Recovery from a mixture of linear samples

A. Proofs of Lemma 1 and 2

Let X be a random variable which is distributed according to M and suppose we obtain 17" samples y1, Y2, ..., yr ~ M.
We will divide these T samples into B := [T/ t—‘ batches each of size ¢. In that case let us denote S{ +and Sg’t to be the

sample mean and the sample variance of the j*" batch i.e.
1

So= > v ad S5 = 1 > i —(S1))*

i€Batch j i1€Batch j

We will estimate the true mean EX and the true variance var X by computing M, and M, respectively (See Algorithm 2)
where

M, 2 median({S{’t}le) and M, 2 median({Sgﬁt}le).

Proof of Lemma 1. For a fixed batch j, we can use Chebychev’s inequality to say that

- X
Pr(‘S{f —EX’ > 61) <
v te]
‘We have
1 1 ERY
varX = EX? — (EX)? = 5(2a2 + ol +u§) — 1) =0+ w

Noting that we must have ¢ > 1 as well, we obtain

0% 4 (1 — p2)?/4
te%

Pr(‘S{t—EX‘ 261) < <

1
3
fort = O( [(02 + (1 — p2)?) /eﬂ) Therefore for each batch j, we define an indicator random variable Z; =
]l[’S{"t —-EX ‘ > €] and from our previous analysis we know that the probability of Z; being 1 is less than 1/3. It

is clear that E Zle Z; < B/3 and on the other hand |My —EX| > e iff Zle Z; > B/2. Therefore, using the Chernoff
bound, we have

& & EZBIZJ
y = —B/36
Pr([vh - EX|>e) < Pr( > 1Zj—]E§‘ 1Zj > S < gem B,
JI= J=

Hence, for B = 36logn™", the estimate M) is atmost ¢; away from the true mean M, with probability at least 1 — 2.
Therefore the total sample complexity required is 7' = O(logn~! [(02 + (1 — p2)?)/ eﬂ) proving the lemma. O

Proof of Lemma 2. We have

. 1 .
Esit = Em Z (yi — (S{,t))Q

i€Batch j

1
=E 1 Z (yi1 - yi2>2

i1,i2 €Batch j
i1 <i2

1
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41,12 €Batch j
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1 (11 + p2)?
_ 952 4+ 12 + 12 —
41,12 €Batch j
i1 <i2
2
:024_7(/“ #2) = varX.

4
Hence the estimator Sj , is an unbiased estimator since it’s expected value is the true variance of X. Again, we must have
J 2 1 2) >
E(SQ t) =E D) D) Z (yi1 _yiQ) :
' t2(t—-1)2\ ‘
11,12 €EBatch j
11 <i2
Claim 4. We have

(p1 — M2)2 2
E [(yll - yi2)2(yi3 - yi4)2] < 48 (0'2 + f)
for any i1, 12,13, 14 Such that i1 < io and i < i4.

Proof. In order to prove this claim consider three cases:

Case 1 (i1, i2, %3, %4 are distinct): In this case, we have that y;, — v;, and y;, — y;, are independent and therefore,

E [(yll - y’iz)Q(yig - yi4)2] =E [(yil - yi2)2] E [(yia - yi4)2] < 4(02 + @)2

Case 2 (i; = i3,72 = i4): In this case, we have
E [(yn - yi2)2(yi3 - yi4)2} =E [(yh - yi2)4} .

Notice that 1 ) )
Yiy — Yiy ™~ EN(0720-2) + ZN(Ml - /1'2720—2) + iN(MZ - /141720—2)

and therefore we get

(11 — p2)* (1 */12)2)2
g ML) 0

E [(yZl — y12)4] = 48¢* + 1202(u1 — u2)2 + 1

< 48(02 T

Case 3 ({i1,12,73,14} has 3 unique elements): Without loss of generality let us assume that i; = ¢3. In that case we
have

