
Neural Clustering Processes

A. Details of the CCP Model
A.1. Encodings

In order to parametrize the prior, likelihood and posterior of the CCP model, it is convenient to define first some symmetric
encodings for different subsets of the data set x at iteration k. Remember that the notation xk indicates that the dataset is
split into three groups, xk = (xa, xdk ,xs), where

xa= (xa1 . . . xamk) mk available points for cluster k
xdk First data point in cluster k
xs = (xs1 . . .xsk−1

) Points already assigned to clusters.

The symmetric encodings we need are:

Definition Encoded Points

Dk =

Nk∑
i=1

δsk,i,dku(xsk,i) xdk , the first point in cluster k

Aink =

Nk∑
i=1

(1− δsk,i,dk)u(xsk,i) Points from xa that join cluster k.

Aoutk =

mk∑
i=1,bi=0

u(xai) Points from xa that do not join cluster k

Ak = Aink +Aoutk xa, all the mk points available to join xdk

Sk = Dk +Aink All points sk in cluster k
Hj =

∑
x: x∈sj

h(x) j = 1 . . . k − 1 All points in cluster j < k

Gk =

k−1∑
j=1

g(Hj) All the clusters s1:k−1.

(22)

A.2. Prior and Likelihood

Remember from Section 4 that, having generated k − 1 clusters s1:k−1, the elements of sk are generated in a process with
latent variables dk, zk and joint distribution

pθ(sk, zk, dk|s1:k−1,x) = pθ(bk|zk,xk)pθ(zk|xk)p(dk|s1:k−1) (23)

where

pθ(bk|zk,xk) =

mk∏
i=1

pθ,i(bi|zk,xk) . (24)

The priors and likelihood are

p(dk|s1:k−1) =

{
1/|Ik| for dk ∈ Ik ,

0 for dk /∈ Ik , (25)

pθ(zk|xk) = N (zk|µ(xk), σ(xk)) (26)
pθ,i(bi|zk,xk) = sigmoid[ρi(zk,xk)] (27)

Neural Clustering Processes

and can be defined in terms of

µ(xk) = µ(Dk, Ak, Gk) (28)
σ(xk) = σ(Dk, Ak, Gk), (29)

ρi(zk,xk) = ρ(zk, xai , Dk, Ak, Gk) i = 1 . . .mk (30)

where µ, σ, ρ are represented with MLPs. Note that in all the cases the functions depend on encodings in (22) that are
consistent with the permutation symmetries dictated by the conditioning information.

A.3. ELBO

The ELBO that we want to maximize is given by

Ep(x,s1:K) log pθ(s1:K |x) (31)

= Ep(x,s1:K)

K∑
k=1

log

[
Nk∑
dk=1

∫
dzkpθ(sk, zk, dk|s1:k−1,x)

]
(32)

≥ Ep(x,s1:K)

K∑
k=1

Eqφ(zk,dk|s1:k,x) log

[
pθ(sk, zk, dk|s1:k−1,x)

qφ(zk, dk|s1:k,x)

]
(33)

= Ep(x,s1:K)

K∑
k=1

Eqφ(zk,dk|s1:k,x) log

[
pθ(bk|zk,xk)pθ(zk|xk)p(dk|s1:k−1)

qφ(zk|bk, dk,xk)qφ(dk|s1:k,x)

]
(34)

where we introduced the posterior qφ(zk, dk|s1:k,x) = qφ(zk|bk, dk,xk)qφ(dk|s1:k,x). For the first factor we assume a
form

qφ(zk|bk, dk,xk) = N (zk|µq(Dk, A
in
k , A

out
k , Gk), σq(Dk, A

in
k , A

out
k , Gk)) (35)

where µq, σq are MLPs. The most challenging aspect of maximizing the ELBO concerns the factor qφ(dk|s1:k,x), a
multinomial over the Nk components of sk for which we consider next two different approaches.4

A.4. Gumbel-Softmax Relaxation

We start by modeling

qφ(dk = sk,i|s1:k,x) = Softmax[ϕ(xsk,i , Sk, A
out
k , Gk)] i = 1 . . . Nk (37)

Following (Jang et al., 2016; Maddison et al., 2016), we define

yi =
e(ϕi+gi)/τ∑Nk
j=1 e

(ϕj+gj)/τ
(38)

where τ is a temperature parameter, gi’s are samples from the Gumbel distribution and

ϕi = ϕ(xsk,i , Sk, A
out
k , Gk) . (39)

