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Abstract

Probabilistic clustering models (or equivalently,
mixture models) are basic building blocks in
countless statistical models and involve latent ran-
dom variables over discrete spaces. For these
models, posterior inference methods can be inac-
curate and/or very slow. In this work we introduce
deep network architectures trained with labeled
samples from any generative model of clustered
datasets. At test time, the networks generate ap-
proximate posterior samples of cluster labels for
any new dataset of arbitrary size. We develop two
complementary approaches to this task, requiring
either O(N) or O(K) network forward passes per
dataset, where N is the dataset size and K the num-
ber of clusters. Unlike previous approaches, our
methods sample the labels of all the data points
from a well-defined posterior, and can learn non-
parametric Bayesian posteriors since they do not
limit the number of mixture components. As a sci-
entific application, we present a novel approach
to neural spike sorting for high-density multielec-
trode arrays.

1. Introduction
Probabilistic clustering models (or equivalently, mixture
models) are a staple of statistical modelling in which a
discrete latent variable is introduced for each observation,
indicating its mixture component identity. Popular infer-
ence methods in these models fall into two main classes.
When exploring the full posterior is crucial (e.g. there is
irreducible uncertainty about the latent structure or many
separate local optima exist), the method of choice is Markov
Chain Monte Carlo (MCMC) (Neal, 2000; Jain & Neal,
2004). This method is asymptotically accurate but time-
consuming, with convergence that is difficult to assess. Mod-
els whose likelihood and prior are non-conjugate are par-
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ticularly challenging, since in general in these cases the
model parameters cannot be marginalized and must be kept
as part of the state of the Markov chain. Alternatively, varia-
tional methods (Blei & Jordan, 2004; Kurihara et al., 2007;
Hughes et al., 2015) are typically much faster but do not
come with accuracy guarantees.

As a third alternative, in recent years there has been steady
progress on amortized inference methods, and such is the
spirit of this work. Concretely, we propose novel techniques
to perform amortized approximate posterior inference over
discrete latent variables in mixture models. We consider two
possible product expansions of the mixture posteriors, and
in each expansion we use neural networks to express con-
ditional factors in terms of fixed-dimensional, distributed
representations that respect the permutation symmetries im-
posed by the discrete variables. A major advantage of our
approach, compared to previous approaches to amortized
clustering, is its ability to handle an arbitrary number of
clusters from a well defined posterior. This makes the meth-
ods a natural choice for nonparametric Bayesian models,
such as Dirichlet process mixture models (DPMM), and
their extensions. Moreover, the methods can be applied to
both conjugate and non-conjugate models.

The term ‘amortization’ refers to the process of investing
computational resources to train a model that is later used
for very fast posterior inference (Gershman & Goodman,
2014). Concretely, in a model with observations x and latent
variables z, the amortized approach learns a parametrized
function qθ(z|x) that approximates p(z|x) for any x; learn-
ing the parameters θ may be challenging, but once θ is in
hand evaluating qθ(z|x) for new data x is fast.

The amortized inference literature can be coarsely divided
into two approaches. On one side, the variational autoen-
coder (VAE) approach (Kingma & Welling, 2013), with
roots in the wake-sleep algorithm (Hinton et al., 1995),
learns qθ(z|x) along with the generative model pφ(x|z).
Here p(z) is usually a known simple distribution.

Our work corresponds to the alternative case: a generative
model p(x, z) is postulated, and posterior inference is the
main focus of the learning phase. Amortized methods in this
case usually involve a degree of specialization to the particu-
lar generative model of interest. Examples include methods
developed for Bayesian networks (Stuhlmüller et al., 2013),
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sequential Monte Carlo (Paige & Wood, 2016), probabilistic
programming (Ritchie et al., 2016; Le et al., 2016), neural
decoding (Parthasarathy et al., 2017) and particle track-
ing (Sun & Paninski, 2018). Our work is specialized to the
case where the latent variables are discrete and their range
is not fixed beforehand.

