
On the (In)tractability of Computing Normalizing Constants
for the Product of Determinantal Point Processes

Naoto Ohsaka 1 Tatsuya Matsuoka 1

Abstract
We consider the product of determinantal point
processes (DPPs), a point process whose proba-
bility mass is proportional to the product of prin-
cipal minors of multiple matrices as a natural,
promising generalization of DPPs. We study the
computational complexity of computing its nor-
malizing constant, which is among the most essen-
tial probabilistic inference tasks. Our complexity-
theoretic results (almost) rule out the existence
of efficient algorithms for this task, unless input
matrices are forced to have favorable structures.
In particular, we prove the following:
(1) Computing

∑
S det(AS,S)p exactly for every

(fixed) positive even integer p is UP-hard and
Mod3P-hard, which gives a negative answer to an
open question posed by Kulesza & Taskar (2012).
(2)
∑
S det(AS,S) det(BS,S) det(CS,S) is NP-

hard to approximate within a factor of 2O(|I|1−ε)

for any ε > 0, where |I| is the input size. This
result is stronger than #P-hardness for the case
of two matrices by Gillenwater (2014).
(3) There exists a kO(k)|I|O(1)-time algorithm
for computing

∑
S det(AS,S) det(BS,S), where

k is “the maximum rank of A and B” or “the
treewidth of the graph induced by nonzero entries
of A and B.” Such parameterized algorithms are
said to be fixed-parameter tractable.

1. Introduction
Determinantal point processes (DPPs) offer an appealing
probabilistic model to compactly express negative correla-
tion among combinatorial objects (Macchi, 1975; Borodin
& Rains, 2005). Given an n× n matrix A, a DPP defines a
probability measure on 2[n] such that the probability of draw-
ing subset S ⊆ [n] is proportional to the principal minor

1NEC Corporation. Correspondence to: Naoto Ohsaka
<ohsaka@nec.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

det(AS,S). Consider a subset selection task: given n items
(e.g., images (Kulesza & Taskar, 2011)) associated with
quality scores qi and feature vectors φi for each i ∈ [n], we
are asked to choose a small group of high-quality, diverse
items. One can then construct A as Ai,j = qiqjφ

>
i φj ,

resulting in that det(AS,S) is the squared volume of the
parallelepiped spanned by {qiφi}i∈S , which balances item
quality and set diversity. Encouraged by efficient algorithms
for many inference tasks such as normalization, sampling,
and marginalization, DPPs have been applied to numer-
ous machine learning tasks, e.g., image search (Kulesza &
Taskar, 2011), video summarization (Gong et al., 2014),
object retrieval (Affandi et al., 2014), sensor placement
(Krause et al., 2008), and Nyström method (Li et al., 2016).

One of the recent research trends is to extend or generalize
DPPs to express more complicated distributions. Comput-
ing the normalizing constant (a.k.a. partition function) for
such new models is at the heart of efficient probabilistic
inference. For example, we can efficiently sample a subset
from partition DPPs (Celis et al., 2017), which are restricted
to include a few elements from each group, by quickly eval-
uating their normalizing constant. Such tractability is, of
course, not necessarily the case for every generalization.

In this paper, we consider a natural, (seemingly) promis-
ing generalization of DPPs involving multiple matrices.
The product DPP (Π-DPP) given m matrices A1, . . . ,Am

defines the probability mass for each subset S as ∝
det(A1

S,S) · · · det(Am
S,S), which can be significantly ex-

pressive: It enables to embed some constraints to DPPs,
e.g., those that are defined by partitions (Celis et al., 2017)
and bipartite matching, and it contains exponentiated DPPs
(Mariet et al., 2018) of an integer exponent as a special case.
The computational complexity of its normalizing constant,∑

S⊆[n]

det(A1
S,S) · · · det(Am

S,S),

is almost nebulous, except form ≤ 2 (Gurvits, 2005; Gillen-
water, 2014; Anari & Gharan, 2017) (see Section 1.2). Our
research question is thus the following:

How hard (or easy) is it to compute
normalizing constants for Π-DPPs?

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Table 1. Summary of complexity-theoretic results. Our results are colored in either red (negative) or blue (positive).
Zm(A1, . . . ,Am) =

∑
S det(A1

S,S) · · ·det(Am
S,S) denotes the normalizing constant for Π-DPPs. n denotes the size of matrices, |I| is

the number of bits required to represent A1, . . . ,Am, nz is the set of nonzero entries in a matrix, and tw is the treewidth (see Section 2).
exact / approx. / parameters Zp(A, . . . ,A) exponentiated DPP Z2(A,B) Z3(A,B,C) Zm(A1, . . . ,Am)

UP-hard & Mod3P-hard #P-hardexact (Corollary 3.2, p = 2, 4, 6, . . .) (Gurvits, 2005; Gillenwater, 2014)
en-approx. in polynomial time 2O(|I|1−ε)-approx. is NP-hard (Theorem 4.1)

approximation (Anari & Gharan, 2017) 1 is 2O(|I|2)-approx. (Observation 4.2)
m = number of matrices FPT; rO(r)nO(1) time FPT; rO(mr)nO(1) time
r = maxi∈[m] rank(Ai)

(special case of→) (Theorem 5.1) (special case of→) (Theorem 5.4)
m = number of matrices FPT; wO(w)nO(1)-time FPT; wO(mw)nO(1)-time
w = tw

(⋃
i∈[m] nz(Ai)

) (special case of→) (Theorem 5.5) (special case of→) (Theorem 5.10)
m = number of matrices #P-hard (w ≤ 3,m = 2)
w = maxi∈[m] tw(nz(Ai))

(same as ↑) (Theorem 5.11)

1.1. Our Contributions

We present an intensive study on the computational com-
plexity of computing normalizing constants for Π-DPPs.
Our complexity-theoretic results summarized in Table 1
(almost) rule out the existence of efficient algorithms for
this problem unless input matrices are forced to have fa-
vorable structures. Our quests can be partitioned into three
types: intractability, inapproximability, and fixed-parameter
tractability. We refer the reader to Appendix A for brief
introduction of complexity classes. Paragraph headings are
colored in either red (negative) or blue (positive).

Contribution 1: Intractability (Sect. 3)

We first analyze the hardness of computing normalizing
constants exactly. Computing

∑
S det(AS,S) det(BS,S)

for two matrices is #P-hard (Gillenwater, 2014). 1

Exponentiated DPPs. Our first target is a special case
where Ai = A for all i, which includes exponentiated
DPPs (Mariet et al., 2018) of an integer exponent. Com-
putation of its normalizing constant

∑
S det(AS,S)p for

p > 0 is originally motivated by the Hellinger distance
between two DPPs (Kulesza & Taskar, 2012). We prove
that for every (fixed) positive even integer p = 2, 4, 6, . . ., it
is UP-hard and Mod3P-hard to compute this normalizing
constant, even when A is a (−1, 0, 1)-matrix or a P-matrix
(Corollary 3.2). Polynomial-time algorithms for it hence do
not exist unless both INTEGERFACTORIZATION ∈ UP and
GRAPHISOMORPHISM ∈Mod3P are polynomial-time solv-
able. Our result gives a negative answer to an open question
posed in Section 7.2 of (Kulesza & Taskar, 2012). We must
emphasize that Gurvits (2005) already proved #P-hardness
of computing

∑
S det(AS,S)2 (see Section 1.2).