E (i, — i) (Wir = %i)?] = By B (Wi — vi)* (W0 — v0)* | ¥4,
Notice that for a fixed value of y;,, we must have y;, — vi,,¥:, — ¥:, to be independent and identically distributed i.e.
1 2 1 2
Yie — Yirs Yia — Yix ~ 5/\/’(/11 —Yiy,0°) + 5/\/'(/12 — Yiy,07).
Therefore,
E[(yir = yi)>(Wis — vi)? 1 4i] = B [(9in — 9i)? [ vir ) E [(93 — 432)° | w1
= 3(202 + (= yi,)? + (p2 — yi1)2)2~

Again, we have

1 1 1 1
Yiy — M1~ 5/\/(0702) + 5/\[(#2 —p1,0%) and  yi, — pg ~ §N(0,02) + 5/\/(#1 — p2,0%).
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Hence,
2
]E(QU2 + (p1 = ¥i,)* + (p2 — yu)z) =4o* + E(u1 — vi,)* + E(n — yip)*
+40%(E(p1 — vi,)* + E(p1 — 4i,)?) + E((p1 — vi,)* (12 — vi,)?)-
We have
PRY!
E(uy — yi,)* = E(pe — yi,)* = 30" + M + 302 (1 — p2)?

EPRY
E(u1 —yi,)? =E(ue — yi,)> =0 + M

E((1 — 4i,)* (2 — %i,)?) = B((u1 — vi,)* (2 — i1 + p1 — v, )?)
=E[(u1 — yi,)* + (1 — p2)? (1 — v )® + 2(p2 — pa) (1 — v, )°]

gty ()t

3 +50% (11 — pa)?.

Plugging in, we get

3(#1 - M2)4
2

2
E(202 + (1 = yi)* + (p2 — yil)Q) = 170" + +130% (11 — po).

Hence, we obtain

(1 — M2)2)2.

E [(yll - yiz)z(yh - %4)2} < 7(0'2 + B

which proves the claim. O

From Claim 4, we can conclude that
) _ 2,2
E(S3,)* < 12(a2+ (i = pi2)” 4”2) ) .

From this point onwards, the analysis in this lemma is very similar to Lemma 1. We can use Chebychev’s inequality to say
that

VarSg’t - E(S%"t)2

2 = 2
tes tes

Pr ( ’Sg’t — V&I‘X‘ > 62) <

Therefore, we obtain by noting that ¢ > 1 as well,

12(0” + (p1 — p2)?/4)?
te3

; 1
Pr(‘Sé’t —varX' > 62> < < 3

fort = O( [(02 + (11 — u2)2)2/e§] ). At this point, doing the same analysis as in Lemma 1 shows that B = 36 logn~*
batches of batchsize ¢ is sufficient to estimate the variance within an additive error of €5 with probability at least 1 — 27.
Therefore the total sample complexity required is 7' = O(logn~! [(02 + (1 — p2)?)?/ eg—‘ ) thus proving the lemma.

O

B. Proof of Lemma 4

1

Suppose, we use O ( L%-‘ logn~ ) samples to recover (i; and pis using the method of moments. According to the guarantee

provided in Theorem 3, we must have with probability at least 1 — 1/7,

i — p| < 2(e +Ve)Vo? + (m1 — p2)? fori=1,2.
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Therefore, we have
I — pa| = |pn — fin| = [p2 — fio| < |fin — pa] < |pa — pof + |pa — fua] + [p2 — fio]

i1 — fha| = |1 — pol| < 4(e +Ve) /o2 + (u1 — p2)?