After training a neural architecture using labeled samples
from a particular generative model, we can obtain indepen-
dent, parallelizable, approximate posterior samples of the
discrete variables for any new set of observations of arbi-
trary size, with no need for expensive MCMC steps. These
samples can be used (i) to approximate expectations, (ii)
as high quality importance samples, or (iii) as independent
Metropolis-Hastings proposals.

In Section 2 we introduce generative mixture models and
present two distinct expansions of the posterior distribution.
In Section 3 and Section 4 we present neural architectures
to model the factors of each expansion, along with their
objective functions. In Section 5 we present two simple
examples to illustrate the methods. In Section 6 we review
related works. In Section 7 we discuss quantitative evalu-
ations of the new methods. We close in Section 8 with a
neuroscientific application to spike sorting for high-density
multielectrode probes. The Supplementary Material (SM)
contains details on the architectures, the spike-sorting appli-
cation, and an extension of these ideas to particle tracking.1

2. Generative Mixture Models
We start by presenting mixture models from the perspec-
tive of probabilistic models for clustering (McLachlan &
Basford, 1988). The latter introduce random variables ci
denoting the cluster number to which the data point xi is
assigned, and assume a generating process of the form

α1, α2 ∼ p(α)

N ∼ p(N)

c1 . . . cN ∼ p(c1, . . . , cN |α1) (1)
µ1 . . . µK |c1:N ∼ p(µ1, . . . µK |α2)

xi ∼ p(xi|µci) i = 1 . . . N.

Here α1, α2 are hyperparameters. The number of clustersK
is a random variable, indicating the number of distinct values
among the sampled ci’s, and µk denotes a parameter vector
controlling the distribution of the k-th cluster (e.g., µk could
include both the mean and covariance of a Gaussian mixture
component). We assume that the priors p(c1:N |α1) and
p(µ1:K |α2) are exchangeable,

p(c1, . . . , cN |α1) = p(cσ1
, . . . , cσN |α1) ,

1An early version appeared in (Pakman & Paninski, 2018;
Wang et al., 2019). Similar methods were applied to amortized
permutations in (Pakman et al., 2019).

where {σi} is an arbitrary permutation of the indices, and
similarly for p(µ1:K |α2). Our interest in this work is in
cases where K can take any value K ≤ N , such as the
Chinese Restaurant Process (CRP) or its Pitman-Yor gener-
alization (see Rodriguez & Mueller (2013) for a review). Of
course, our methods will also work for models with K < B
with fixed B, such as Mixtures of Finite Mixtures (Miller &
Harrison, 2018).

Instead of representing configurations using N labels ci, an
alternative is obtained using K sets of indices:

sk = (sk,1, . . . , sk,Nk) k = 1 . . .K , (2)
where ∀k, ∀i, csk,i = k.

For example, the labels c1:6 = (1, 1, 2, 1, 2, 1) are equiv-
alent to s1 = (1, 2, 4, 6), s2 = (3, 5). Note that cluster
k has size Nk and N =

∑K
k=1Nk. Given N data points

x = {xi}, we would like to draw independent samples from
the posterior p(c|x). For this, we consider expanding p(c|x)
using either the labels representation,

p(c1:N |x) = p(c1|x)p(c2|c1,x) . . . p(cN |c1:N−1,x), (3)

or the indices representation,

p(s1:K |x) = p(s1|x)p(s2|s1,x) . . . p(sK |s1:K−1,x) . (4)

Note that for a given cluster configuration, p(c1:N |x) =
p(s1:K |x). In the next two Sections, we present neural ar-
chitectures to model the factors in each of these expansions.

3. Pointwise Sampling
We would like to model all the factors in (3) in a unified
way, with a generic factor given by

p(cn|c1:n−1,x) =
p(c1 . . . cn,x)

K+1∑
c′n=1

p(c1 . . . c
′
n,x)

. (5)

Here we assumed that there are K unique values in c1:n−1,
and therefore cn can take K + 1 values, corresponding to
xn joining any of the K existing clusters, or forming its
own new cluster.