1#P is the class of function problems of counting the number
of accepting paths of a nondeterministic polynomial-time Turing
machine, and hence NP ⊆#P.

Contribution 2: Inapproximability (Sect. 4)

Understanding the hardness of exact computation, we then
seek the possibility of approximation. Our hope is to guess
an accurate estimate; e.g., an en-factor approximation is
possible for two matrices (Anari & Gharan, 2017).

(Sub)exponential-Factor Inapproximability for m = 3.
Unfortunately, hopes are dashed: We prove that it is NP-
hard to approximate the normalizing constant for three
matrices, i.e.,

∑
S det(AS,S) det(BS,S) det(CS,S), within

a factor of 2O(|I|1−ε) or 2O(n1/ε) for any ε > 0 even
when A,B,C are positive semi-definite, where |I| is the
input size (Theorem 4.1). For instance, even a 2n

100

-
approximation cannot be expected. Moreover, unless RP =
NP, even approximate sampling is impossible; i.e., we can-
not sample (in polynomial time) from a distribution whose
total variation distance from the Π-DPP defined by A,B,C
is at most 1

3 . The same hardness results hold for the case
of four or more matrices (i.e., m ≥ 4). On the other hand,
a simple guess of the number 1 is proven to be a 2O(|I|2)-
factor approximation (Observation 4.2).

Connection to Mixed Discriminants for m = 2. We
devise an equivalence between the normalizing constant
for two matrices and mixed discriminants, which are
#P-hard to compute (Observation 4.3). Currently, no
fully polynomial-time randomized approximation scheme
(FPRAS)2 for mixed discriminants is known and its ex-
istence is believed to be false (Gurvits, 2005); hence, the
Π-DPP for two matrices is unlikely to admit an FPRAS.
Such implication is unexpected from Gillenwater (2014).

2An FPRAS is a randomized (1 + ε)-approximation algorithm
that runs in time polynomial in the input size and ε−1 for ε > 0.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Contribution 3: Fixed-Parameter Tractability (Sect. 5)

We finally resort to parameterization, which has succeeded
in overcoming the difficulty of machine learning problems
recently (Ganian et al., 2018; Eiben et al., 2019). Parame-
terized complexity (Downey & Fellows, 2012) is a research
field aiming at classifying (typically, NP-hard) problems
based on the computational complexity with respect to pa-
rameters. Given a parameter k independent of input size |I|,
a problem is fixed-parameter tractable (FPT) if it is solvable
in time f(k)|I|O(1) for some computable function f . On the
other hand, a problem solvable in time |I|f(k) is slice-wise
polynomial (XP). While both have polynomial runtimes for
every fixed k, the polynomial part is dramatically different
between them (|I|O(1) or |I|f(k)). Selecting appropriate pa-
rameters is vital to devising the fixed-parameter tractability.
We introduce three parameters, where the first two are FPT,
and the third is unlikely to be even XP.

(1) Maximum Rank→ FPT. Rank is a natural parameter
for matrices. We can assume bounded-rank matrices for
DPPs if feature vectors φi are low-dimensional (Celis et al.,
2018), or the largest possible subset is far smaller than the
ground set size n; e.g., Gartrell et al. (2017) learned a matrix
factorization of rank 15 while n ≈ 2,000 from real-world
data. We prove that there exists an rO(r)nO(1)-time FPT
algorithm for computing the normalizing constant for two
n × n positive semi-definite matrices A and B, where r
is the maximum rank of A and B (Theorem 5.1). The
central idea is to decompose A and B into n×r rectangular
matrices followed by the application of the Cauchy–Binet
formula. Our parameterized algorithm can be generalized
to the case for m matrices of rank at most r, increasing
runtime to rO(mr)nO(1) (Theorem 5.4).

(2) Treewidth of Union→ FPT. Treewidth (Robertson &
Seymour, 1986) is one of the most important graph-theoretic
parameters, which measures the “tree-likeness” of a graph.
Many hard problems on graphs are FPT when parameter-
ized by treewidth (Cygan et al., 2015). Informally, the
treewidth of a matrix is that of the graph induced by nonzero
entries in the matrix; e.g., matrices of bandwidth b have
treewidth O(b). If feature vectors φi exhibit clustering
properties (van der Maaten & Hinton, 2008), the similarity
score φ>i φj between items from different clusters would
be negligibly small, and such entries can be discarded to
obtain a small-bandwidth matrix. We prove that there exists
a wO(w)nO(1)-time FPT algorithm for computing the nor-
malizing constant for two matrices A and B, where w is the
treewidth of the union of nonzero entries in A and B (The-
orem 5.5). The proof is based on dynamic programming,
which itself is typical but requires complicated procedures.
Our algorithm can be generalized to the case of m matrices,
increasing runtime to wO(mw)nO(1) (Theorem 5.10).

(3) Maximum Treewidth → Unlikely to be XP. Our
FPT algorithm in Theorem 5.5 implicitly benefits from
the fact that two matrices A and B have nonzero entries in
similar places. So, what happens if A and B are structurally
different? Can we still get FPT when parameterized by the
maximum treewidth of A and B? Our answer is negative:
Computing normalizing constants is #P-hard even if both
A and B have treewidth at most 3 (Theorem 5.11), imply-
ing that even XP algorithms do not exist unless FP = #P
(which is at least as strong as P = NP).

1.2. Related Work

Exponentiated DPPs (E-DPPs) of exponent p > 0 define
the probability mass for subset S as∝ det(AS,S)p. Markov
chain Monte Carlo on E-DPPs for p < 1 is proven to mix
rapidly as they are strongly log-concave (Anari et al., 2019;
Robinson et al., 2019), implying an FPRAS for the nor-
malizing constant. Mariet et al. (2018) investigate when
a DPP defined by Ap is close to an E-DPP of exponent p
for A. Quite surprisingly, Gurvits (2005) has proven the
#P-hardness of exactly computing

∑
S det(AS,S)2 for a

P-matrix A before Kulesza & Taskar (2012); Gillenwater
(2014); however, this result seems to be not well-known
in the machine learning community. Computing the nor-
malizing constant for two positive semi-definite matrices is
#P-hard as proven by Gillenwater (2014) but approximable
within an en-factor in polynomial time (Anari & Gharan,
2017), which is an affirmative answer to an open question
of Kulesza & Taskar (2012). Our study strengthens these
results by showing the hardness for an E-DPP of exponent
p = 2, 4, 6, . . ., and the impossibility of exponential approx-
imation and approximate sampling for three matrices.

Π-DPPs can be thought of as log-submodular point pro-
cesses (Djolonga & Krause, 2014; Gotovos et al., 2015),
whose probability mass for subset S is ∝ exp(f(S)),
where f is a submodular set function.3 Setting f(S) =
log det(A1

S,S) + · · · + log det(Am
S,S) coincides with Π-

DPPs. Gotovos et al. (2015) devised a bound on the mixing
time of a Gibbs sampler, though it is not helpful for our case
because f can take log(0) = −∞ as a value.