We will substitute e = 1/256. In that case we have

e — i 17 170 17|u1 —
iy = pio| = [p1 — pef] < — 02+(u1—;¢2)2§7+M_

64 64 64

and therefore

170 AT |p1 — pol ) . 170 81|y — 2]
STt S 1 NN P AL S a1
61 T o1 SISt —a
Hence, we have
170 64 |‘[L1 - [1,2| 170 64|ﬂ1 - ‘[L2|
el L o] R VN | Qi B Lt S 1
ST s Slmmls e

Case 1 (0 > 7): This implies that if |11 — fi2| < 150/32, then |p1 — p2| < o and we will use the Method of Moments
(Algorithm 3). On the other hand, if |1 — fi2| > 150/32, then |pu; — p2| > 130/81 and we will use EM algorithm

(Algorithm 1). The sample complexity required is O( [log 77*11

) samples.
Case 2 (0 < +): This implies that if |17 — fia] < 15/32, then |1 — p2| < v and we will fit a single gaussian (Algorithm
4) to recover the means. On the other hand, if |fi; — fi2| > 15v/32, then |u1 — p2| > 13+/81 and we will use EM algorithm

1

(Algorithm 1). The sample complexity required is O( [log n- 1 ) samples.

C. Proof of Lemma 5
We have
Hi1 = <X1,51> H12 = <X1752> H21 = <X2751> H2,2 = <X2752>
fsum1 = (X' + %%, B81)  fsuma = (x' + %%, B2)  pair1 = (x' —x%,81)  pair2 = (x' —x2, Ba).

For a particular unknown mean . ., we will denote the corresponding recovered estimate by fi. . and moreover, let us
assume without loss of generality that 71, 72, Tsum, Tqiff are all same and the identity permutation itself (but note that this
fact is unknown). If all the unknown parameters are recovered upto an additive error of ~y, then we must have

|fsum,1 — 1,1 — fi2,1] < |fisum,1 — Msum1| + (11 — fa1] + |21 — fo1] < 3.

|fdiee 1 — fa1 + P2l < Qi1 — paiee1 ] + |11 — Bl + (e — 2] < 37.

On the other hand, we must have

|flsum,1 — 1,1 — fi2,2] > |flsum,1 — Hsum,1 + H1,1 — fi1,1 + fo,1 — P22 + po2 — fl22]
> |21 — p22| — |fisum,1 — fsum,1] — |11 — fa1] — |p2,1 — o]
> |p2,1 — pa2| — 3.

|fdieF 1 — fa,1 + fi2,2] > |faiee 1 — paiffn + 11 — Q11 — Ho + po2 — Ho2 + flo.o]
> o1 — po2| — |fdirrn — pdise| — |11 — fa] — |pe — floa]
> |p2,1 — p22| — 3.
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|fsum1 — 1,2 — fi2.1] > |fsum,1 — Hsum1 + 21 — fi21 + 1,1 — fa2 + pa 2 — 2]
> |11 — pa2| = [fisum,1 — fsum,1] — [p2,1 — flo1] — [p12 — fu1,2]
> |p11 — pa2| — 3y

|fdiF 1 — P2 + Q21| > |faiee1 — pdiff 1 — o1 + Q21 + a1 — pie + pa2 — fa2]
> |11 — pa2| — |fdisen — pdise | — [pen — flogn] — |12 — fla,2]
> |p11 — pa2| — 3y

|fsum,1 — (1,2 — fi2,2] > |ftsum,1 — Hsum,1 + p1,1 + Ho1 — 12 — Ho2 + f1,2 — 12 + po2 — fi2.9]
>+ pe1 — 2 — po2] — |fsum 1 — fsum,1| — |12 — Q12| — |22 — fi2,2]
> |p1,1 + p21 — p12 — p22| — 37.

> |fudisf,1 — Mdiff 1 + P11 — P21 — P12+ peo + pie — 12 — po2 + o2
> |,u1,1 —H21 — M12+ M2,2| - ‘ﬂsum,l - usum,1| - |H1,2 - ﬂ1,2| - |M2,2 - ﬂ2,2
> |prg — po1 — p12 + p22] — 3.