Since (5) is in general difficult to compute directly,
we will approximate these terms with a neural network
qθ(cn|c1:n−1,x), that takes as inputs (c1:n−1,x), then ex-
tracts features and combines them nonlinearly to output a
probability distribution on cn. Critically, we will design the
network to enforce the highly symmetric structure of (5).

To make this symmetric structure more transparent, let us
consider the joint distribution of the assignments of the
first n data points,

p(c1, . . . , cn,x) . (6)
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Figure 1. Encoding cluster labels. After assigning labels c1:6 to
K = 2 clusters, each of the three possible c7 labels (for the circled
point x7) gives an encoding Gk for the set x1:7. The vector U
encodes the four gray unlabeled points (Best in color).

Note that under the model (1), this quantity depends on
all the N elements of x, not just on x1:n. A neural repre-
sentation of (6) should respect the permutation symmetries
imposed on the xi’s by the values of c1:n. Therefore, our
first task is to build permutation-invariant representations
of the observations x. The general problem of constructing
such invariant encodings was discussed recently in (Zaheer
et al., 2017); to adapt this approach to our context, we con-
sider three distinct permutation symmetries:

• Permutations within a cluster: (6) is invariant under
permutations of xi’s in the same cluster. For each of the
K clusters that have been sampled so far, we define the
encoding

Hk =
∑
i:ci=k

h(xi) h : Rdx → Rdh (7)

which is clearly invariant under permutations of xi’s in
the same cluster. In general h is an encoding function we
learn from data, unless p(x|µ) belongs to an exponential
family and the prior p(c1:N ) is constant, as discussed in
SM Section B.

• Permutations between clusters: (6) is invariant under
permutations of the cluster labels. In terms of the within-
cluster invariants Hk, this can be captured by

G =

K∑
k=1

g(Hk), g : Rdh → Rdg . (8)

• Permutations of the unassigned data points: (6) is
also invariant under permutations of the N − n unas-
signed data points. This can be captured by

U =

N∑
i=n+1

u(xi) , u : Rdx → Rdu . (9)

Note that G and U provide fixed-dimensional, symmetry-
invariant representations of the assigned and non-assigned
data points, respectively, for any values of N and K. Encod-
ings of this form yield arbitrarily accurate approximations

of (partially) symmetric functions (Zaheer et al., 2017; Gui
et al., 2019).

3.1. The Variable-input Softmax

After assigning values to c1:n−1, each of the K+ 1 possible
values for cn corresponds to h(xn) appearing in one partic-
ular Hk in (7), and yields a separate vector Gk in (8). See
Figure 1 for an example. In terms of the Gk’s and U , we
propose to model (5) as

qθ(cn = k|c1:n−1,x) =
ef(Gk,U)∑K+1

k′=1 e
f(Gk′ ,U)

(10)

with k = 1 . . .K + 1, where we have introduced a new
real-valued function f . In other words, each value of cn cor-
responds to a different channel through which the encoding
h(xn) flows to the logit value f . Note that k = K+1 corre-
sponds to cn forming its own new cluster with Hk = h(xn).

Our softmax (10) differs from the usual form in, e.g., classifi-
cation networks, where a fixed number of categories receive
logit values f from the fixed-size final layer of a multi-layer
perceptron (MLP). In our case, the discrete identity of each
logit is determined by the neural path that the input h(xn)
takes to G, thus allowing a flexible number of categories.

In eq. (10), θ denotes the parameters in the functions h, g, u
and f , which we represent with neural networks. By storing
and updating G and U for successive values of n, as shown
in Algorithm 1, the computational cost of a full i.i.d. sample
of c1:N is O(NK), the same as a single Gibbs sweep; and
by parallelizing steps 8-9 in Algorithm 1, the number of net-
work forward passes becomesO(N). We term this approach
Neural Clustering Process (NCP). It is relatively easy to run
hundreds of copies of Algorithm 1 in parallel on a GPU,
with each copy yielding a different set of samples c1:N .2

3.2. Objective Function

In order to train the neural networks, we use stochastic
gradient descent to minimize the expected KL divergence,

Ep(N)p(x)KL(p(c|x)‖qθ(c|x)) = (11)

−Ep(N)p(c1:N ,x)

[∑N
n=2 log qθ(cn|c1:n−1,x)

]
+ const.