The yi’s samples are a relaxed version of one-hot samples of dk from (37) that live in theNk-simplex. To apply the relaxation
of dk, we just replace δsk,i,dk with yi in the definitions of Dk and Aink . Following the recommendation of (Maddison et al.,
2016), we express the ELBO in terms of

ti = log(y) (40)

4A third alternative would be to model qφ(dk|·) as (37) and compute the expectation exactly

Ep(x,s1:K)

K∑
k=1

Nk∑
i=1

qφ(dk = sk,i|s1:k,x)Eqφ(zk|bk,dk,xk) log
[
pθ(bk|zk,xk)pθ(zk|xk)p(dk|s1:k−1)

qφ(zk|bk, dk,xk)qφ(dk|s1:k,x)

]
(36)

Neural Clustering Processes

15 10 5 0 5

5

0

5

10

80 Points 5 Clusters 5 Clusters Prob: 0.206 5 Clusters Prob: 0.154 5 Clusters Prob: 0.073 4 Clusters Prob: 0.052 5 Clusters Prob: 0.029

Below: NCP
Above: CCP

5 Clusters Prob: 0.251 5 Clusters Prob: 0.125 6 Clusters Prob: 0.061 4 Clusters Prob: 0.031 6 Clusters Prob: 0.022

5 25 45 65 85
Dataset Size N

0.0

0.2

0.4

0.6

M
ea

n
clo

ck
 ti

m
e

(s
ec

s)

NCP
DAC
CCP

Figure S1. Comparing Samples and Times. Above: Samples from NCP and CCP on the same data set. Both models were trained
using the generative model for mixtures of 2D Gaussians from Section 5. Note that the higher probability clusters agree in their labels
and approximately in the assigned probabilities. Below: Clock time as a function of the dataset size for NCP, CCP and DAC (Lee et al.,
2019),6all trained and tested with the same 2D Gaussian model as above. Each point in the curve is the average over 25 datasets. For NCP
and CCP we sampled 200 full posterior samples, while DAC gives a single deterministic output.

Calling κg,τ (t) their probability density (see (Maddison et al., 2016) for the explicit form), the relaxed ELBO becomes

Ep(x,s1:K)

K∑
k=1

Eqφ(zk,y|s1:k,x) log

[∏Nk
i=1[pθ,i(bi = 1|zk,y)]1−yi

∏mk
i=1,bi=0 pθ,i(bi = 0|zk,y)pθ(zk|y)

qφ(zk|y)κg,τ (t(y))

]
+ const.

In this relaxed version the reparametrization trick can be used in the usual way to compute derivatives of qφ.

A.5. Uniform Discrete Posterior

A simpler approach to model qφ(dk|s1:k,x) is by approximating it as uniform, given by

q(dk|s1:k) =

{
1/Nk for dk ∈ sk,

0 for dk /∈ sk. (41)

This approximation is very good in cases of well separated clusters. Since q(dk|s1:k) has no parameters now, this avoids the
problem of backpropagation through discrete variables. In the examples we considered, this simpler approach yielded better
results, as measured, e.g., by a better agreement in Geweke’s test (see Figure 5). So this was the approach we adopted in the
results we present in this work.

6We used the DAC code available at https://github.com/ICLR2020anonymous/dac.

Neural Clustering Processes

x1 h
c1=1

x3 h
c3=1

x2 h
c2=2

x4 h
c4=2

xn h

xn+1 u

xn+2 u

H1 g

H2 g

G

HK+1 g

U

x1 x3 xn

cn=1

cn=2

cn=K+1

cn=1

cn=2

cn=K+1

x2 x4

x1 x3 x2 x4 xn

Neural Clustering Process

x1 x3 x2 x4 xn

G1

G2

GK+1

variable-input softm
ax

0.08

0.90

0.02

U

f

f

f

Figure S2. Architecture of the Neural Clustering Process. The full model is composed by the deep networks h, g, u, f . Left: After
assigning the cluster labels c1:n−1, each possible discrete value k for cn gives a different symmetry-invariant encoding of x1:n into
the vector Gk, using the functions h and g. The remaining, yet-unassigned points xn+1:N are encoded by u and summed into the
vector U . Right: Each pair Gk, U is mapped by f into a real number (logit), which in turn is mapped into the multinomial distribution
qθ(cn|c1:n−1,x) via a variable-input softmax.

B. Neural Clustering Process for Exponential Families
The details of the NCP architecture are fully explained in Section 3, and Figure S2 shows the architecture diagramatically.

