparse setting, where features can be
designed as queries (Yin et al., 2019; Krishnamurthy et al.,
2019). The problem has numerous applications in mod-
elling heterogeneous data arising in medical applications,
behavioral health, and music perception (Yin et al., 2019).

This problem is a generalization of the compressed sensing
problem (Candès et al., 2006; Donoho, 2006). As a building
block to our solution, we use results from exact parameter
learning for Gaussian mixtures. Both compressed sensing
and learning mixtures of distributions (Dasgupta, 1999; Tit-
terington et al., 1985) are immensely popular topics across
statistics, signal processing and machine learning with a
large body of prior work. We refer to an excellent survey
by (Boche et al., 2015) for compressed sensing results (in
particular the results of (Candes et al., 2008) and (Baraniuk
et al., 2008) are useful). For parameter learning in mix-
ture models, we find the results of (Daskalakis et al., 2017;
Daskalakis & Kamath, 2014; Hardt & Price, 2015; Xu et al.,
2016; Balakrishnan et al., 2017; Krishnamurthy et al., 2020)
to be directly relevant.

1.4. Technical Contributions

If the responses to the queries were to contain tags of the
models they are coming from, then we could use rows of
any standard compressed sensing matrix as queries and just
segregate the responses using the tags. Then by running a
compressed sensing recovery on the groups with same tags,
we would be done. In what follows, we try to infer this ‘tag’
information by making redundant queries.

If we repeat just the same query multiple time, the noisy
responses are going to come from a mixture of Gaussians,
with the actual responses being the component means. To
learn the actual responses we rely on methods for parameter
learning in Gaussian mixtures. It turns out that for different
parameter regimes, different methods are best-suited for
our purpose - and it is not known in advance what regime
we would be in. The method of moments is a well-known
procedure for parameter learning in Gaussian mixtures and
rigorous theoretical guarantees on sample complexity ex-
ist (Hardt & Price, 2015). However we are in a specialized
regime of scalar uniform mixtures with known variance;
and we leverage these information to get better sample com-
plexity guarantee for exact parameter learning (Theorem 3).
In particular we show that, in this case the mean and vari-
ance of the mixture are sufficient statistics to recover the
unknown means, as opposed to the first six moments of the
general case (Hardt & Price, 2015). While recovery using

other methods (Algorithms 1 and 4) are straight forward
adaption of known literature, we show that only a small set
of samples are needed to determine what method to use.

It turns out that method of moments still needs significantly
more samples than the other methods. However we can
avoid using method of moments and use a less intensive
method (such as EM, Algorithms 1), provided we are in
a regime when the gap between the component means is
high. The only fact is that the Euclidean distance between
β1 and β2 are far does not guarantee that. However, if
we choose the queries to be Gaussians, then the gap is
indeed high with certain probability. If the queries were
to be generated by any other distribution, then such fact
will require strong anti-concentration inequalities that in
general do not hold. Therefore, we cannot really work
with any standard compressed sensing matrix, but have to
choose Gaussian matrices (which are incidentally also good
standard compressed sensing matrices).

The main technical challenge comes in the next step, align-
ment. For any two queries x,x′, even if we know y1 =
〈β1,x〉, y2 = 〈β2,x〉 and y′1 = 〈β1,x′〉, y′2 = 〈β2,x′〉, we
do not know how to club y1 and y′1 together as their order
could be different. And this is an issue with all pairs of
queries which leaves us with exponential number of possi-
bilities to choose form. We form a simple error-correcting
code to tackle this problem.

For two queries, x,x′, we deal with this issue by designing
two additional queries x + x′and x− x′. Now even if we
mis-align, we can cross-verify with the samples from ‘sum’
query and the ‘difference’ query, and at least one of these
will show inconsistency. We subsequently extend this idea
to align all the samples. Once the samples are all aligned,
we can just use some any recovery algorithm for compressed
sensing to deduce the sparse vectors.

The rest of this paper is organized as follows. We give an
overview of our algorithm in Sec. 2.1 , the actual algorithm
is presented in Algorithm 8, which calls several subroutines.
The process of denoising by Gaussian mixture learning is
described in Sec. 2.2. The alignment problem is discussed
in Sec. 2.3 and the proof of Theorem 1 is wrapped up in
Sec. 2.4. Most proofs are delegated to the appendix in the
supplementary material. Some ‘proof of concept’ simulation
results are also in the appendix.

2. Main Results
2.1. Overview of Our Algorithm

Our scheme to recover the unknown vectors is described be-
low. We will carefully chose the numbers m,m′ so that the
overall query complexity meets the promise of Theorem 1.

• We pick m query vectors x1,x2, . . . ,xm independently,
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each according toN (0, In) where 0 is the n-dimensional
all zero vector and In is the n× n identity matrix.

• (Mixture) We repeatedly query the oracle with xi for Ti
times for all i ∈ [m] in order to offset the noise. The
samples obtained from the repeated querying of xi is
referred to as a batch corresponding to xi. Ti is referred to
as the batchsize of xi. Our objective is to return µ̂i,1 and
µ̂i,2, estimates of 〈xi, β1〉 and 〈xi, β2〉 respectively from
the batch of samples (details in Section 2.2). However,
it will not be possible to label which estimated mean
corresponds to β1 and which one corresponds to β2.