Samples from p(c1:N ,x) are obtained from the generative
model, irrespective of the model being conjugate. In cases
with unlimited samples (such as the 2D Gaussian example
in Section 5 and the spike-sorting application in Section 8),
we can potentially train a neural network to approximate
p(cn|c1:n−1,x) arbitrarily accurately.

The objective function (11) can be seen as a form
of Expectation Propagation (Minka, 2001), as opposed

2Implementation available at https://github.com/
aripakman/neural_clustering_process
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Algorithm 1 O(NK) Neural Clustering Process
1: hi ← h(xi), ui ← u(xi) i = 1 . . . N {Notation}
2: U ←

∑N
i=2 ui, K ← 1 {Initialize unassigned set}

3: H1 ← h1, G← g(H1), c1 ← 1 {First cluster}
4: for n← 2 . . . N do
5: U ← U − un {Remove xn from unassigned set}
6: HK+1 ← 0 {We define g(0) = 0}
7: for k ← 1 . . .K + 1 do
8: Gk ← G+ g(Hk + hn)− g(Hk) {Add xn}
9: qk ← ef(Gk,U)

10: end for
11: qk ← qk/

∑K+1
k′=1 qk′ , cn ∼ qk {Sample}

12: if cn = K + 1 then
13: K ← K + 1
14: end if
15: G← G− g(Hcn) + g(Hcn + hn) {Add point xn}
16: Hcn ← Hcn + hn
17: end for
18: Return c1 . . . cN

to variational inference, which would minimize instead
KL(qθ(c|x)‖p(c|x)). Note that the gradient acts only on
the variable-input softmax qθ, not on p(c,x), so there is
no problem of backpropagating through discrete variables
(Jang et al., 2016; Maddison et al., 2016).

4. Clusterwise Sampling
While the NCP algorithm is good enough for small datasets,
O(N) forward calls might be too many for large datasets.
We consider now an O(K) alternative, based on modeling
the factors in the clusterwise expansion (4),

p(s1:K |x) = p(s1|x)p(s2|s1,x) . . . p(sK |s1:K−1,x) . (12)

Sampling from p(sk|s1:k−1,x) can be done in two steps:

1. Sample uniformly an index dk from the set Ik =
{1 . . . N}\{s1:k−1} of available indices (those not
taken by s1:k−1). The point xdk becomes the first
element of cluster k.

2. Denote by ak = (a1 . . . amk) the elements of the set of
remaining indices Ik\{dk}, where mk = |Ik\{dk}|.
Conditioned on (dk, s1:k−1,x), sample a binary vector

bk = (b1 . . . bmk) ∈ {0, 1}mk

with bi = 1 if the point xai joins cluster k.

These two steps (see Figure 2 for an example) are iterated
until there are no available indices left, and have probability

p(dk,bk|s1:k−1,x) = p(dk|s1:k−1)p(bk|dk, s1:k−1,x) (13)

Figure 2. Clusterwise sampling. Left: After sampling cluster s1
(orange), the first element of s2, d2, is sampled uniformly (green).
Middle: All unassigned points a2 (grey) are candidates to join d2.
Right: By sampling b2, cluster s2 is completed. (Best in color).

where

p(dk|s1:k−1) =

{
1/|Ik| for dk ∈ Ik ,

0 for dk /∈ Ik ,

and |Ik| = mk + 1. The event indicated by sk is the union
of Nk disjoint events (dk,bk), and we have

p(sk|s1:k−1,x) =
1

|Ik|
∑
dk∈sk

p(bk|dk, s1:k−1,x) (14)

where bk has a ‘1’ for each element in sk except dk.
Our major challenge is therefore to model the conditional
p(bk|dk, s1:k−1,x), which we address next.

4.1. Factorized posterior

The information contained in (dk, s1:k−1,x), is better repre-
sented by splitting the dataset as xk = (xa, xdk ,xs), where

xa = (xa1 . . . xamk ) mk available points for cluster k
xdk First data point in cluster k
xs = (xs1 . . .xsk−1

) Points already assigned to clusters.