In the section we consider the spacial case of exponential family likelihoods, given by

p(x|µ) = eµ·t(x)−ψ(µ)m(x) (42)
= eλ·h(x)m(x) (43)

where t(x) is a vector of sufficient statistics, and we defined

h(x) = (1, t(x)) (44)
λ = (−ψ(µ), µ) (45)

Let us denote by K and K ′ ≥ K the total number of distinct values in c1:n and c1:N , respectively. Consider the joint
distribution

p(c1:N ,x, µ) = p(c1:N)p(µ)

K′∏
k=1

eλk·
∑
i:ci=k

h(xi)
N∏
i=1

m(xi) (46)

from which we obtain the marginal distributions

p(c1:n,x) =
∑

cn+1...cN

p(c1:N ,x) (47)

=
∑

cn+1...cN

∫
dµp(c1:N)p(µ)

K′∏
k=1

eλk·(Hk+
∑
i>n:ci=k

h(xi))
N∏
i=1

m(xi) (48)

= F (H1, . . . ,HK , h(xn+1), . . . , h(xN))

N∏
i=1

m(xi) (49)

where we defined

Hk =
∑

i≤n,ci=k

h(xi) k = 1 . . .K (50)

Neural Clustering Processes

and Hk = 0 for k > K.

Note now that if p(c1:N) is constant, all the dependence of F on c1:n, x1:n is encoded in the Hk’s, and F is symmetric under
separate permutations of the Hk’s and the h(xi)’s for i > n. Based on these symmetries we can approximate F as

F ' ef(G,U) (51)

modulo adding to f any function symmetric on all xi’s, where

G =

K∑
k=1

g(Hk) (52)

U =

N∑
i=n+1

u(xi) (53)

In the conditional probability we are interested in,

p(cn|c1:n−1,x) =
p(c1:n,x)∑
cn
p(c1:n,x)

, (54)

the product of the m(xi)’s in (49) cancels. Similarly, adding to f a function symmetric on all xi’s leaves invariant our
proposed approximation

qθ(cn = k|c1:n−1,x) =
ef(Gk,U)∑K+1

k′=1 e
f(Gk′ ,U)

k = 1 . . .K + 1 . (55)

C. Monitoring global permutation invariance
As mentioned in Section 7, we must verify the symmetry of the posterior likelihood under global permutations of all the
data points. We show such a check in Figure S3.

0 1000 2000 3000 4000 5000 6000 7000
Iteration

10 1

Me
an

 NL
L

0 1000 2000 3000 4000 5000 6000 7000
Iteration

3 × 10 2

4 × 10 2

6 × 10 2

NL
L s

td/
me

an

Figure S3. Global permutation invariance. Training curves for the NCP model of 2D Gaussians in Section 2. Each minibatch was
evaluated for 8 random permutations of the order of the points in the dataset. Above: Mean of the NLL over the permutations. Below:
NLL standard deviation/NLL mean. Note that the ratio is of order 10−2.

Neural Clustering Processes

D. Details of spike sorting using NCP
Data preprocessing. Training and test data come from the retinal recordings in (Chichilnisky & Kalmar, 2002) using a
512-channel 2D hexagonal MEA with 20 kHz sampling rate. After spike detection (Lee et al., 2017), each multi-channel
spike waveform was assigned to the channel where the waveform has the maximum peak-to-peak (PTP) amplitude (i.e. the
center channel, ch0). This partitioned the recording data by channel such that each center-channel-based partition only
contains multi-channel spike waveforms centered at that channel. Each spike waveform is represented as a 7 × 32 array
containing the 32 time steps surrounding the peak from the center channel and the same time window from the 6 immediate
neighbor channels (Figure 6). These 7× 32 arrays are the spikes on which clustering was performed.

Neural architecture for NCP spike sorting. The overall architecture is the same as the one described in Section 3 and
Figure S2. To extract useful features from the spatial-temporal patterns of spike waveforms, we use a 1D ConvNet as the h
and u encoder functions. The convolution is applied along the time axis, with each electrode channel treated as a feature
dimension. The ConvNet uses a ResNet architecture (He et al., 2016) with 4 residual blocks, each having 32, 64, 128, 256
feature maps (kernel size = 3, stride = [1, 2, 2, 2]). The last block is followed by an averaged pooling layer and a final
linear layer. The outputs of the ResNet encoder are the hi and ui vectors of NCP, i.e. hi = ResNetEncoder(xi). We used
dh = du = 256. The other two functions, g and f , are identical to those in the 2D Gaussian example.