|fudice,1 — fl1,2 + fl2,2

Similar guarantees also exist for fisym,2 and pugifr 2 and therefore we must have

|flsum,2 — fb1,2 — fl2,2] < 37y
|fudice2 — fl1,2 + fl22| < 3y

|flsum,2 — fi1,2 — flo,1] > |p2,1 — p22| — 37
|fudiff 2 — fa,2 + Q21| > |21 — o2 — 3y
|fisum,2 — 1,1 — fi2,2] > |11 — pa2| — 3y

|fdifF 2 — f1,1 + Q22 > a1 — 2] — 3y
|[fisum,2 — fo1,1 — flo,1] > |pa,1 + pon — pa2 — p2,2] — 3
|fudife,2 — 1,1 — flo,1] > |pa1 — pon — paj2 + pog2] — 3y

Let us consider the case when |1 1 — p11,2| > 9y and |po 1 — p2,2] > 97. We will have

|fisum,1 — (1,1 — 21| <37 |ftsum,1 — f,1 — fl2,2] = 67 |flsum — fl1,2 — fi21] > 6y
|fgiF 1 — a1+ foa] <37 Qe — a1 + fio2] > 6 |fdirn — a2 + Qo] > 67y
|fsum,2 — 1,2 — fi22] <37 |flsum2 — 1,1 — fi2,2] > 67 |flsum — f1,2 — fia1] > 67
|fdifF 2 — fa,2 + Q22 <3y |fdifn — fa1 + Q2] > 6y |fdifn — fa,2 + fi21] > 6y

Moreover, at least one of the following two must be true:
|fisum,1 — fl1,2 — flo,2] > 15y and  |fisum2 — fl1,1 — fi2,1] > 157
or |fgifr,1 — fla,2 + 22| > 15y and  |fdifr,2 — fi1,1 + flz,1| > 15y

depending on whether p1,1 — f41,2 and o 1 — 2,2 have the same sign or not. This shows that either for the sum query or for
the difference query, only the correct set of means is closest to their corresponding value (sum or difference) and any wrong
choice of means is away from that particular value (sum or difference). Hence the lemma is proved.

D. Proof of Lemma 6 and 7

Proof of Lemma 6. Notice that for a particular query x°,i € [m], the difference of the means ji; 1 — p; 2 is distributed
according to

Mi 1 — Mg 2 ~ N(07 Hﬁl - 52”3)
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Therefore, we have

18y ,—2?/2||8" 2|13 13v/2y

d .
15y VRRBL = B V/AlB — B2z

where the upper bound is obtained by using e=o*/218'=B°ll3 < 1. Therefore the probability that for all the m’ queries
{x*}m |, the difference between the means is less than 13~ must be

Pr(|pi1 — pi2] < 13v) = ()

’

m m’ 13\/5,-)/ m’ —m’'lo Vvl —6211o
PT(U pin — pi2 < 13y) = HPT(MM — pi2 < 137) < (ﬁ) = & v
i=1 i V|8t = B2|]2
Therefore for m’ = [log n~'/log %\gj%—‘ , we have that Pr(U;il i — iz < 13y) <mn. O

Proof of Lemma 7. The proof of Lemma 7 is very similar to the proof of Lemma 6. Again for a particular query x*, i € [m)],
the difference of the means p; 1 — ;2 is distributed according to

Mi 1 — Mg 2 ~ N(07 Hﬁl - 52”3)
Therefore, we have for any constant ¢; > 0,

cio 67962/2”31762"% \/5610

dr < .
e V2B =B VAlIB - B2l

where the upper bound is obtained by using e—x°/218" =813 < 1. Hence the lemma is proved by substituting co =

\@Cl/\/;l'. O

Pr(|pig — pi2] < cio) =

E. Proof of Theorem 1 (v = Q(||5' — 2]|,))

Algorithm 9 RECOVER UNKNOWN VECTORS 2(c, ) Recover the unknown vectors 4! and 32

—

Setm = csklogn and T = O(’VO'Q logk/(y—0.8]|8" — 62||2)2D.
Sample x!, x2,...,x™ ~ N(0,1,) independently.
for:=1,2,...,mdo
Compute /i; by running Algorithm FIT A SINGLE GAUSSIAN (x, T).
end for
Set u to be the m-dimensional vector whose i*" element is /1.
Set A to be the m x n matrix such that its 7*" row is x?, with each entry normalized by \/m.
Set 3 to be the solution of the optimization problem min,cg~ ||z|1 s.t. |[Az — \/%uﬂg <~

Return B .