Thus p(bk|xk) ≡ p(bk|dk, s1:k−1,x). Note now that this
factor has a form of conditional exchangeability

p(b1 . . . bmk |xa1 , . . . , xamk , xdk ,xs) =

p(bσ1 . . . bσmk |xσa1 . . . xσamk , xdk ,xs) ,

where σ is an arbitrary permutation of the elements of bk
and xa. Based on this, we assume a conditional version of
de Finetti’s theorem and propose3

p(bk|xk) '
∫
dzk

mk∏
i=1

pi(bi|zk,xk)p(zk|xk) , (15)

3More precisely, de Finetti’s theorem (de Finetti, 1931; Hewitt
& Savage, 1955) holds for infinite sequences. For finite sequences,
as in our case, the result has been shown to hold only approximately
and for discrete variables, both in the unconditional (Diaconis,
1977; Diaconis & Freedman, 1980) and conditional cases (Chris-
tandl & Toner, 2009).
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Figure 3. Mixture of 2D Gaussians: Given the observations in the first panel, we show samples from the NCP posterior. Note that less-
reasonable samples are assigned lower probability by the NCP. The dotted ellipses indicate departures from the first, highest-probability
sample. Our GPU implementation gives thousands of samples in less than a second. CCP results are similar. (Best in color.)

and approximate the integrands as

pθ(zk|xk) = N (zk|xk) (16)
pθ,i(bi|zk,xk) = sigmoid[ρi(zk,xk)] . (17)

Crucially, the posterior distributions of the bi’s are condition-
ally independent. Therefore, after sampling p(zk|xk), all
the bi’s can be sampled in parallel. Thus, while a full sample
of (12) of course has cost O(N), the heaviest computational
burden, from network evaluations, scales as O(K), since
each factor in (12) needs O(1) forward calls. As in NCP, we
can get hundreds of full samples via GPU parallelization.

To summarize, the elements of sk are generated in a process
with latent variables dk, zk and joint distribution

pθ(sk, zk, dk|s1:k−1,x) =

pθ(bk|zk,xk)pθ(zk|xk)p(dk|s1:k−1)

where
pθ(bk|zk,xk) =

∏mk
i=1 pθ,i(bi|zk,xk) . (18)

In order to learn these functions, we introduce an encoder
qφ(zk, dk|s1:k,x) to approximate the intractable posterior,
and train the functions as a conditional variational autoen-
coder (VAE) (Sohn et al., 2015) (as we condition everything
on x). The dependence of all the functions on the compo-
nents of x should respect the symmetries imposed by the
conditioning clusters s1:k−1 (or s1:k for qφ). This can be
achieved using encodings similar to those we used above
in Section 3; see SM Section A for details.

Let us stress the double role of pθ(zk|xk)p(dk|s1:k−1) and
pθ(bk|zk,xk). In the VAE framework, they are the priors
and likelihood of a generative model for sk. On the other
hand they represent, after dk, zk marginalization (14)-(15), a
factor of the posterior expansion (12). We call this approach
Clusterwise Clustering Process (CCP).

4.2. Objective Function

Similar to the NCP case in (11), we want an approximation
pθ(s1:K |x) to p(s1:K |x) that maximizes

−Ep(x)KL[p(s1:K |x)||pθ(s1:K |x)] (19)

= Ep(x,s1:K)

∑K
k=1 log pθ(sk|s1:k−1,x) + const.

where we expanded pθ(s1:K |x) as in (12). Using now the
variational posterior qφ, we can bound (19) from below,
which leads us to maximize the ELBO

Ep(x,s1:K)

K∑
k=1

Eqφ(zk,dk|s1:k,x) log

[
pθ(sk, zk, dk|s1:k−1,x)

qφ(zk, dk|s1:k,x)

]
To use the reparametrization trick (Kingma & Welling,
2013), we use a Gumbel-Softmax relaxation for dk (Jang
et al., 2016; Maddison et al., 2016). See SM Section A.