Constrained DPPs output a subset S with probability ∝
det(AS,S) if S satisfies a specific constraint. Π-DPPs in-
clude partition-matroid constraints (Celis et al., 2017).

2. Preliminaries
For a positive integer n, let [n] = {1, 2, . . . , n} and [0, n] =
{0, 1, 2, . . . , n}. The imaginary unit is denoted i =

√
−1.

For a finite set S and an integer k ∈ [0, |S|], we write
(
S
k

)
for the family of all size-k subsets of S. For a statement P ,

3We say that a set function f : 2[n] → R is submodular if
f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for all S, T ⊆ [n].

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

[[P]] is 1 if P is true, and 0 otherwise. The symmetric group
on [n], consisting of all permutations over [n], is denoted
Sn. We use σ : S �→ T for two same-sized sets S and T to
mean a bijection from S to T , and σ|X for set X to denote
the restriction of σ to X ∩ S. The base of logarithms is 2.

We denote the n × n identity matrix by In and the n × n
all-one matrix by Jn. For an m × n matrix A and two
subsets S ⊆ [m], T ⊆ [n] of indices, we write AS for
the |S| × n submatrix whose rows are the rows of A in-
dexed by S, and AS,T for the |S| × |T | submatrix whose
rows are the rows of A indexed by S and columns are the
columns of A indexed by T . For a matrix A ∈ Rn×n, the
determinant is det(A) =

∑
σ∈Sn sgn(σ)

∏
i∈[n]Ai,σ(i)

and the permanent is per(A) =
∑
σ∈Sn

∏
i∈[n]Ai,σ(i),

where sgn(σ) = (−1)N(σ) is the sign of a permutation
σ ∈ Sn, and N(σ) is the inversion number of σ. In particu-
lar, det(AS,S) for any S ⊆ [n] is called a principal minor.
We define det(A∅,∅) = 1. A symmetric matrix A ∈ Rn×n
is called positive semi-definite if x>Ax ≥ 0 for all x ∈ Rn.
A matrix A ∈ Rn×n is called a P-matrix (resp. P0-matrix)
if its all principal minors are positive (resp. nonnegative).
A positive semi-definite matrix is a P0-matrix, but not vice
versa. A real matrix A is a P-matrix whenever it has posi-
tive diagonal entries and is row diagonally dominant (i.e.,
|Ai,i| >

∑
j 6=i |Ai,j | for all i). For a bijection σ from

S ⊆ [n] to T ⊆ [n], we denote A(σ) =
∏
i∈S Ai,σ(i).

2.1. Determinantal Point Processes

Given a matrix A ∈ Rn×n, a determinantal point process
(DPP) (Macchi, 1975; Borodin & Rains, 2005) defines a
probability measure on the power set 2[n] whose probability
mass for S ⊆ [n] is proportional to det(AS,S).4 Generally,
a P0-matrix is acceptable to define a probability distribution
while positive semi-definite matrices are commonly-used
(Gartrell et al., 2019). The normalizing constant for a DPP
has a simple closed form:

∑
S⊆[n] det(AS,S) = det(A+I)

(Kulesza & Taskar, 2012). This equality holds for any (not
necessarily symmetric) real-valued matrix A.

In this paper, we consider a point process whose proba-
bility mass is determined based on the product of prin-
cipal minors for multiple matrices. Given m matrices
A1, . . . ,Am ∈ Rn×n, the product DPP (Π-DPP) de-
fines the probability mass for each subset S ⊆ [n] as
∝ det(A1

S,S) · · · det(Am
S,S). We use Zm(A1, . . . ,Am) to

denote its normalizing constant; namely,

Zm(A1, . . . ,Am) =
∑
S⊆[n]

∏
i∈[m]

det(Ai
S,S). (1)

Since
∏
i∈[m] det(Ai

S,S) is easy to compute, evaluating Zm
is crucial for probability mass estimation. The objective in

4We adopt the L-ensemble form of Borodin & Rains (2005).

this paper is to elucidate the computational complexity of
estimating Zm. We shall raise two examples of Π-DPPs.

Example 2.1 (Embedding partition and matching con-
straints). Given a partition P of [n], we can build A
such that det(AS,S) = [[S contains at most one el-
ement from each group of P]] by defining Ai,j =
[[i, j belong to the same group]]. Given a bipartite graph
whose edge set is [n], we can build A and B such that
det(AS,S) det(BS,S) = [[S has no common vertices]]
(Gillenwater, 2014); such S is called a matching.

Example 2.2 (Exponentiated DPPs). Setting Ai = A for
all i ∈ [m], we have the Π-DPP to be an exponentiated
DPP of exponent p = m ≥ 1, which sharpens the diversity
nature of DPPs (Mariet et al., 2018).

2.2. Graph-Theoretic Concepts

We introduce several notions and definitions from graph
theory, which play a crucial role in Section 5. Let G =
(V,E) be a graph, where V is a set of vertices, andE is a set
of edges. We use (u, v) to denote an (undirected or directed)
edge connecting u and v. We then define the treewidth of
graphs and matrices. Treewidth (Halin, 1976; Robertson &
Seymour, 1986; Arnborg & Proskurowski, 1989) is one of
the most important notions in graph theory, which captures
the “tree-likeness” of a graph (see Appendix E for example).

Definition 2.3. A tree decomposition of an undirected graph
G = (V,E) is a pair (T, {Xt}t∈T), where T is a tree of
which vertex t ∈ T , referred to as a node, is associated
with a vertex subset Xt ⊆ V , referred to as a bag, such
that (1)

⋃
t∈T Xt = V , (2) for every edge (u, v) ∈ E,

there exists node t ∈ T such that u, v ∈ Xt, and (3) for
every vertex v ∈ V , the set Tu = {t | v ∈ Xt} induces a
connected subtree of T . The width of a tree decomposition
(T, {Xt}t∈T) is defined as maxt∈V |Xt|−1. The treewidth
of a graph G, denoted tw(G), is the minimum possible
width among all tree decompositions of G.

For an n×nmatrix A, we denote nz(A) = {(i, j) | Ai,j 6=
0, i 6= j}. The treewidth of A, denoted tw(nz(A)), or
tw(A), is defined as the treewidth of the graph ([n],nz(A)).
For example, tw(In) = 1, tw(Jn) = n − 1, and a matrix
of bandwidth5 b has treewidth O(b). One important prop-
erty of tree decompositions is that any bag Xt is a sepa-
rator: for three nodes t, t′, t′′ of T such that t is on the
(unique) path from t′ to t′′, submatrices AXt′\Xt,Xt′′\Xt
and AXt′′\Xt,Xt′\Xt must be zero-matrices.

Remark 2.4. Our algorithms parameterized by rank (Sec-
tion 5.1) and by treewidth (Section 5.2) are incomparable in
a sense that the identity matrix In has rank n and treewidth
1, and the all-one matrix Jn has rank 1 and treewidth n− 1.

5The bandwidth of matrix A is defined as the smallest integer
b such that Ai,j = 0 whenever |i− j| > b.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

2.3. Computational Models

Since we use several reductions that transform an input for
one problem to that for another problem, we introduce the
notion of input size and computational model carefully.