Training NCP using synthetic data. To train NCP for spike clustering, we created synthetic labeled training data using a
MFM generative model (Miller & Harrison, 2018) of noisy spike waveforms that mimic the distribution of real spikes:

N ∼ Uniform[Nmin, Nmax] (56)
K ∼ 1 + Poisson(λ) (57)

π1 . . . πK ∼ Dirichlet(α1, . . . , αK) (58)

c1 . . . cN ∼ Cat(π1, . . . , πK) (59)
µk ∼ p(µ) k = 1 . . .K (60)
xi ∼ p(xi|µci ,Σs ⊗ Σt) i = 1 . . . N (61)

Here,N is the number of spikes between [200, 500]. The number of clustersK is sampled from a shifted Poisson distribution
with λ = 2 so that each channel has on average 3 clusters. π1:K represents the proportion of each cluster and is sampled
from a Dirichlet distribution with α1:K = 1. The training spike templates µk ∈ R7×32 are sampled from a reservoir of 957
ground-truth templates not present in any test data, with the temporal axis slightly jittered by random resampling. Finally,
each waveform xi is obtained by adding to µci Gaussian noise with covariance given by the Kronecker product of spatial
and temporal correlation matrices estimated from the training data. This method creates spatially and temporally correlated
noise patterns similar to real data (Figure S4). We trained NCP for 20000 iterations on a GPU with a batch size of 32 to
optimize the NLL loss by the Adam optimizer (Kingma & Ba, 2015). A learning rate of 0.0001 was used (reduced by half at
10k and 17k iterations).

Cluster 1 (n = 230) Cluster 2 (n = 205) Cluster 3 (n =65)
Examples Overlay Average

ch0

ch1

ch2

ch6

ch5

ch4

ch3

Ch
an

ne
ls

Figure S4. Synthetic data examples. Example of 500 synthetic spikes from 3 clusters.

Neural Clustering Processes

Probabilistic spike clustering using NCP. At inference time, we fed the 7 x 32 arrays of spike waveforms to NCP, and
performed GPU-parallelized posterior sampling of cluster labels (Figure S2 and Figure 6). Using beam search (Graves,
2012; Sutskever et al., 2014) with a beam size of 150, we were able to efficiently sample 150 high-likelihood clustering
configurations for 2000 spikes in less than 10 seconds on a single GPU. After clustering, we obtained a spike template for
each cluster as the average shape of the spike waveforms. The clustering configuration with the highest probability was used
for most experiments.

The spike sorting pipelines for real and hybrid data. The real data is a 49-channel, 20-minute retina recording with white
noise stimulus. To create the hybrid test data, 20 ground-truth spike templates were manually selected from a 49-channel
test recording and inserted into another test dataset according to the original spike times.

For NCP and vGMFM, we performed clustering on 2000 randomly sampled spikes from each channel (clusters containing
less than 20 spikes were discarded), and assigned all remaining spikes to a cluster based on the L2 distance to the cluster
centers. Then, a final set of unique spike templates were computed, and each detected spike was assigned to one of the
templates. The clustering step of vGMFM uses the first 5 PCA components of the spike waveforms as input features. For
Kilosort, we run the entire pipeline using the Kilosort2 package (Pachitariu, 2019). After extracting spike templates and RFs
from each pipeline, we matched pairs of templates from different methods by L-infinity distance and pairs of RFs by cosine
distance.

Electrode drift in real MEA data. The NCP spike sorting pipeline described above does not take into consideration
electrode drift over time, which is present in some real recording data. As a step towards addressing the problem of spike
sorting in the presence of electrode drift (Calabrese & Paninski, 2011; Shan et al., 2017), we describe in Sup. Material F a
generalization of NCP to handle data in which the per-cluster parameters (e.g. the cluster means) are nonstationary in time.

E. Experimental results for NCP spike sorting
Synthetic Data. We run NCP and vGMFM on 20 sets of synthetic test data each with 500, 1000, and 2000 spikes. As the
ground-truth cluster labels are known, we compared the clustering quality using Adjusted Mutual Information (AMI) (Vinh
et al., 2010). The AMI of NCP is on average 11% higher than vGMFM (SM Figure S5), showing better performance of
NCP on synthetic data.