4.3. Estimating sample probabilities

Unlike NCP, CCP samples do not come with a probability
estimate. The latter can be estimated using (12) and

p(bk|xk) ' 1

M

M∑
j=1

pθ(bk|zk,j ,xk) (20)

where zk,j ∼ pθ(zk|xk).

5. Examples
2D Gaussian models: The generative model is

α ∼ Exp(1) c1:N ∼ CRP(α)

N ∼ Uniform[5, 100]

µk ∼ N(0, σ2
µ12)

xi ∼ N(µci , σ
212)

where CRP stands for the Chinese Restaurant Process, with
concentration parameter α, σµ = 10, and σ = 1. Figure 3
shows that the NCP captures the posterior uncertainty inher-
ent in clustering this data. Since we have unlimited samples,
there is no distinction here between training and test sets.

MNIST digits: We consider next a DPMM over MNIST
digits, with generative model

α ∼ Exp(1) c1:N ∼ CRP10(α)

N ∼ Uniform[5, 100]

lk ∼ Unif[0, 9]− without replacement. k = 1 . . .K

xi ∼ Unif[MNIST digits with label lci ] i = 1 . . . N

where CRP10 is a Chinese Restaurant Process truncated
to up to 10 clusters, and dx = 28 × 28. Training was
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Figure 4. NCP trained on MNIST clusters. Top row: 20 images from the MNIST test set. Below: five samples of c1:20 from the NCP
posterior. Note that each sample captures some ambiguity suggested by the form of particular digits. CCP results are similar.

performed by sampling xi from the MNIST training set.
Figure 4 shows posterior samples for a set of digits from
the MNIST test set, illustrating how the estimated model
correctly captures the shape ambiguity of some of the digits.
Note that in this case the generative model has no analytical
expression, but this presents no problem; a set of labelled
samples is all we need for training. See SM Section G for
details of the network architectures used.

6. Related works
Most works on neural network-based clustering focus on
learning features as inputs to traditional clustering algo-
rithms, as reviewed in (Du, 2010; Aljalbout et al., 2018;
Min et al., 2018). Our approach differs from these works
because it leverages deep learning to improve algorithmic
aspects of clustering, via amortization.

Permutation-invariant neural architectures have been ex-
plored recently in (Ravanbakhsh et al., 2017; Korshunova
et al., 2018; Lee et al., 2018; Bloem-Reddy & Teh, 2019;
Wagstaff et al., 2019). The representation of a set via a sum
(or mean) of encoding vectors was also used in (Guttenberg
et al., 2016; Ravanbakhsh et al., 2016; Edwards & Storkey,
2017; Zaheer et al., 2017; Garnelo et al., 2018a; Kim et al.,
2019).

A conditional form of de Finetti’s theorem was also assumed
for Neural Processes (NP) (Garnelo et al., 2018b), but differs
from our assumed form in (15) in that our prior pθ(zk|xk)
depends symmetrically on the available points xa, in order
to keep the correct dependency of the marginal p(c1:n,x)
on all the N components of x, while for NPs the prior is
independent of the available data points.

Amortized inference of Gaussian mixtures has been studied
recently in (Le et al., 2016; Lee et al., 2018; Kalra et al.,
2019). In these works the output of the network are the

mixture parameters instead of sampled discrete labels, and
the number of components is either bounded (Le et al., 2016)
or fixed (Lee et al., 2018; Kalra et al., 2019). Closer to our
CCP is the DAC approach (Lee et al., 2019), that uses the
set attention mechanism of (Lee et al., 2018) in the encoder
to iteratively isolate and eliminate one cluster per iteration,
in O(K) network evaluations. But the clusters have no
clear interpretation in terms of the generative model, as they
come from hard thresholding of sigmoids and the eliminated
clusters do not appear as a conditioning context to find new
clusters. We summarize these comparisons in Table 1.