The size of an input I, denoted |I|, is the number of bits
required for representing I . We assume that all the numbers
appearing are rational. The size of a rational number x =
p/q ∈ Q (where p and q are relatively prime integers) and a
rational matrix A ∈ Qm×n is defined as follows (Schrijver,
1999): size(x) = 1 + dlog(|p|+ 1)e+ dlog(|q|+ 1)e, and
size(A) = mn +

∑
i∈[m],j∈[n] size(Ai,j). The size of a

graph is defined as the size of its incidence matrix.

Selection of computational models is crucial for determin-
ing the runtime of algorithms; e.g., multiplying two n-bit
integers can be done in O(n log n 8log∗ n) time on Turing
machines (Harvey et al., 2016). Such a level of precision
on Turing machines is not needed; for ease of analysis, we
adopt the unit-cost random access machine model, which
can perform basic arithmetic operations (e.g., add, subtract,
multiply, and divide) in constant time. However, abusing
unrealistically powerful models leads to an unreasonable
conclusion: “iterating n times the operation x← x2, we can
compute 22n , a 2n-bit integer, inO(n) time.” To avoid such
pitfalls, we will ensure that numbers produced during the
execution of algorithms intermediately are of size |I|O(1).

3. Intractability of Exponentiated DPPs
We present the intractability of computing the normal-
izing constant for exponentiated DPPs of every positive
even exponent, e.g., Z4(A,A,A,A). For a positive num-
ber p and a matrix A ∈ Rn×n, we denote Zp(A) =∑
S⊆[n] det(AS,S)p. Our technical result is the following.

Theorem 3.1. Computing Z2(A) mod 3 for a matrix A ∈
Qn×n is UP-hard and Mod3P-hard. The same statement
holds even when A is restricted to be either a (−1, 0, 1)-
matrix or a P-matrix.

As a corollary, we can show the same hardness for every
fixed positive even integer p (i.e., p is not in the input),
giving a negative answer to an open question of Kulesza &
Taskar (2012), whose proof is deferred to Appendix B.

Corollary 3.2. For every fixed positive even integer p, com-
puting Zp(A) mod 3 for either a (−1, 0, 1)-matrix or a
P-matrix A is UP-hard and Mod3P-hard.

Our proof of Theorem 3.1 relies on the celebrated results
relating Z2 to permanent by Kogan (1996), who presented
an efficient algorithm for computing per(A) mod 3 for a
matrix A with rank(AA> − In) ≤ 1. In the remainder of
this subsection, arithmetic operations are performed over
modulo 3, and the symbol ≡ means congruence modulo 3.

Lemma 3.3 (Lemma 2.7 in (Kogan, 1996)). Let X be a
matrix such that det(X + iIn) 6≡ 0. Then, it holds that
Z2(X) ≡ det(X + iIn)2 per((In + iX)−1 + In).

Proof of Theorem 3.1. We reduce from a problem of com-
puting the permanent of a (0, 1)-matrix mod3, which is
UP-hard and Mod3P-hard (Valiant, 1979) (cf. Theorem
2). Let A be an n × n (0, 1)-matrix. By Proposition 2.2
in (Kogan, 1996), we compute a diagonal (−1, 1)-matrix
D in polynomial time such that DA − In is not singu-
lar and per(A) ≡ det(D) per(DA). We then compute
X = i−1((DA − In)−1 − In) by Gaussian elimination
modulo 3. Since det(X+ iIn) 6≡ 0, we have by Lemma 3.3
that per(A) ≡ Z2(X) det(D) det(X + iIn)−2. We trans-
form X into X′ according to the following two cases:

(1) det(D) det(X + iIn)−2 ≡ 1: let X′ = X.

(2) det(D) det(X + iIn)−2 ≡ 2: let X′ =

[
X 0 0
0> i i
0> i i

]
,

where 0 is the n × 1 zero-matrix. We have that
Z2(X′) ≡ 2Z2(X); remark that Z2([i i

i i]) = −1.

Consequently, we always have that per(A) ≡ Z2(X′). Be-
cause entries of X′ are purely imaginary numbers by con-
struction, we can uniquely define a real-valued matrix Y
such that X′ = iY. Consider the polynomial Z2(xY)
in x, i.e.,

∑
S⊆[n] x

2|S| det(YS,S)2 ≡ a0 + a1x + a2x
2

for some a0, a1, a2. Solving a system of linear equations[
1 0 0
1 1 1
1 2 4

][
a0
a1
a2

]
≡

[
Z2(0Y)
Z2(1Y)
Z2(2Y)

]
and noting that Z2(1Y) ≡

Z2(2Y), we have that a0 ≡ 1, a1 ≡ 0, a2 ≡ Z2(Y) − 1
and hence Z2(iY) ≡ 2− Z2(Y). We transform Y into a
(−1, 0, 1)-matrix Y′ having the same permanent as Y ′i,j is 0
if Yi,j ≡ 0, +1 if Yi,j ≡ 1, and −1 if Yi,j ≡ 2. We further
obtain a P-matrix as Y′′ = Y′ + 3nIn. Accordingly, de-
ciding whether per(A) 6≡ 0 is reduced to deciding whether
Z2(Y′) 6≡ 2 (and Z2(Y′′) 6≡ 2), in polynomial time.

4. Inapproximability for Three Matrices
Albeit the #P-hardness of Zm for all m ≥ 2, there is still
a room to consider the approximability of Zm; e.g., Anari
& Gharan (2017) have given an en-factor approximation
algorithm for Z2. Unfortunately, we present a strong inap-
proximability for the case of m ≥ 3.

4.1. (Sub)exponential-Factor Inapproximability

Our result shows a subexponential-factor inapproximation
for the case of three matrices. We say that an estimate Ẑm
is a ρ-approximation to Zm if ρ−1Zm ≤ Ẑm ≤ ρZm. For
two probability measures µ and η on Ω, the total variation
distance is defined as 1

2

∑
x∈Ω |µx−ηx|. The proof reminds

of that for the NP-hardness of three-matroid intersection.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Theorem 4.1. For any fixed positive ε > 0, it is NP-hard
to approximate Z3(A,B,C) for three matrices A,B,C ∈
Qn×n within a factor of 2O(|I|1−ε) or 2O(n1/ε), where |I| is
the input size. Moreover, unless RP = NP, no polynomial-
time algorithm can generate a random sample from a dis-
tribution whose total variation distance from the Π-DPP
defined by A,B,C is at most 1

3 . The same statement holds
if A,B,C are restricted to be positive semi-definite.

Proof. We show a polynomial-time reduction from an NP-
complete HAMILTONIANPATH problem (Garey & Johnson,
1979), which, for a directed graph G = (V,E) on n vertices
and m edges, asks to find a directed simple path that visits
every vertex of V exactly once (called a Hamiltonian path).
Such G having a Hamiltonian path is called Hamiltonian.