• (Alignment) For some m′ < m and for each i ∈ [m], j ∈
[m′] such that i 6= j, we also query the oracle with the
vectors xi + xj (sum query) and xi − xj (difference
query) repeatedly for T sum

i,j and T diff
i,j times respectively.

Our objective is to cluster the set of estimated means
{µ̂i,1, µ̂i,2}mi=1 into two equally sized clusters such that
all the elements in a particular cluster are good estimates
of querying the same unknown vector.

• Since the queries {xi}mi=1 has the property of being a
good compressed sensing matrix (they satisfy δ-RIP con-
dition, a sufficient condition for `2-`1 recovery in com-
pressed sensing, with high probability), we can formu-
late a convex optimization problem using the estimates
present in each cluster to recover the unknown vectors β1

and β2.

It is evident that the sample (query) complexity will be∑m
i=1 Ti +

∑
i∈[m],j∈[m′]

i 6=j
T sum
i,j + T diff

i,j . In the subsections

below, we will show each step more formally and provide
upper bounds on the sufficient batchsize for each query.

2.2. Recovering Unknown Means from a Batch

For a query x ∈ {x1,x2, . . . ,xm}, notice that the samples
from the batch corresponding to x is distributed according
to a Gaussian mixtureM,

M ,
1

2
N (〈x, β1〉, σ2) +

1

2
N (〈x, β2〉, σ2),

an equally weighted mixture of two Gaussian distributions
having means 〈x, β1〉, 〈x, β2〉 with known variance σ2. For
brevity, let us denote 〈x, β1〉 by µ1 and 〈x, β2〉 by µ2 from
here on in this sub-section. In essence, our objective is to
find the sufficient batchsize of x so that it is possible to esti-
mate 〈x, β1〉 and 〈x, β2〉 upto an additive error of γ. Below,
we go over some methods providing theoretical guarantees
on the sufficient sample complexity for approximating the
means that will be suitable for different parameter regimes.

2.2.1. RECOVERY USING EM ALGORITHM

The Expectation Maximization (EM) algorithm is widely
known, and used for the purpose of parameter learning of
Gaussian mixtures, cf. (Balakrishnan et al., 2017) and (Xu

Algorithm 1 EM(x, σ, T ) Estimate the means 〈x, β1〉,
〈x, β2〉 for a query x using EM algorithm

Require: An oracle O which when queried with a vector
x ∈ Rn returns 〈x, β〉+N (0, σ2) where β is sampled
uniformly from {β1, β2}.

1: for i = 1, 2, . . . , T do
2: Query the oracle O with x and obtain a response yi.
3: end for
4: Set the function w : R3 → R as w(y, µ1, µ2) =

e−(y−µ1)
2/2σ2

(
e−(y−µ1)

2/2σ2

+ e−(y−µ2)
2/2σ2

)−1
.

5: Initialize µ̂0
1, µ̂

0
2 randomly and t = 0.

6: while Until Convergence do
7: µ̂t+1

1 =
∑T
i=1 yiw(yi, µ̂

t
1, µ̂

t
2)/
∑T
i=1 w(yi, µ̂

t
1, µ̂

t
2).

8: µ̂t+1
2 =

∑T
i=1 yiw(yi, µ̂

t
2, µ̂

t
1)/
∑T
i=1 w(yi, µ̂

t
2, µ̂

t
1).

9: t← t+ 1.
10: end while
11: Return µ̂t1, µ̂

t
2

et al., 2016). The EM algorithm tailored towards recovering
the parameters of the mixtureM is described in Algorithm
1. The following result can be derived from (Daskalakis
et al., 2017) (with our terminology) that gives a sample
complexity guarantee of using EM algorithm.

Theorem 2 (Finite sample EM analysis (Daskalakis et al.,
2017)). From an equally weighted two component Gaus-
sian mixture with unknown component means µ1, µ2 and
known and shared variance σ2, a total O

(⌈
σ6/(ε2(µ1 −

µ2)4) log 1/η
⌉)

samples suffice to return µ̂1, µ̂2, such that

for some permutation π : {1, 2} → {1, 2}, for i = 1, 2,∣∣µ̂i − µπ(i)∣∣ ≤ ε
using the EM algorithm with probability at least 1− η.

This theorem implies that EM algorithm requires smaller
number of samples as the separation between the means
|µ1 − µ2| grows larger. However, it is possible to have a
better dependence on |µ1 − µ2|, especially when it is small
compared to σ2.

2.2.2. METHOD OF MOMENTS

Consider any Gaussian mixture with two components,

G , p1N (µ1, σ
2
1) + p2N (µ2, σ

2
2),

where 0 < p1, p2 < 1 and p1 + p2 = 1. Define the variance
of a random variable distributed according to G to be

σ2
G , p1p2((µ1 − µ2)2 + p1σ

2
1 + p2σ

2
2 .