Property CCP NCP DAC MoG

Unlimited components X X X 7
Amortized labels X X X 7
Any generative model X X X 7
Well defined posterior X X 7 -
Forward passes O(K) O(N) O(K) O(1)

Table 1. Comparing amortized clustering approaches. We
compare NCP/CCP (our methods) with DAC (Lee et al., 2019) and
amortization for mixtures of Gaussians (MoG) (Le et al., 2016;
Lee et al., 2018; Kalra et al., 2019).

7. Evaluations and diagnostics
The examples in Section 5 provide strong qualitative evi-
dence that our approximations to the true posteriors in these
models capture the uncertainty inherent in the observed data.
But we would like to go further and ask quantitatively how
well our approximations match the exact posterior. Unfortu-
nately, for sample sizes much larger than N = O(10) it is
impossible to compute the exact posterior in these models.
Nonetheless, there are several quantitative metrics we can
examine to check the accuracy of the model output. Note
that the diagnostics below that rely on the probabilistic na-
ture of the inferred clusters are not applicable to the other
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Figure 5. Quantitative Evaluations. Upper left: Two clusters of 20 points each and a line over possible locations of a 41st last point.
Upper right: Assuming the 2D model from (21), the posterior p(c41|c1:40,x) can be computed exactly, and we compare it to the NCP
estimate as a function of the horizontal coordinate of x41, as this point moves over the gray line on the upper left panel. Geweke’s Tests.
Lower left: The curves compare the exact mean (± std.) of the number of clusters K for different N ’s from the CRP prior (α = 0.7),
with CCP sampled estimates using eq. (21). Lower right: Similar comparison for the histogram of K for N = 30 points.

methods compared in Table 1.

NCP vs. CCP: The results from the two approaches were
similar in all the examples we considered, such as those
in Section 5. Training CPP, however, presents the usual
challenges of VAEs. We found it useful to use multiple sam-
ple objectives (Burda et al., 2015) and estimate the gradient
using double-reparametrization (Tucker et al., 2019).

Global symmetry from exchangeability: From the ex-
changeability of p(c1:N |α1), the expansion (3) should not
depend on the order of the data points, but this symmetry is
not enforced explicitly. If our model learns the conditional
probabilities correctly, this symmetry should be (approxi-
mately) satisfied, as we show in SM Section C.

Estimated vs. Analytical Probabilities: Some conditional
probabilities can be computed analytically and compared
with the estimates output by the network; in the example
shown in Figure 5, upper-right, the estimated probabilities
are in close agreement with their exact values.

Geweke’s Tests: A popular family of tests that check the
correctness of MCMC implementations (Geweke, 2004) can
also be applied in our case: verify the (approximate) identity
between the prior p(c1:N ) and

qθ(c1:N ) ≡
∫
dx qθ(c1:N |x) p(x) , (21)

where p(x) is the marginal from the generative model. Fig-
ure 5 shows such a comparison for the 2D Gaussian DPMM
from Section 5, showing excellent agreement.

Comparison with MCMC: NCP/CCP have some advan-
tages over MCMC approaches. First, unlike MCMC, we get
a probability estimate for each sample, either directly (NCP)
or with minimal computation (CCP). Secondly, NCP/CCP
enjoy higher efficiency, due to parallelization of iid samples.
For example, in the Gaussian 2D example in eq.(21), in
the time a collapsed Gibbs sampler produces one (corre-
lated) sample, our GPU-based NCP implementation pro-
duces more than 100 iid approximate samples. Finally,
NCP/CCP do not need a burn-in period.

Comparison with Variational Inference: Below we com-
pare NCP with a variational approach on spike sorting. For
2000 spikes, the latter returned one clustering estimate in
0.76 secs., but does not properly handle the uncertainty
about the number of clusters. NCP produced 150 clustering
configurations in 10 secs., efficiently capturing clustering
uncertainty. In addition, the variational approach requires a
preprocessing step that projects the samples to lower dimen-
sions, whereas NCP directly consumes the high-dimensional
data by learning an encoder function h.