R A AN o

We will first assume v > 0.8 HBI — 52H2 to prove the claim, and later extend this to any v = Q(HBI — 52“2). The

recovery procedure in the setting when v > 0.8 Hﬂ 1 p2 ’ |2 is described in Algorithm 9. We will start by proving the
following claim

Claim 5. Algorithm 9 returns a vector u of length m using O (m [02 log 7]71/62—‘ ) queries such that

lufi] — (x", 8" < e+ w
[uli] — (x1, 8%)] < e+ l<xﬂﬁ12 - 52|

for all i € [m) with probability at least 1 — mn).
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Proof. In Algorithm 9, for each query x* ~ A/(0,1,,), we can use a batchsize of O( [02 logn=1/ 62—‘ ) to recover fi; such
that

o EED )

with probability at least 1 — 1 according to the guarantees of Lemma 3. We therefore have

X’i 1 Xi 2
i~ )] < |t - B BT

ot 8= 2] _ L8t )
2 - 2 '

+

where the last inequality follows by using the guarantees on [i;. We can show a similar chain of inequalities for
|f1; — (x*, %) | and finally take a union bound over all i € [m] to conclude the proof of the claim. O

Next, let us define the random variable w; £ |(x', B — 3?)| where the randomness is over x’. Subsequently let us define
the m-dimensional vector b whose it" element is € + w; /2. Again, for m > csklogn, let A denote the matrix whose gth
row is x* normalized by \/m.

Claim 6. We must have

u |[b]| 2 U |[b]|
Apt— —|| <22 & ||AR2 - —=|| <22
‘ ’ vm||y vm vm||y vm
Proof. The proof of the claim is immediate from definition of A and b. O

Next, we show high probability bounds on #5-norm of the vector b in the following claim.

2 with probability at least 1 — O(e™™).

2
Claim 7. We must have % <26+ 0.64||ﬁ1 — 52||2

Proof. Notice that

)

M LSS (e 2 25 e )

1=1

Using the fact that x* ~ A/(0,1,) and by definition, we must have that w; is a random variable distributed according to
N(0, — 62‘ ‘2) Therefore, we have (see Lemma 1.2 (Boche et al., 2015))

Pr (
i=1

Y wE—ml|gt - 823

Zmpuﬂlﬂzui)

2 3
<2ew(-5(5 %))

for 0 < p < 1. Therefore, by substituting p = 0.28, we get that

2 w? 2
=3 (e +5) <2¢ + o064 ||8" - 57

i=1

with probability at least 1 — O(e™™). O

From Claim 7, we get

|b7|7|f <V2e+038]]8" - 5],
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where we use the inequality va + b < v/a + Vb for a,b > 0. Subsequently we solve the following convex optimization
problem

u
i t||Az — —|]2 <
min [[z]]y s.t. [[Az — —=|l2 <7y

where v = V2e + 08| — ﬂ2||2 in order to recover 3 and return it as estimate of both 3, 32. For m =
O(klogn),n = (mlogn)~' and v2e =y — 0.8 ||3! — 5?|

. . . 2
,» the number of queries required is O (k logn [a logk/ (v —

0.8 Hﬁl - pB? ] ’2)2—‘ ) Further, by using the theoretical guarantees provided in Theorem 1.6 in (Boche et al., 2015), we
obtain the guarantees of the main theorem with error probability atmost o(1). Again, by substituting the definition of the
Noise Factor NF = /o and the Signal to Noise ratio SNR = O(| |61 -2 | |; /o?), we obtain the query complexity to be

O(klogn[(NF—ﬁjslTR)J)'

Now let us assume any v = Q(||3' — 82||,). If the desired v < ||3* — 52|, then one can just define 7/ = ||8! — 52||,
and obtain a precision 4" which is a constant factor within ~. Further, the query complexity also becomes independent of the
noise factor since NF = v/SNR for this choice of 7" and thus we obtain the promised query complexity in Theorem 1.