It was shown in (Hardt & Price, 2015) that Θ(σ12
G /ε

12)
samples are both necessary and sufficient to recover the
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unknown parameters µ1, µ2, σ
2
1 , σ

2
2 upto an additive error

of ε. However, in our setting the components of the mixture
M have the same known variance σ2 and further the mix-
ture is equally weighted. Our first contribution is to show
significantly better results for this special case.

Theorem 3. With O
(⌈
σ2
M/ε

2
1, σ

4
M/ε

2
2

⌉
log 1/η

)
samples,

Algorithm 3 returns µ̂1, µ̂2, such that for some permutation
π : {1, 2} → {1, 2}, we have, for i = 1, 2,

∣∣µ̂i − µπ(i)∣∣ ≤
2ε1 + 2

√
ε2 with probability at least 1− η.

This theorem states that O(σ4
M) samples are sufficient to re-

cover the unknown means ofM (as compared to theO(σ12
G )

result for the general case). This is because the mean and
variance are sufficient statistics for this special case (as com-
pared to first six excess moments in the general case). We
first show two technical lemmas providing guarantees on
recovering the mean and the variance of a random variable
X distributed according to M. The procedure to return
M̂1 and M̂2 (estimates of EX and varX respectively) is
described in Algorithm 2.

Lemma 1. O
(⌈
σ2
M/ε

2
1

⌉
log η−1

)
samples divided into

B = 36 log η−1 equally sized batches are sufficient to com-
pute M̂1 (see Algorithm 2) such that

∣∣∣M̂1 − EX
∣∣∣ ≤ ε1 with

probability at least 1− 2η.

Lemma 2. O
(⌈
σ4
M/ε

2
2

⌉
log η−1

)
samples divided into

B = 36 log η−1 equally sized batches is sufficient to com-
pute M̂2 (see Algorithm 2) such that

∣∣∣M̂2 − varX
∣∣∣ ≤ ε2

with probability at least 1− 2η.

The detailed proofs of Lemma 1 and 2 can be found in
Appendix A. We are now ready to prove Theorem 3.

Algorithm 2 ESTIMATE(x, T, B) Estimating EX and
varX for X ∼M
Require: I.i.d samples y1, y2, . . . , yT ∼ M whereM =

1
2N (〈x, β1〉, σ2) + 1

2N (〈x, β2〉, σ2).
1: Set t = T/B
2: for i = 1, 2, . . . , B do
3: Set Batch i to be the samples yj for j ∈ {it+ 1, it+

2, . . . , (i+ 1)t}.
4: Set Si1 =

∑
j∈ Batch i

yi

t , Si2 =
∑
j∈ Batch i

(yi−Si1)
2

t−1 .
5: end for
6: M̂1 = median({Si1}Bi=1), M̂2 = median({Si2}Bi=1).
7: Return M̂1, M̂2.

Proof of Theorem 3. We will set up the following system
of equations in the variables µ̂1 and µ̂2:

µ̂1 + µ̂2 = 2M̂1 and (µ̂1 − µ̂2)2 = 4M̂2 − 4σ2

Recall that from Lemma 1 and Lemma 2, we have
computed M̂1 and M̂2 with the following guaran-
tees:

∣∣∣M̂1 − EX
∣∣∣ ≤ ε1 and

∣∣∣M̂2 − varX
∣∣∣ ≤ ε2.

Therefore, we must have |µ̂1 + µ̂2 − µ1 − µ2| ≤ 2ε1,∣∣(µ̂1 − µ̂2)2 − (µ1 − µ2)2
∣∣ ≤ 4ε2. We can factorize the

left hand side of the second equation in the following way:
|µ̂1 − µ̂2 − µ1 + µ2| |µ̂1 − µ̂2 + µ1 − µ2| ≤ 4ε2. Notice
that one of the factors must be less than 2

√
ε2. Without loss

of generality, let us assume that |µ̂1 − µ̂2 − µ1 + µ2| ≤
2
√
ε2. This, along with the fact |µ̂1 + µ̂2 − µ1 − µ2| ≤ 2ε1

implies that (by adding and subtracting) |µ̂i − µi| ≤ 2ε1 +
2
√
ε2 ∀i = 1, 2.

Algorithm 3 METHOD OF MOMENTS(x, σ, T,B) Estimate
the means 〈x, β1〉, 〈x, β2〉 for a query x

Require: An oracle O which when queried with a vector
x ∈ Rn returns 〈x, β〉+N (0, σ2) where β is sampled
uniformly from {β1, β2}.

1: for i = 1, 2, . . . , T do
2: Query the oracle O with x and obtain a response yi.
3: end for
4: Compute M̂1, M̂2 (estimates of EX∼MX, varX∼MX

respectively) using Algorithm ESTIMATE(x, T, B).
5: Solve for µ̂1, µ̂2 in the system of equations µ̂1 + µ̂2 =

2M̂1, (µ̂1 − µ̂2)2 = 4M̂2 − 4σ2.
6: Return µ̂1, µ̂2.