We construct m×m three positive semi-definite matrices
A,B,C indexed by edges in E such that Z3(A,B,C) is
“significantly” large if G is Hamiltonian. We first define A
and B so that Ai,j is 1 if edges i, j share a common head
and 0 otherwise, and Bi,j is 1 if edges i, j share a common
tail and 0 otherwise. For any S ⊆ E, det(AS,S) det(BS,S)
takes 1 if S consists of directed paths or cycles only, and 0
otherwise. We then define C so that det(CS,S) = PrT [S ⊆
T] for all S ⊆ E, where T is chosen from the uniform
distribution over all spanning trees in (the undirected version
of) G. Such C can be found in polynomial time: It holds
that C = ML†M> (Burton & Pemantle, 1993), where
M ∈ {−1, 0, 1}m×n is the edge-vertex incidence matrix
of G, and L† ∈ Qn×n is the Moore-Penrose inverse of the
Laplacian of G, which can be obtained as (L + 1

nJn)−1 −
1
nJn by Gaussian elimination in polynomial time (Edmonds,
1967; Schrijver, 1999). Since m ≤ n2, det(CS,S) for S ⊆
E is within the range between 2−n

2

and 1 if there exists a
spanning tree T that includes S and 0 otherwise. It turns
out that det(AS,S) det(BS,S) det(CS,S) for S ∈

(
E
n−1

)
is

positive if and only if S is a Hamiltonian path.

Redefine ε← b1/εc−1, which does not decrease the value
of ε, and A ← θA, where θ = 2n

4/ε ∈ N. Since each
entry of A and B is an integer at most θ and 1, respec-
tively, size(A) = O(m2 log(2n

4/ε

)) = O(n(4/ε)+4) and
size(B) = O(n4). Since size(X−1) = O(size(X)n2) for
any n × n nonsingular matrix X (Schrijver, 1999) and
size(L + 1

nJ) = O(n2 log n), we have that size(L†) =
O(n4 log n) and thus that size(C) = m2O(n4 log n) =
O(n8 log n). Consequently, the input size is bounded by
|I| = O(n(4/ε)+4)+O(n4)+O(n8 log n) = O(n(4/ε)+4),
a polynomial in n (for fixed ε < 1).

Now, we explain how to use Z3 to decide the Hamiltonicity
of G. det(AS,S) det(BS,S) det(CS,S) for edge set S ⊆ E
is 0 whenever “|S| ≥ n,” or “|S| = n − 1 but S is not
Hamiltonian.” Then, Z3(A,B,C) can be decomposed into
two sums

∑
S:|S|<n−1 det(AS,S) det(BS,S) det(CS,S) +

∑
S: Hamiltonian det(AS,S) det(BS,S) det(CS,S). We con-

sider two cases.

(1) If there exists (at least) one Hamiltonian path S∗

in G, then the sum is at least θ|S
∗|2−n

2

=
2n

(4/ε)+1−n4/ε−n2

.
(2) If no Hamiltonian path exists in G, then, the sum

is at most
∑
S:|S|<n−1 θ

n−2 ≤ 2n
2

2n
4/ε(n−2) =

2n
(4/ε)+1−2n4/ε+n2

.

Hence, there is an exponential-factor gap 2n
4/ε−2n2

between
the two cases. Since |I|1−ε = O(n(4/ε)−4ε), a 2O(|I|1−ε)-
factor or 2O(n1/ε)-factor approximation to Z3 suffices to
distinguish the two cases (for sufficiently large n).

We then prove the second argument. Assume that G is
Hamiltonian. Observe then that a random edge set drawn
from the Π-DPP defined by A,B,C (denoted µ) is Hamil-
tonian with probability≥ 1− 1

1+2n
4/ε−2n2 . Hence, provided

a polynomial-time algorithm to generate random edge sets
whose total variation distance from µ is at most 1

3 , we can
use it to verify the Hamiltonicity of G with probability
≥ 2

3 −
1

1+2n
4/ε−2n2 >

1
2 (whenever n ≥ 2), implying that

HAMILTONIANPATH ∈ RP; hence, RP = NP.

4.2. (Super)exponential-Factor Approximability

Whereas subexponential-factor approximation for Z3 is
hard, we show a simple (super)exponential-factor approxi-
mation for Zm, whose proof is deferred to Appendix C.

Observation 4.2. For m P0-matrices A1, . . . ,Am,
the number 1 is a 2O(|I|2)-factor approximation to
Zm(A1, . . . ,Am), where |I| is the input size.

4.3. Connection to Mixed Discriminants

We finally connect Z2 to mixed discriminants, which gener-
alize the permanent. The mixed discriminant for m positive
semi-definite matrices K1 . . .Km ∈ Rm×m is defined as
D(K1, . . . ,Km) = ∂m

∂x1···∂xm det(x1K
1 + · · ·+ xmKm).

We show below a polynomial-time reduction from mixed
discriminants to Z2 as a corollary of (Celis et al., 2017),
whose proof is deferred to Appendix C. Since the existence
of an FPRAS for mixed discriminants is suspected to be
false (Gurvits, 2005), our reduction implies that Z2 is un-
likely to have an FPRAS. Such implication does not hold
for Gillenwater (2014)’s reduction since they reduce from
the problem of counting all matchings in a bipartite graph,
which admits an FPRAS (Jerrum et al., 2004).

Observation 4.3. Given m positive semi-definite matri-
ces K1, . . . ,Km ∈ Qm×m, we can construct two pos-
itive semi-definite matrices A,B ∈ Qm2×m2

such that
the coefficient of xm in polynomial Z2(xA,B) equals
m! D(K1, . . . ,Km), in polynomial time.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

5. Fixed-Parameter Tractability
In this section, we investigate the fixed-parameter tractabil-
ity of computingZm. Given a parameter k computable from
input I, a problem is said to be fixed-parameter tractable
(FPT) and slice-wise polynomial (XP) if it is solvable in
time f(k)|I|O(1) and |I|f(k) for some computable function
f , respectively. Our goal is either (1) to develop an FPT al-
gorithm for an appropriate parameter, or (2) to disprove the
existence of such algorithms under plausible assumptions.

5.1. Parameterization by Maximum Rank

We first consider the maximum rank of matrices as a pa-
rameter. Our theorem below demonstrates that computing
Z2(A,B) for two positive semi-definite matrices A,B pa-
rameterized by the maximum rank is FPT.

Theorem 5.1. Let A,B be two positive semi-definite ma-
trices in Qn×n of rank at most r. Then, there exists an
rO(r)nO(1)-time algorithm computing Z2(A,B) exactly.

Before proceeding to the proof of Theorem 5.1, we intro-
duce the following technical lemma, whose proof is based
on dynamic programming and deferred to Appendix D.

Lemma 5.2. Let A1, . . . ,Am be m matrices in Qn×s,
and σ1, . . . , σm ∈ Ss be m permutations over [s]. Then,∑
S⊆([n]

s)
∏
i∈[s](A

1
S)i,σ1(i) · · · · · (AmS)i,σm(i) can be com-

puted in time O(msn2).

We then introduce the Cauchy–Binet formula.

Lemma 5.3 (Cauchy–Binet formula). Let A be an s × r
matrix and B be an r × s matrix. Then, the determinant of
AB is det(AB) =

∑
C∈([r]

s) det(A[s],C) det(BC,[s]).