Real Data. We run NCP, vGMFM and Kilosort on a retina recording with white noise stimulus as described in SM Section D,
and extracted the averaged spike template of each cluster (i.e. putative neuron). Example clustering results in SM Figure S6
(top) show that NCP produces clean clusters with visually more distinct spike waveforms compared to vGMFM. As real
data do not come with ground-truth cluster labels, we compared the spike templates extracted from NCP and Kilosort
using retinal receptive field (RF), which is computed for each cluster as the mean of the stimulus present at each spike. A
clearly demarcated RF provides encouraging evidence that the spike template corresponds to a real neuron. Side-by-side
comparisons of matched RF pairs are shown in SM Figure S6 (bottom-left) and SM Figure S8. Overall, NCP found 103
templates with clear RFs, among which 48 were not found by Kilosort, while Kilosort found 72 and 17 of them were not
found by NCP (SM Figure S6 bottom-right). Thus NCP performs at least as well as Kilosort, and finds many additional
templates with clear RFs.

Hybrid Data. We compared NCP against vGMFM and Kilosort on a hybrid recording with partial ground truth as in
(Pachitariu et al., 2016). Spikes from 20 ground-truth templates were inserted into a real recording to test the spike sorting
performance on realistic recordings with complex background noise and colliding spikes. As shown in SM Figure S7, NCP
recovered 13 of the 20 injected ground-truth templates, outperforming both Kilosort and vGMFM, which recovered 8 and 6,
respectively.

Neural Clustering Processes

500 Spikes 1000 Spikes 2000 Spikes

A
M

I

Figure S5. Clustering synthetic data. The AMI scores for clustering 20 sets of 500, 1000, and 2000 unseen synthetic spikes.

NCP vGMFM

C1
n: 955

C2
n: 368

C3
n: 305

C4
n: 179

C5
n: 66

C6
n: 60

C1
n: 384

C2
n: 374

C3
n: 318

C4
n: 271

C5
n: 210

C6
n: 177

C7
n: 138

C8
n: 128

ch0

ch1

ch2

ch6

ch5

ch4

ch3

Ch
an

ne
ls

Clusters:

ch0

ch1

ch2

ch6

ch5

ch4

ch3

NCP

vGMFM

Re
ce

pt
iv

e
Fi

el
ds

NCP Kilosort

5548 17

Receptive Fields

Figure S6. Spike sorting on real data. 2000 spikes from real data were clustered by NCP (top-left) and vGMFM (top-mid). Each column
shows the spikes assigned to one cluster (overlaying traces and their average). Each row is one electrode channel. Top-right: t-SNE
visualization of the spike clusters. Bottom-left: Example pairs of matched RFs recovered by NCP (red boxes) and Kilosort (blue boxes).
Blank indicates no matched counterpart. Bottom-right: Venn diagram of recovered RFs.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Unit ID (PTP order)

NCP
Kilosort
vGMFM

Found
Not Found

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Unit ID (PTP order)

0

10

20

PT
P

(S
U)

(D
ot

s)

1

10

20

Fi
rin

g
ra

te
 (H

z)
 (g

re
y

ba
rs

)

Figure S7. Spike sorting on hybrid data. Top: NCP, Kilosort, vGMFM recovered 13, 8, and 6 of the 20 injected ground-truth templates.
Bottom: Peak-to-peak (PTP) size and firing rate of each injected template. (Smaller templates with lower firing rates are more challenging.)

Neural Clustering Processes

KS; PTP 63.5
duplicates:2NCP; PTP 65.4 KS; PTP 43.9NCP; PTP 44.9 KS; PTP 42.5

NCP; PTP 44.5
duplicates: 2 KS; PTP 38.1NCP; PTP 39.0

KS; PTP 21.9
duplicates:2NCP; PTP 22.4

NCP; PTP 19.2
duplicates: 2 NCP; PTP 16.5 NCP; PTP 15.7 NCP; PTP 15.0 NCP; PTP 14.4

NCP; PTP 13.7 NCP; PTP 13.7 NCP; PTP 12.6 NCP; PTP 12.4 NCP; PTP 12.2

NCP; PTP 11.3 NCP; PTP 10.9 NCP; PTP 10.7 NCP; PTP 10.6 KS; PTP 10.3

KS; PTP 10.3 KS; PTP 10.0 NCP; PTP 9.8 NCP; PTP 9.3
KS; PTP 9.2
duplicates:2

NCP; PTP 9.2
duplicates: 2 NCP; PTP 9.1 NCP; PTP 9.1

NCP; PTP 9.0
duplicates: 3 NCP; PTP 8.9

KS; PTP 8.5 NCP; PTP 8.6 KS; PTP 8.5 NCP; PTP 8.6 KS; PTP 8.4 NCP; PTP 8.4 KS; PTP 8.4

KS; PTP 7.6 NCP; PTP 8.8 KS; PTP 8.0 KS; PTP 8.0 KS; PTP 7.5
NCP; PTP 8.4
duplicates: 2 KS; PTP 7.5