2.2.3. FITTING A SINGLE GAUSSIAN

In the situation when both the variance σ2 of each compo-
nent inM and the separation between the means |µ1 − µ2|
are very small, fitting a single GaussianN (µ̂, σ2) to the sam-
ples obtained fromM works better than the aforementioned
techniques. The procedure to compute M̂1, an estimate of
EX∼MX = (µ1 +µ2)/2 is adapted from (Daskalakis et al.,
2017) and is described in Algorithm 4. Notice that Algo-
rithm 4 is different from the naive procedure (averaging
all samples) described in Algorithm 2 for estimating the
mean of the mixture. The sample complexity for the naive
procedure (see Lemma 1) scales with the gap |µ1−µ2| even
when the variance σ2 is small which is undesirable. In stead
we have the following lemma.

Lemma 3 (Lemma 5 in (Daskalakis et al., 2017)). With
Algorithm 4, O

(⌈
σ2 log η−1/ε2

⌉)
samples are sufficient

to compute M̂1 such that
∣∣∣M̂1 − (µ1 + µ2)/2

∣∣∣ ≤ ε with
probability at least 1− η.

In this case, we will return M̂1 to be estimates of both the
means µ1, µ2.
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Algorithm 4 FIT A SINGLE GAUSSIAN(x, T ) Estimate the
means 〈x, β1〉, 〈x, β2〉 for a query x

Require: An oracle O which when queried with a vector
x ∈ Rn returns 〈x, β〉+N (0, σ2) where β is sampled
uniformly from {β1, β2}.

1: for i = 1, 2, . . . , T do
2: Query the oracle O with x and obtain a response yi.
3: end for
4: Set Q̂1 and Q̂3 to be the first and third quartiles of the

samples y1, y2, . . . , yt respectively.
5: Return (Q̂1 + Q̂3)/2.

2.2.4. CHOOSING APPROPRIATE METHODS

Among the above three methods to learn mixtures, the ap-
propriate algorithm to apply for each parameter regime is
listed below.

Case 1 (|µ1 − µ2| = Ω(σ)): We use the EM algorithm
for this regime to recover µ1, µ2. Notice that in this
regime, by using Theorem 2 with ε = γ, we obtain that
O
(⌈

(σ2/γ2) log 1/η
⌉)

samples are sufficient to recover
µ1, µ2 up to an additive error of γ with probability at least
1− η.

Case 2 (σ ≥ γ, |µ1 − µ2| = O(σ)): We use the method of
moments to recover µ1, µ2. In this regime, we must have
σ2
M = O(σ2). Therefore, by using Theorem 3 with ε1 =

γ/4, ε2 = γ2/16, it is evident that O
(⌈

(σ/γ)4
⌉

log 1/η
)

samples are sufficient to recover µ1, µ2 upto an additive
error of γ with probability at least 1− η.

Case 3 (σ ≤ γ, |µ1 − µ2| ≤ γ): In this setting, we fit a
single Gaussian. Using Theorem 3 with ε = γ/2, we will
be able to estimate (µ1 + µ2)/2 up to an additive error of
γ/2 using O

(⌈
(σ2/γ2) log 1/η

⌉)
samples. This, in turn

implies

|µi − M̂1| ≤
|µ1 − µ2|

2
+

∣∣∣∣µ1 + µ2

2
− M̂1

∣∣∣∣ ≤ γ.
for i ∈ {1, 2} and therefore both the means µ1, µ2 are
recovered up to an additive error of γ. Note that these three
cases covers all possibilities.

2.2.5. TEST FOR APPROPRIATE METHOD

Now, we describe a test to infer which parameter regime
we are in and therefore which algorithm to use. The final
algorithm to recover the means µ1, µ2 fromM including
the test is described in Algorithm 5. We have the following
result, the proof of which is delegated to appendix B.
Lemma 4. The number of samples required for Algorithm
5 to infer the parameter regime correctly with probability at
least 1− η is atmost O(log η−1).

Algorithm 5 TEST AND ESTIMATE(x, σ, γ, η) Test for the
correct parameter regime and apply the parameter estimation
algorithm accordingly for a query x

Require: An oracle O which when queried with a vector
x ∈ Rn returns 〈x, β〉+N (0, σ2) where β is sampled
uniformly from {β1, β2}.

1: Set T = O
(⌈

log η−1
⌉)

.
2: for i = 1, 2, . . . , T do
3: Query the oracle O with x and obtain a response yi.
4: end for
5: Compute µ̃1, µ̃2 by running Algorithm METHOD OF

MOMENTS (x, σ, T, 72 log n).
6: if σ > γ and |µ̃1 − µ̃2| ≤ 15σ/32 then
7: Compute µ̂1, µ̂2 by running Algorithm METHOD OF

MOMENTS (x, σ,O
(⌈

(σ/γ)4
⌉

log 1/η, 72 log n
)

.
8: else if σ ≤ γ and |µ̃1 − µ̃2| ≤ 15γ/32 then
9: Compute µ̂1, µ̂2 by running Algorithm FIT A SINGLE

GAUSSIAN (x, O
(⌈

(σ2/γ2) log 1/η
⌉)

.
10: else
11: Compute µ̂1, µ̂2 by running Algorithm

EM(x, σ,O
(⌈

(σ2/γ2) log 1/η
⌉)

.
12: end if
13: Return µ̂1, µ̂2.