Proof of Theorem 5.1. We decompose A into two n × r
rectangular matrices. For this purpose, we first compute
an LDL decomposition6 A = LDL>, where L ∈ Qn×n
and D ∈ Qn×n is a diagonal matrix such that Di,i = 0
for all i 6∈ [r] (since the rank is at most r). This is always
possible since A is positive semi-definite and can be done
in polynomial time (O’Donnell & Ta, 2011). We further
decompose D into the product of an n× r matrix C such
that Ci,i = Di,i for all i ∈ [r] and all the other elements are
0, and an r×n matrix I such that Ii,i = 1 for all i ∈ [r] and
all the other elements are 0. Setting U = LC ∈ Qn×r and
V = LI> ∈ Qn×r, we have that A = UV>. Similarly,
we decompose B = XY>, where X,Y ∈ Qn×r.

Because det(AS,S) det(BS,S) = 0 for all S ⊆ [n] of size
greater than r, we can expand Z2(A,B) using the Cauchy–

6We do not adopt the Cholesky decomposition to avoid square
root computation.

Binet formula as follows.∑
0≤s≤r
S∈([n]

s)

∑
C1∈([r]

s)

det(US,C1V
>
S,C1

)
∑

C2∈([r]
s)

det(XS,C2Y
>
S,C2

).

Observing that |S| = |C1| = |C2|, we further expand Z2 as∑
0≤s≤r

C1,C2∈([r]
s)

∑
σ1,τ1,σ2,τ2∈Ss

sgn(σ1) sgn(τ1) sgn(σ2) sgn(τ2)×

∑
S∈([n]

s)

US,C1(σ1)VS,C1(τ1)XS,C2(σ2)YS,C2(τ2)

︸ ︷︷ ︸
F

.

Since F can be evaluated in time O(sn2) by
Lemma 5.2, we can take the sum of ♦ over all pos-
sible combinations of s, C1, C2, σ1, τ1, σ2, τ2 in time∑

0≤s≤r
(
r
s

)2
(s!)4O(sn2) = O(r4rr2n2). Consequently,

the overall computation time is bounded by rO(r)n2.

Theorem 5.1 can be generalized to the case of m matri-
ces A1, . . . ,Am; computation of Zm parameterized by the
maximum rank maxi∈[m] rank(Ai) plus the number of ma-
trices m is FPT, whose proof is deferred to Appendix D.

Theorem 5.4. For a positive integer m, let A1, . . . ,Am

be m positive semi-definite matrices in Qn×n of rank at
most r. Then, there exists an rO(mr)nO(1)-time algorithm
computing Zm(A1, . . . ,Am) exactly.

5.2. Parameterization by Treewidth of Union

We then consider the treewidth of the graph induced by the
union of nonzero entries as a parameter. Our technical result
below demonstrates that computing Z2(A,B) parameter-
ized by tw(nz(A) ∪ nz(B)) is FPT.

Theorem 5.5. Let A,B be two matrices in Qn×n. Then,
there exists a wO(w)nO(1)-time algorithm that, given a tree
decomposition of the graph ([n],nz(A) ∪ nz(B)) of width
at most w, computes Z2(A,B) exactly.

Remark 5.6. To construct “reasonable” tree decomposi-
tions, we can use existing algorithms, e.g., a 2O(w)n-time
5-approximation algorithm by Bodlaender, Drange, Dregi,
Fomin, Lokshtanov, and Pilipczuk (2016).

Proof Strategy. Our proof is based on dynamic program-
ming upon tree decompositions. We first assume to be given
a nice tree decomposition (T, {Xt}t∈T), a convenient form
of tree decompositions (see Appendix E for formal defini-
tion). Think of T as a rooted tree by referring to a fixed
vertex r as the root of T , which naturally introduces notions
of parents, child, and leaves. One useful property of nice

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

tree decompositions is that Xr = ∅ and X` = ∅ for every
leaf ` of T . We denote Vt =

⋃
t′ in subtree rooted at tXt′ ; in

particular, Vr = [n].

Next we design dynamic programming tables. Given a nice
tree decomposition (T, {Xt}t∈T) of the graph ([n],nz(A)∪
nz(B)), we aim to compute the following for each node t:∑

sgn(σA) sgn(σB)A(σA)B(σB)
S⊆Vt\Xt

OA1,OA2⊆Xt:|OA1|=|OA2|,σA:S∪OA1�→S∪OA2

OB1,OB2⊆Xt:|OB1|=|OB2|,σB :S∪OB1�→S∪OB2

. (2)

In particular, Eq. (2) is Z2(A,B) at the root r since Xr =
∅, Vr = [n]. We then discuss how to group exponentially
many bijections. States for node t are defined as a tuple
st = (O1, O2, F1, F2, τ,N) such that O1, O2 ⊆ Xt with
|O1| = |O2|, F1 ⊆ O1, F2 ⊆ O2 with |F1| = |F2|, τ :
O1 \ F1 �→ O2 \ F2, and N ∈ [0, n2].

We say that a bijection σ is consistent with S ⊆ Vt \ Xt

and st = (O1, O2, F1, F2, τ,N) if (1) σ is a bijection S ∪
O1 �→ S ∪ O2, (2) F1 = σ−1(S) ∩ O1, F2 = σ(S) ∩ O2,
(3) τ = σ|O1\F1

, and (4)N = N(σ). We first show that any
bijection σ appearing in Eq. (2) is consistent with a unique
pair of S and st, whose proof is deferred to Appendix E.

Lemma 5.7. For a node t and subsets S ⊆ Vt \
Xt, O1, O2 ⊆ Xt with |O1| = |O2|, let σ : S ∪ O1 �→
S ∪ O2 be a bijection. Then, there exists a unique pair of
S ⊆ Vt \Xt and st for t that σ is consistent with.

We will use σ(S, st) to denote the set of all bijections σ
consistent with S and st. By Lemma 5.7, we have that
the collection of σ(S, st) forms a partition of the set {σ :
S ∪ O1 �→ S ∪ O2 | S ⊆ Vt \ Xt, O1 ⊆ Xt, O2 ⊆
Xt, |O1| = |O2|}. We can then express Eq. (2) as follows:∑
stA for t
stB for t
s∈[0,n]

(−1)NA+NB
∑

S⊆(Vt\Xts)

Υt,A(S, stA) ·Υt,B(S, stB),

where Υt,A(S, stA) =
∑
σA∈σ(S,stA) A(σA) and

Υt,B(S, stB) =
∑
σB∈σ(S,stB) B(σB).

We define the table dpt,s for each t ∈ T and s ∈ [0, n] to

store the following quantity with key
[
stA
stB

]
:

dpt,s

[
stA

stB

]
=

∑
S∈(Vt\Xts)

Υt,A(S, stA) ·Υt,B(S, stB).

By definition, the number of possible states is at most
2|Xt|2|Xt|2|Xt|2|Xt||Xt|!(n2 + 1) ≤ 16w+1(w + 1)!(n2 +
1); dpt,s contains wO(w)nO(1) entries. We are now ready to
construct dpt,s given already-filled dpt′,s′ for children t′ of
t and s′ ∈ [0, n], whose proof is deferred to Appendix E.

Lemma 5.8. Let t be a non-leaf node, and s ∈ [0, n]. Given
dpt′,s′ for all children t′ of t and s′ ∈ [0, n], we can compute
each entry of dpt,s in time wO(w)nO(1).