NCP; PTP 8.4
duplicates: 2

KS; PTP 7.3 NCP; PTP 8.0 NCP; PTP 7.0 KS; PTP 6.9 KS; PTP 6.9 KS; PTP 6.9

NCP; PTP 6.2
KS; PTP 5.8
duplicates:3

NCP; PTP 5.9
duplicates: 2 KS; PTP 5.8

KS; PTP 5.5
duplicates:2

NCP; PTP 5.8
duplicates: 2 KS; PTP 4.8

NCP; PTP 6.0
duplicates: 4

KS; PTP 5.3 NCP; PTP 4.5
KS; PTP 4.6
duplicates:2 NCP; PTP 4.0 KS; PTP 4.2

NCP; PTP 4.0
duplicates: 2

Figure S8. Spike sorting on real data. Receptive fields of 55 randomly selected pairs of units recovered from Kilosort and NCP spike
sorting. (Red boxes indicate units found by NCP; blue boxes by Kilosort.) Both approaches find the spikes with the biggest peak-to-peak
(PTP) size. For smaller-PTP units often one sorting method finds a cell that the other sorter misses. NCP and KS find a comparable
number of units with receptive fields here, with NCP finding a few more than KS; see text for details.

Neural Clustering Processes

Figure S9. Neural Particle Tracking. Left: Time trajectories of 5 2D particles. Note that particles can appear or disappear at arbitrary
times. Middle and right: Two posterior samples. Note that since only one particle is observed at each time, a particle not observed for
some time leads to a possible ambiguity on the number of particles. (Best seen in color.)

F. Particle tracking
Inspired by the problem of electrode drift (Calabrese & Paninski, 2011; Pachitariu, 2019; Shan et al., 2017), let us consider
now a generative model given by

ct ∼ p(ct|c1, . . . , ct−1) t = 1, . . . , T (62)
µk,t ∼ p(µk,t|µk,t−1) k = 1 . . .K t = 1, . . . , T (63)
xt ∼ p(xt|µct,t) t = 1, . . . , T (64)

In this model, a cluster corresponds to the points along the time trajectory of a particle, and (63) represents the time evolution
of the cluster parameters. The cluster labels ct indicate which particle is observed at time t, and note that particles can in
principle appear or disappear at any time.

To take the time evolution into account, we let particles influence one another with a weight that depends on their time
distance. For this, let us introduce a time-decay constant b > 0, and generalize the NCP equations to

Hk,t =

t∑
t′=1:ct′=k

e−b|t−t
′|h(xt′) k = 1 . . .K , (65)

Gt =

K∑
k=1

g(Hk,t) , (66)

Ut =

T∑
t′=t+1

e−b|t−t
′|u(xt′) . (67)

The conditional assignment probability for ct is now

qθ(ct = k|c1:t−1,x) =
ef(Gk,t,Ut)∑K+1

k′=1 e
f(Gk′,t,Ut)

(68)

for k = 1 . . .K + 1. The time-decay constant b is learnt along with all the other parameters. We can also consider replacing
e−b|t−t

′| with a general distance function e−d(|t−t
′|). Figure S9 illustrates this model in a simple 2D example. We call this

approach Neural Particle Tracking.

G. Neural architectures in the examples
To train the networks in the examples, we used stochastic gradient descent with Adam (Kingma & Ba, 2015), with learning
rate 10−4. The number of samples in each mini-batch were: 1 for p(N), 1 for p(c1:N), 64 for p(x|c1:N). The architecture

Neural Clustering Processes

of the functions in each case were:

NCP: 2D Gaussians

• h: MLP [2-256-256-256-128] with ReLUs

• u: MLP [2-256-256-256-128] with ReLUs

• g: MLP [128-256-256-256-256] with ReLUs

• f : MLP [384-256-256-256-1] with ReLUs

NCP: MNIST

• h: 2 layers of [convolutional + maxpool + ReLU] + MLP [320-256-128] with ReLUs

• u: same as h

• g: MLP [256-128-128-128-128-256] with ReLUs

• f : MLP [384-256-256-256-1] with ReLUs