2.3. Alignment

For a query xi, i ∈ [m], let us introduce the following
notations for brevity:

µi,1 := 〈xi, β1〉 µi,2 := 〈xi, β2〉.

Now, using Algorithm 5, we can compute (µ̂i,1, µ̂i,2) (es-
timates of µi,1, µi,2) using a batchsize of Ti such that∣∣µ̂i,j − µi,πi(j)∣∣ ≤ γ ∀ i ∈ [m], j ∈ {1, 2}, where
πi : {1, 2} → {1, 2} is a permutation on {1, 2}.

The most important step in our process is to separate the
estimates of the means according to the generative unknown
sparse vectors (β1 and β2) (i.e., alignment). Formally, we
construct two m-dimensional vectors u and v such that, for
all i ∈ [m] the following hold:

• The ith elements of u and v, i.e., ui and vi, are µ̂i,1 and
µ̂i,2 (but may not be respectively).

• Moreover, we must have the ui and vi to be good es-
timates of 〈xi, βπ(1)〉 and 〈xi, βπ(2)〉 respectively i.e.∣∣ui − 〈xi, βπ(1)〉∣∣ ≤ 10γ ;

∣∣vi − 〈xi, βπ(2)〉∣∣ ≤ 10γ for
all i ∈ [m] where π : {1, 2} → {1, 2} is some permuta-
tion of {1, 2}.

In essence, for the alignment step, we want to find out all
permutations πi, i ∈ [m]. First, note that the aforemen-
tioned objective is trivial when |µi,1 − µi,2| ≤ 9γ. To see
this, suppose πi is the identity permutation without loss of
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Algorithm 6 ALIGN PAIR(xi,xj , {µ̂s,t}s=i,j
t=1,2

, σ, γ, η)

Align the mean estimates for xi and xj .

1: Recover µ̂sum,1, µ̂sum,2 using Algorithm TEST AND ES-
TIMATE (xi + xj , σ, γ, η).

2: Recover µ̂diff,1, µ̂diff,2 using Algorithm TEST AND ES-
TIMATE (xi − xj , σ, γ, η).

3: if |µ̂sum,1− µ̂i,p− µ̂j,q| ≤ 3γ such that p, q ∈ {1, 2} is
unique then

4: if p == q then Return TRUE else Return FALSE
end if

5: else
6: Find p, q such that |µ̂diff,1 − µ̂i,p + µ̂j,q| ≤ 3γ for

p, q ∈ {1, 2}.
7: if p == q then Return TRUE else Return FALSE

end if
8: end if

generality. In that case, we have for µ̂i,1, |µ̂i,1 − µi,1| ≤ γ
and |µ̂i,1−µi,2| ≤ |µ̂i,1−µi,1|+ |µi,1−µi,2| ≤ 10γ. Sim-
ilar guarantees also hold for µ̂i,2 and therefore the choice
of the ith element of u,v is trivial. This conclusion im-
plies that the interesting case is only for those queries xi

when |µi,1 − µi,2| ≥ 9γ. In other words, this objective
is equivalent to separate out the permutations {πi}mi=1 for
i : |µi,1 − µi,2| ≥ 9γ into two groups such that all the
permutations in each group are the same.

2.3.1. ALIGNMENT FOR TWO QUERIES

Consider two queries x1,x2 such that |µi,1 − µi,2| ≥ 9γ
for i = 1, 2. In this section, we will show how we can infer
if π1 is same as π2. Our strategy is to make two additional
batches of queries corresponding to x1 + x2 and x1 − x2

(of size T sum
1,2 and T diff

1,2 respectively) which we shall call
the sum and difference queries. Again, let us introduce the
following notations: µsum,1 = 〈x1 + x2, β1〉 µsum,2 =
〈x1 + x2, β2〉, µdiff,1 = 〈x1 − x2, β1〉 µdiff,2 = 〈x1 −
x2, β2〉. As before, using Algorithm 5, we can com-
pute (µ̂sum,1, µ̂sum,2) (estimates of µsum,1, µsum,2) and
(µ̂diff,1, µ̂diff,2) (estimates of µdiff,1, µdiff,2) using a batch-
size of T sum

1,2 and T diff
1,2 for the sum and difference query

respectively such that
∣∣µ̂sum,j − µsum,πsum(j)

∣∣ ≤ γ for j ∈
{1, 2} and

∣∣µ̂diff,j − µdiff,πdiff(j)

∣∣ ≤ γ for j ∈ {1, 2}
where πsum, πdiff : {1, 2} → {1, 2} are again unknown
permutations of {1, 2}. We show the following lemma.

Lemma 5. We can infer, using Algorithm 6, if π1 and
π2 are same using the estimates µ̂sum,i, µ̂diff,i provided
|µi,1 − µi,2| ≥ 9γ, i = 1, 2.