F. Discussion on Noiseless Setting o = 0

Step 1: In the noiseless setting, we obtain m = O(klogn) query vectors x',x2, ..., x™ sampled i.i.d according to
N(0,1,,) and repeat each of them for 2 logm times. For a particular query x;, the probability that we do not obtain any
samples from 31 or 32 is at most (1/2)2!°8™, We can take a union bound to conclude that for all queries, we obtain
samples from both 3* and 3? with probability at least 1 — O(m~1). Further note that for each query x?, (x¢, 31 — 32) is

distributed according to (0, || — 52| |§) and therefore, it must happen with probability 1 that (x*, 81) # (x¢, 81). Thus

for each query x;, we can recover the tuple ({x?, 3'), (x*, 3%)) but we cannot recover the ordering i.e. we do not know
which element of the tuple corresponds to 3 and which one to 32.

Step 2: Note that we are still left with the alignment step where we need to cluster the 2m recovered parameters
{((x%, BY), (x*, B%))} ™, into two clusters of size m each so that there exists exactly one element from each tuple in each of
the two clusters and all the elements in the same cluster correspond to the same unknown vector. In order to complete this
step, we use ideas from (Krishnamurthy et al., 2019). We query x; +x; and x; —x; for all ¢ # 1 each for 2 log m times to the
oracle and recover the tuples ((x! +x*, 81), (x! +x%, 3?)) and ((x! —x?, B), (x! —x?, 32)) for all i = 1. For a particular
i € [m]\ {1}, we will choose two elements (say a and b) from the pairs ((x1, 3%), (x1, 3?)) and ({x;, B), (x;, %)) (one
element from each pair) such that their sum belongs to the pair (x; + x;, 3%), (x1 + x;, 3%) and their difference belongs to
the pair (x; — x;, 81), (x1 — x;, 8%). In our algorithm, we will put a, b into the same cluster and the other two elements into
the other cluster. From construction, we must put ((x1, 31), (x;, 3')) in one cluster and ({(x1, 32), (x;, %)) in other. Note
that a failure in this step is not possible because the 2m recovered parameters are different from each other with probability
1.

Step 3: Once we have clustered the samples, we have reduced our problem to the usual compressed sensing setting (with
only 1 unknown vector) and therefore we can run the well known convex optimization routine in order to recover the
unknown vectors 3! and 32. The total query complexity is O(klognlog k).

G. ‘Proof of Concept’ Simulations

The methods of parameter recovery in Gaussian mixtures are compared in Fig la. As claimed in Sec. 2.2, the EM starts
performing better than the method of moments when the gap between the parameters is large.

We have also run Algorithm 8 for different set of pairs of sparse vectors and example recovery results for visualization are
shown in Figures 1b and 1c. Note that, while quite accurate reconstruction is possible the vectors are not reconstructed in
order, as to be expected.
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(a) Comparison of the three techniques for recovery of parameters of a Gaussian mixture with 1000 samples (see Algorithms 1,3 and 4).
The error in parameter recovery is plotted with separation between g1 and po (by keeping w1 fixed at O and varying p2).

Comparison of ground-truth vectors and recovered vectors
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(b) The 100-dimensional ground truth vectors 3' and 32 with
sparsity k = 5 plotted in green (left) and the recovered vectors
(using Algorithm 8) B ! and ﬁz plotted in orange (right) using a
batch-size ~ 100 for each of 150 random gaussian queries. The
order of the recovered vectors and the ground truth vectors is
reversed.
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(c) The 100-dimensional ground truth vectors ' and 32 with
sparsity k = 5 plotted in green (left) and the recovered vectors
(using Algorithm 8) B ! and ﬁz plotted in orange (right) using a
batch-size ~ 600 for each of 150 random gaussian queries. The
order of the recovered vectors and the ground truth vectors is
reversed.

Figure 1. Simulation results of our techniques.