Proof of Theorem 5.5. Our parameterized algorithm works
as follows. Given a tree decomposition for ([n],nz(A) ∪
nz(B)) of width at most w, we transform it to a nice tree
decomposition (T, {Xt}t∈T) rooted at r of width at most
w that has O(wn) nodes in polynomial time (Cygan et al.,
2015). For every leaf ` of T , we initialize dp`,s so that

dp`,s

[
∅,∅,∅,∅,∅�→∅,0
∅,∅,∅,∅,∅�→∅,0

]
= [[s = 0]]. Then, for each non-

leaf node t ∈ T , we apply Lemma 5.8 to fill dpt,s us-
ing already-filled dpt′,s′ for t’s children t′ in a bottom-up
fashion. Completing dynamic programming, we compute
Z2 as

∑
s,NA,NB

(−1)NA+NBdpr,s

[
∅,∅,∅,∅,∅�→∅,NA
∅,∅,∅,∅,∅�→∅,NB

]
. The

correctness follows from Lemmas 5.7 and 5.8. Because
each table is of size wO(w)nO(1), and each table entry can
be computed in time wO(w)nO(1) by Lemma 5.8, the whole
time complexity is bounded by wO(w)nO(1).

Remark 5.9. Our dynamic programming implies the
fixed-parameter tractability for permanental processes
(Macchi, 1975) since

∑
S⊆[n] per(AS) per(BS) =∑

s,NA,NB
dpr,s

[
∅,∅,∅,∅,∅�→∅,NA
∅,∅,∅,∅,∅�→∅,NB

]
.

Theorem 5.5 can be generalized to the case of m matrices
A1, . . .Am. ComputingZm parameterized by the treewidth
of nz(A1) ∪ · · · ∪ nz(Am) plus the number of matrices m
is FPT, whose proof is deferred to Appendix E.

Theorem 5.10. For a positive integer m, let A1, . . . ,Am

be m matrices in Qn×n. Then, there exists a wO(mw)nO(1)-
time algorithm that, given a tree decomposition of the
graph ([n],

⋃
i∈[m] nz(Ai)) of width at most w, computes

Zm(A1, . . . ,Am) exactly.

5.3. Parameterization by Maximum Treewidth

Let us finally take the maximum treewidth of two matrices
as a parameter, and we refute its fixed-parameter tractabil-
ity. This parameterization is preferable to the previous one
because the maximum treewidth can be far smaller than the
treewidth of the union. One can, for example, construct two
n × n matrices A,B such that max{tw(A), tw(B)} =
1 and tw(nz(A) ∪ nz(B)) = O(

√
n) because we can

“weave” two paths into a grid. Unluckily, even when
both of two matrices A,B have treewidth at most 3, it
is still #P-hard to compute Z2(A,B). Parameterization by
max{tw(A), tw(B)} is thus not even XP unless FP = #P.
The proof is based on (Vadhan, 2001; Gillenwater, 2014)
and deferred to Appendix F.

Theorem 5.11. Let A,B be two positive semi-definite
(0, 1)-matrices such that tw(A) ≤ 3 and tw(B) ≤ 3. Then,
computing Z2(A,B) is #P-hard.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

6. Concluding Remarks and Open Questions
In this paper, we studied the computational complexity of
normalizing product determinantal point processes. Our
results (almost) ruled out the possibility of efficient algo-
rithms for general cases and devised the fixed-parameter
tractability. Several immediate open questions are listed
below.

• Can we prove the intractability of computing Zp for p
which is not a positive even integer, such as p = 3 and
p = 1.1? Our proof strategy would no longer work.

• Can we prove the inapproximability of estimating Zp,
or develop approximation algorithms for it? The current
best upper bound for p = 2 is en due to Anari & Gharan
(2017).
• Can we develop more “practical” FPT algorithms having

a small exponential factor, e.g., f(k) = 2k? We should
avoid enumerating permutations.

• Can we establish fixed-parameter tractability for other
parameters?

Acknowledgements
The authors would like to thank the anonymous review-
ers for their constructive comments and suggestions, and
acknowledge helpful conversations with Shinji Ito.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Appendix

A. Brief Introduction to Complexity Classes
Decision Problems.

• P: The class of decision problems solvable by a deterministic polynomial-time Turing machine. Examples include
LINEARPROGRAMMING and PRIMES (Q. Is an input integer prime?).

• NP: The class of decision problems solvable by a nondeterministic polynomial-time Turing machine (NP machine).
Examples include SAT (Q. Is there a truth assignment satisfying an input Boolean formula?). It is widely believed that
P 6= NP.

• UP: The class of decision problems solvable by an NP machine with at most one accepting path. Note that P ⊆
UP ⊆ NP, but it is unknown if the inclusion is strict. Examples include UNAMBIGUOUSSAT (Q. Is there a truth
assignment satisfying an input Boolean formula that is restricted to have at most one satisfying assignment?) and
INTEGERFACTORIZATION (Q. Is there a factor d ∈ [m] of an integer n given n and m?), for which no polynomial-time
algorithms are known.

• RP: The class of decision problems for which a probabilistic polynomial-time Turing machine exists such that (1) if
the answer is “yes”, then it returns “yes” with probability at least 1/2, and (2) if the answer is “no”, then it always
returns “no”. Note that P ⊆ RP ⊆ NP, and it is believed that RP 6= NP.

Counting-Related Problems.

• FP: The class of functions computable by a deterministic polynomial-time Turing machine, which is a function problem
analogue of P. Examples include DETERMINANT (Q. Compute the determinant of an input square matrix), which is
efficiently-computable via Gaussian elimination.

• #P: The class of function problems of counting the number of accepting paths of an NP machine. Examples of
#P-complete problems include PERMANENT (Q. Compute the permanent of an input matrix) and #SAT (Q. Counting
the number of truth assignments satisfying an input Boolean formula). Note that P 6= NP implies FP 6= #P.

• ModkP: The class of decision problems solvable by an NP machine, where the number of accepting paths is not
divisible by k. Examples include GRAPHISOMORPHISM (Q. Is there an “edge-preserving” bijection between the vertex
sets of two input graphs), which is in ModkP for all k (Arvind & Kurur, 2006).

Parameterized Problems.

• FPT (fixed-parameter tractable): The class of problems (with parameter k) solvable in time f(k)|I|O(1) for some
computable function f . Examples include k-VERTEXCOVER (Q. Is there a k-vertex set including at least one endpoint
of every edge of an n-vertex graph?), for which an O(1.2738k + kn)-time algorithm is known (Chen et al., 2010).

• XP (slice-wise polynomial): The class of problems (with parameter k) solvable in time |I|f(k) for some computable
function f . Examples include k-CLIQUE (Q. Is there a size-k complete subgraph in an n-vertex graph?), for which a
brute-force search algorithm runs in nO(k) time. k-CLIQUE is believed to be not in FPT; FPT 6= XP is a plausible
assumption in parameterized complexity.

B. Proof in Section 3
Proof of Corollary 3.2. Since 0p ≡ 02, 1p ≡ 12, 2p ≡ 22 mod 3 if p is a positive even integer, we have that Zp(A) ≡
Z2(A) mod 3.