The proof of this lemma is delegated to appendix C and we
provide an outline over here. In Algorithm 6, we first choose
one value from {µ̂sum,1, µ̂sum,2} (say z) and we check if we

can choose one element (say a) from the set {µ̂1,1, µ̂1,2}
and one element {µ̂2,1, µ̂2,2} (say b) in exactly one way
such that |z − a− b| ≤ 3γ. If that is true, then we infer that
the tuple {a, b} are estimates of the same unknown vector
and accordingly return if π1 is same as π2. If not possible,
then we choose one value from {µ̂diff,1, µ̂diff,2} (say z′) and
again we check if we can choose one element (say c) from
the set {µ̂1,1, µ̂1,2} and one element from {µ̂2,1, µ̂2,1} (say
d) in exactly one way such that |z′ − c − d| ≤ 3γ. If that
is true, then we infer that {c, d} are estimates of the same
unknown vector and accordingly return if π1 is same as π2.
It can be shown that we will succeed in this step using at
least one of the sum or difference queries.

2.3.2. ALIGNMENT FOR ALL QUERIES

We will align the mean estimates for all the queries
x1,x2, . . . ,xm by aligning one pair at a time. This rou-
tine is summarized in Algorithm 7, which works when
γ ≤ 13

√
2√
π
‖β1 − β2‖2 ≈ 0.096‖β1 − β2‖2. To understand

the routine, we start with the following technical lemma:

Lemma 6. Let, γ ≤ 13
√
2√
π
‖β1 − β2‖2. For m′ =⌈

log η−1/ log
√
π||β1−β2||2
13
√
2γ

⌉
, there exists a query xi

?

among {xi}m′i=1 such that |µi?,1 − µi?,2| ≥ 13γ with proba-
bility at least 1− η.

Algorithm 7 ALIGN ALL({xi}i∈[m], {µ̂s,t}s∈[m]
t=1,2

, σ, γ, η)

Align mean estimates for all queries {xi}mi=1.

1: Initialize: u,v to be m-dimensional all zero vector.
2: Set m′ =

⌈
log η−1/ log

√
π||β1−β2||2
13
√
2γ

⌉
3: for i = 1, 2, . . . ,m do
4: for j = 1, 2, . . . ,m′, j 6= i do
5: Run Algorithm ALIGN PAIR (xi,xj ,

{µ̂s,t}s=i,j
t=1,2

, σ, γ, η) and store the output.

6: end for
7: end for
8: Identify xp from p ∈ [m′] such that |µ̂p,1 − µ̂p,2| ≥

11γ.
9: Set up := u[p] = µ̂p,1 and vp := v[p] = µ̂p,2

10: for i = 1, 2, . . . ,m, i 6= p do
11: if Output of Algorithm 6 for xi and xp is TRUE then
12: Set u[i] = µ̂i,1 and v[i] = µ̂i,2.
13: else
14: Set u[i] = µ̂i,2 and v[i] = µ̂i,1.
15: end if
16: end for
17: Return u,v.

The proof of this lemma is delegated to Appendix D. Now,
for i ∈ [m′], j ∈ [m] such that i 6= j, we will align xi

and xj using Algorithm 6 and according to Lemma 5, this
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alignment procedure will succeed for all such pairs where
|µi,1 − µi,2|, |µj,1 − µj,2| ≥ 9γ with probability at least
1 −mm′η (using a union bound). Note that according to
Lemma 6, there must exist a query xi

? ∈ {xi}m′i=1 for which
|µi?,1−µi?,2| ≥ 13γ. This implies that for some i? ∈ [m′],
we must have |µ̂i?,1 − µ̂i?,2| ≥ |µi?,1 − µi?,2| − |µ̂i?,1 −
µi?,1|−|µ̂i?,2−µi?,2| ≥ 11γ. Therefore, we can identify at
least one query xĩ for ĩ ∈ [m′] such that |µ̂ĩ,1− µ̂ĩ,2| ≥ 11γ.
However, this implies that |µĩ,1 − µĩ,2| ≥ |µ̂ĩ,1 − µ̂ĩ,2| −
|µĩ,1− µ̂ĩ,1|− |µĩ,2− µ̂ĩ,2| ≥ 9γ. Therefore we will be able
to infer for every query xi, i ∈ [m] for which |µi,1−µi,2| ≥
9γ if πi is same as πĩ. Now, we are ready to put everything
together and provide the proof for the main result (Thm. 1).

2.4. Proof of Theorem 1 (γ <
∣∣∣∣β1 − β2

∣∣∣∣
2
/2)

The overall recovery procedure is described as Algorithm 8.
Since this algorithm crucially uses Algorithm 7, it works
only when γ ≤ 0.096

∣∣∣∣β1 − β2
∣∣∣∣
2
; so assume that to hold

for now. We will start by showing that for any two Gaussian
queries, the samples are far enough (a simple instance of
Gaussian anti-concentration).

Algorithm 8 RECOVER UNKNOWN VECTORS(σ, γ) Re-
cover the unknown vectors β1 and β2

1: Set m = csk log n.
2: Sample x1,x2, . . . ,xm ∼ N (0, In) independently.
3: for i = 1, 2, . . . ,m do
4: Compute µ̂i,1, µ̂i,2 by running Algorithm TEST AND

ESTIMATE(xi, σ, γ, n−2).
5: end for
6: Construct u,v by running Algorithm ALIGN

ALL({xi}i∈[m], {µ̂s,t}s∈[m]
t=1,2

, σ, γ, η).