8. Application: spike sorting with NCP
Large-scale neural population recordings using multi-
electrode arrays (MEA) are crucial for understanding neural
circuit dynamics. Each MEA electrode reads the signals
from many neurons, and each neuron is recorded by multi-
ple nearby electrodes. As a key analysis step, spike sorting
converts the raw signal into a set of spike trains belonging
to individual neurons (Pachitariu et al., 2016; Chung et al.,
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2017; Jun et al., 2017; Lee et al., 2017; Chaure et al., 2018;
Carlson & Carin, 2019). At the core of many spike sorting
pipelines is a clustering algorithm that groups the detected
spikes into clusters, each representing a putative neuron
(Figure 6). However, clustering spikes can be challenging:
(1) Spike waveforms form highly non-Gaussian clusters in
spatial and temporal dimensions, and it is unclear what are
the optimal features for clustering. (2) It is unknown a pri-
ori how many clusters there are. (3) Existing methods do
not perform well on spikes with low signal-to-noise ratios
(SNR) due to increased clustering uncertainty, and fully-
Bayesian approaches proposed to handle this uncertainty
(Wood & Black, 2008; Carlson et al., 2013) do not scale to
large datasets.

To address these challenges, we propose a novel approach
to spike clustering using NCP. We consider the spike wave-
forms as generated from a Mixture of Finite Mixtures
(MFM) distribution (Miller & Harrison, 2018), which can
be effectively modeled by NCP. (1) Rather than selecting
arbitrary features for clustering, the spike waveforms are
encoded with a convolutional neural network (ConvNet),
which is learned end-to-end jointly with the NCP network
to ensure optimal feature encoding. (2) Using a variable-
input softmax function, NCP is able to perform inference on
cluster labels without assuming a fixed or maximum num-
ber of clusters. (3) NCP allows for efficient probablistic
clustering by GPU-parallelized posterior sampling, which
is particularly useful for handling the clustering uncertainty
of ambiguous small spikes. (4) The computational cost of
NCP training can be highly amortized, since neuroscientists
often sort spikes form many statistically similar datasets.

We trained NCP for spike clustering using synthetic spikes
from a simple yet effective generative model that mimics
the distribution of real spikes, and evaluated the spike sort-
ing performance on labeled synthetic data, unlabeled real
data and hybrid test data by comparing NCP against two
other methods: (1) vGMFM, variational inference on Gaus-
sian MFM (Hughes & Sudderth, 2013). (2) Kilosort, a
state-of-the-art spike sorting pipeline described in (Pachi-
tariu et al., 2016). In the Supplementary Material (SM)
Section D, we describe the dataset, neural architecture, and
the training/inference pipeline of NCP spike sorting. In SM
Section E, we show that NCP spike sorting achieves high
clustering quality, and matches or outperforms a state-of-
the-art method on synthetic, real and hybrid data.

Probabilistic clustering of ambiguous small spikes. Sort-
ing small spikes has been challenging due to the low SNR
and increased uncertainty of cluster assignment. By efficient
GPU-parallelized posterior sampling of cluster labels, NCP
is able to handle the clustering uncertainty by producing
multiple plausible clustering configurations. Figure 7 shows
examples where NCP separates spike clusters with ampli-
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Figure 6. Clustering multi-channel spike waveforms using
NCP. Each row is an electrode channel. Spikes of the same color
belong to the same cluster. (Scale bar: 5× noise s.d.).

tude as low as 3-4× the standard deviation of the noise into
plausible units that are not mere scaled version of each other
but have distinct shapes on different channels. f
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Figure 7. Clustering ambiguous small spikes. In both examples,
multiple plausible clustering results of small spikes were produced
by sampling from the NCP posterior (scale bar = 5× noise s.d.).

9. Conclusion
We introduced neural architectures to amortize posterior
sampling of generative clustering models in O(N) and
O(K) forward passes. The performance is excellent in sim-
ple examples. In a realistic spike-sorting application, our
results show that NCP spike sorting provides high clustering
quality, matches or outperforms a state-of-the-art method,
and handles clustering uncertainty by efficient posterior
sampling (a task that is not solved by currently available
methods), demonstrating substantial promise for incorporat-
ing these methods into production-scale pipelines.
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