7: Set A to be the m× n matrix such that its ith row is xi,
with each entry normalized by

√
m.

8: Set β̂1 to be the solution of the optimization problem
minz∈Rn ||z||1 s.t. ||Az− 1√

m
u||2 ≤ 10γ

9: Set β̂2 to be the solution of the optimization problem
minz∈Rn ||z||1 s.t. ||Az− 1√

m
v||2 ≤ 10γ

10: Return β̂1, β̂2.

Lemma 7. For all queries x designed in Algorithm 8, for
any constant c1 > 0, and some c2 which is a function of c1,

Pr(
∣∣〈x, β1〉 − 〈x, β2〉

∣∣ ≤ c1σ)) ≤ c2σ

||β1 − β2||2
.

The proof of this lemma is delegated to Appendix D. Now
the theorem is proved via a series of claims.

Claim 1. The expected batchsize for any query designed in
Algorithm 8 is O

(⌈
σ5

γ4||β1−β2||2 + σ2

γ2

⌉
log η−1

)
.

Proof. In Algorithm 8, we make m batches of queries cor-
responding to {xi}mi=1 and mm′ batches of queries corre-
sponding to {xi+xj}i=m,j=m

′

i=1,j=1,i6=j and {xi−xj}i=m,j=m
′

i=1,j=1,i6=j .
Recall that the batchsize corresponding to xi,xi + xj ,xi −
xj is denoted by Ti,T sum

i,j and T diff
i,j respectively. Recall

from Section 2.2.4, we will use method of moments or
or fit a single Gaussian (Case 2 and 3 in Section 2.2.4)
to estimate the means when the difference between the
means is O(σ). By Lemma 7, this happens with probability
O(σ/||β1−β2||2). Otherwise we will use the EM algorithm
(Case 1 in Section 2.2.4). or fit a single gaussian, both of
which require a batchsize of at most O

(⌈
σ2/γ2

⌉
log η−1

)
.

We can conclude that the expected size of any of the afore-
mentioned batchsize is bounded from above as the fol-
lowing: ET ≤ O

(⌈
σ5

γ4||β1−β2||2 + σ2

γ2

⌉
log η−1

)
where

T ∈ {Ti} ∪ {T sum
i,j } ∪ {T diff

i,j } so that we can recover all the
mean estimates upto an an additive error of γ with probabil-
ity at least 1−O(mm′η).

Claim 2. Algorithm 7 returns two vectors u and v of length
m each such that∣∣∣u[i]− 〈xi, βπ(1)〉

∣∣∣ ≤ 10γ;
∣∣∣v[i]− 〈xi, βπ(2)〉

∣∣∣ ≤ 10γ

for some permutation π : {1, 2} → {1, 2} for all i ∈ [m]
with probability at least 1− η.

The proof of this claim directly follows from the discussion
in Section 2.3.2.

The matrix A is size m × n whose ith row is the query
vector xi normalized by

√
m. .

Claim 3. We must have

||Aβπ(1) − u√
m
||2 ≤ 10γ & ||Aβπ(2) − v√

m
||2 ≤ 10γ.

Proof. The proof of this claim follows from the fact that af-
ter normalization by

√
m, the error in each entry is also nor-

malized by
√
m and is therefore at most 10γ/

√
m. Hence

the `2 difference is at most 10γ.

It is known that form ≥ csk log n where cs > 0 is some ap-
propriate constant, the matrix A satisfy restricted isometric
property of order 2k,which means for any exactly 2k-sparse
vector x and a constant δ, we have |‖Ax‖22 − ‖x‖22| ≤
δ‖x‖22 cf.(Baraniuk et al., 2008).

We now solve the following convex optimization problems,
standard recovery method called basis pursuit:

β̂π(1) = min
z∈Rn

||z||1 s.t. ||Az− u√
m
||2 ≤ 10γ

β̂π(2) = min
z∈Rn

||z||1 s.t. ||Az− v√
m
||2 ≤ 10γ
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to recover β̂π(1), β̂π(2), estimates of β1, β2 having the
guarantees given in Theorem 1 (see, Thm. 1.6 in
(Boche et al., 2015)). The expected query complex-
ity is O

(
mm′ log η−1

⌈
σ5

γ4||β1−β2||2 + σ2

γ2

⌉)
Substituting

m = O(k log n), m′ = O
(⌈

log η−1

log
||β1−β2||2

γ

⌉)
and η =

(mm′ log n)−1, we obtain the total query complexity

O

(
k log n log k

⌈ log k

log(‖β1 − β2‖2/γ)

⌉
×
⌈ σ5

γ4||β1 − β2||2
+
σ2

γ2

⌉)

and the error probability to be o(1). We can just substitute
the definition of NF and notice that SNR = ‖β1− β2‖22/σ2

to obtain the query complexity promised in Theorem 1. Note
that, we have assumed k = Ω(log n) above.

It remains to be proved that the same (orderwise) number of
samples is sufficient to recover both unknown vectors with
high probability. For each query x designed in Algorithm
8, consider the indicator random variable Yi = 1[|µi,1 −
µi,2| = Ω(σ)]. The total number of queries for which
this event is true (given by

∑
i Yi) is sampled according to

the binomial distribution Bin(mm′, O(σ/||β1−β2||2)) and
therefore concentrates tightly around its mean. A simple
use of Chernoff bound leads to the desired result.

While we have proved the theorem for any γ ≤
0.096

∣∣∣∣β1 − β2
∣∣∣∣
2
, it indeed holds for any γ =

c′
∣∣∣∣β1 − β2

∣∣∣∣
2
, where c′ is a constant strictly less than

1. If the desired γ > 0.096
∣∣∣∣β1 − β2

∣∣∣∣
2
, then one can just

define γ′ = 0.096
∣∣∣∣β1 − β2

∣∣∣∣
2

and obtain a precision γ′

which is a constant factor within γ. Since the quantity NF
defined with γ′ is also within a constant factor of the origi-
nal NF, the sample complexity can also change by at most a
constant factor.

2.5. Proof of Theorem 1 (γ = Ω
(∣∣∣∣β1 − β2

∣∣∣∣
2

)
)

The proof of Theorem 1 for the case when recovery preci-
sion γ = Ω(

∣∣∣∣β1 − β2
∣∣∣∣
2
) follows by fitting a single Gaus-

sian through all the samples. The algorithm for this case,
and the proof, are delegated to Appendix E.

3. Conclusion
In this paper we have improved the recent results by (Yin
et al., 2019) and (Krishnamurthy et al., 2019) for learning a
mixture of sparse linear regressions when features can be
designed and queried with for the labels. While our results
are rigorously proved for two unknown sparse models, we
believe extending to more than two models will be possible,
and the key components are already present in our paper.

Whether it will be an exercise in technicality or some key
insights can be gained is unclear.

While our paper is theoretical, an important future work will
be to find interesting use cases. A potential application of the
query-based setting is to recommendation systems, where
the goal is to identify the factors governing the preferences
of individual members of a group via crowdsourcing while
also preserving the anonymity of their responses. We are
currently pursuing this line of applications.

Acknowledgements: This work is supported in parts by
NSF awards 1642658, 1909046 and 1934846.

References
Balakrishnan, S., Wainwright, M. J., Yu, B., et al. Statisti-

cal guarantees for the EM algorithm: From poulation to
sample-based analysis. The Annals of Statistics, 45(1):
77–120, 2017.

Baraniuk, R., Davenport, M., DeVore, R., and Wakin, M.
A simple proof of the restricted isometry property for
random matrices. Constructive Approximation, 28(3):
253–263, 2008.

Boche, H., Calderbank, R., Kutyniok, G., and Vybı́ral, J. A
survey of compressed sensing. In Compressed Sensing
and its Applications, pp. 1–39. Springer, 2015.

Candès, E. J., Romberg, J., and Tao, T. Robust uncertainty
principles: exact signal reconstruction from highly in-
complete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006.

Candes, E. J. et al. The restricted isometry property and its
implications for compressed sensing. Comptes rendus
mathematique, 346(9-10):589–592, 2008.

Chaganty, A. T. and Liang, P. Spectral experts for esti-
mating mixtures of linear regressions. In International
Conference on Machine Learning, pp. 1040–1048, 2013.

Dasgupta, S. Learning mixtures of Gaussians. In Founda-
tions of Computer Science, pp. 634–644, 1999.

Daskalakis, C. and Kamath, G. Faster and sample near-
optimal algorithms for proper learning mixtures of Gaus-
sians. In Conference on Learning Theory, 2014.

Daskalakis, C., Tzamos, C., and Zampetakis, M. Ten steps
of em suffice for mixtures of two Gaussians. In Confer-
ence on Learning Theory, pp. 704–710, 2017.

De Veaux, R. D. Mixtures of linear regressions. Computa-
tional Statistics & Data Analysis, 8(3):227–245, 1989.

Donoho, D. Compressed sensing. IEEE Transactions on
Information Theory, 52(4):1289–1306, 2006.



Recovery from a mixture of linear samples

Faria, S. and Soromenho, G. Fitting mixtures of linear
regressions. Journal of Statistical Computation and Sim-
ulation, 80(2):201–225, 2010.

Hardt, M. and Price, E. Tight bounds for learning a mixture
of two Gaussians. In Symposium on Theory of Computing,
2015.

Krishnamurthy, A., Mazumdar, A., McGregor, A., and Pal,
S. Sample complexity of learning mixture of sparse linear
regressions. In Advances in Neural Information Process-
ing Systems 32: NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 10531–10540, 2019.

Krishnamurthy, A., Mazumdar, A., McGregor, A., and Pal,
S. Algebraic and analytic approaches for parameter learn-
ing in mixture models. In Proceedings of the 31st Interna-
tional Conference on Algorithmic Learning Theory, vol-
ume 117 of Proceedings of Machine Learning Research,
pp. 468–489, San Diego, California, USA, 2020.

Kwon, J. and Caramanis, C. Global convergence of em al-
gorithm for mixtures of two component linear regression.
arXiv preprint arXiv:1810.05752, 2018.
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