C. Proofs in Section 4
Proof of Observation 4.2. Let A1, . . . ,Am be m P0-matrices in Qn×n, and |I| =

∑
i∈[m] size(Ai) be the input size. Of

course, Zm is bounded from below by 1; we shall show an upper bound. Applying Hadamard’s inequality, we have that all
principal minors are at most Mnnn/2, where M is the maximum absolute entry in the m matrices. Hence,∑

S⊆[n]

det(A1
S,S) · · · det(Am

S,S) ≤ 2n(Mnnn/2)m = 2n+mn logM+mn
2 logn = 2O(|I|2),

where the last deformation comes from that |I| ≥ logM and |I| ≥ mn2. Thus, Zm is between 1 and 2O(|I|2).

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Proof of Observation 4.3. Let n = m2. Given m positive semi-definite matrices K1, . . . ,Km ∈ Qm×m, according to
(Celis et al., 2017) (cf. Proof of Lemma 12), we construct an n × n positive semi-definite matrix A and an equal-sized
partition P of [n] such that m! D(K1, . . . ,Km) =

∑
S∈C det(AS,S), where C = {S ∈

(
[n]
m

)
| |S ∩ P | = 1 ∀P ∈ P}. We

then construct an n× n positive semi-definite matrix B such that Bi,j = [[i, j belong to the same group of P]]; it turns out
that

∑
S∈([n]

m) det(AS,S) det(BS,S) =
∑
S∈C det(AS,S). Consider a polynomial Z2(xA,B) of degree n in x ∈ Q, whose

coefficient on xm is exactly equal to the desired value, which completes the proof. Note that we can recover this by evaluating
Z2(xA,B) for n+ 1 distinct values of x (say, [n+ 1]) followed by the application of Lagrangian interpolation.

D. Proofs in Section 5.1
Proof of Lemma 5.2. The proof is based on dynamic programming. We first define a table dp of size s× n, whose entry for
each ` ∈ [s], o ∈ [n] is defined as

dp[`, o] =
∑

S⊆([n]
`)

max(S)=o

∏
i∈[`]

(A1
S)i,σ1(i) · · · (AmS)i,σm(i).

The desired value is equal to
∑
o∈[n] dp[s, o]. Observe then that for ` ∈ {2, . . . , s}, o ∈ [n]

dp[`, o] =
∑

1≤o′<o

dp[`− 1, o′]A1
o,σ1(`) · · ·A

m
o,σm(`),

dp[1, o] = A1
o,σ1(1) · · ·A

m
o,σm(1).

Note that the number of bits required to express each entry is bounded by log(2n)(size(A1) + · · · + size(Am)), which
is a polynomial in the input size. Calculating dp[`, o] given dp[`− 1, o′] for all o′ ∈ [n] by O(nm) arithmetic operations,
standard dynamic programming fills all entries of dp by O(msn2) arithmetic operations.

Proof of Theorem 5.4. We first decompose each of the m matrices into the product of two n × r rectangular matrices,
i.e., Ai = Xi(Yi)> for all i ∈ [m], by LDL decomposition. Similarly to the proof of Theorem 5.1, we can expand
Zm(A1, . . . ,Am) as follows.

∑
S⊆[n]

det(A1
S,S) · · · det(Am

S,S)

=
∑

0≤s≤r

∑
S∈([n]

s)

∑
C1∈([r]

s)

det(X1
S,C1

) det((Y1
S,C1

)>) · · ·
∑

Cm∈([r]
s)

det(Xm
S,Cm) det((Ym

S,Cm)>)

=
∑

0≤s≤r

∑
C1∈([r]

s)
σ1,τ1∈Ss

· · ·
∑

Cm∈([r]
s)

σm,τm∈Ss

sgn(σ1) sgn(τ1) · · · sgn(σm) sgn(τm)×

∑
S∈([n]

s)

∑
i∈[s]

(X1
S,C1

)i,σ1(i)(Y
1
S,C1

)i,τ1(i) · · · (Xm
S,Cm)i,σm(i)(Y

m
S,Cm)i,τm(i)

︸ ︷︷ ︸
♣

.

By applying Lemma 5.2, we can calculate ♣ in time O(msn2), and thus the entire computation time is bounded by

∑
0≤s≤r

(
r

s

)m
(s!)2mO(msn2) = O(r2mrr2n2) = rO(mr)n2.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

E. Proofs in Section 5.2
We first define nice tree decompositions formally. Figures 1–4 show an example of (nice) tree decompositions.

Definition E.1 (Nice tree decomposition). A tree decomposition (T, {Xt}t∈T) rooted at r is called nice if

(1) every leaf and the root have empty bags; i.e., Xr = ∅ and X` = ∅ for every leaf ` of T , and

(2) every non-leaf node is one of the following:

1. Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some v 6∈ Xt′ .
2. Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {v} for some v ∈ Xt′ .
3. Join node: a node t with exactly two children t′, t′′ such that Xt = Xt′ = Xt′′ .


∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ 0 ∗ ∗
0 ∗ 0 ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ 0 ∗ ∗


Figure 1. Matrix A ∈ Q6×6, where “∗”
denotes nonzero entries.

1

2

3

4

5

6

Figure 2. Graph G = (V,E) constructed
from the nonzero entries of A, where
V = [6] and E = nz(A).

123 235

245

356

Figure 3. Tree decomposition
(T, {Xt}t∈T) of G. T contains
four nodes, and bags are of size 3; i.e., its
treewidth is 2.

∅

root

1 12 123 23 235

235 25 245 24 2 ∅

leaf

235 35 356 36 3 ∅

leaf

Figure 4. Nice tree decomposition of G. This decomposition is essentially identical to (T, {Xt}t∈T), but this representation makes easier
to develop and analyze dynamic programming algorithms.

Proof of Lemma 5.7. Since σ is a bijection, let F1 = σ−1(S) ∩O1 F2 = σ(S) ∩O2, τ = σ|O1\F1
, and N = N(σ). Then,

σ must be consistent with S and st. The uniqueness is obvious from the definition of states.

Proof of Lemma 5.8

The proof is separated into the following three lemmas.

Lemma E.2. Let t be an introduce node such that Xt = Xt′ + v, and s ∈ [0, n]. Given dpt′,s′ for all s′, we can compute
each entry of dpt,s in time nO(1).

Lemma E.3. Let t be a forget node such that Xt = Xt′ − v, and s ∈ [0, n]. Given dpt′,s′ for all s′, we can compute each
entry of dpt,s in time wO(w)nO(1).

Lemma E.4. Let t be a join node such that Xt = Xt′ = Xt′′ , and s ∈ [0, n]. Given dpt′,s′ , dpt′′,s′′ for all s′, s′′, we can
compute each entry of dpt,s in time wO(w)nO(1).

Hereafter, we assume to be given a vertex ordering ≺ associated with a nice tree decomposition (T, {Xt}t∈T) such that

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

1. For each introduce node t such that Xt = Xt′ + v, u ≺ v for all u ∈ Vt′ .
2. For each join node t such that Xt = Xt′ = Xt′′ , either “u ≺ w for all u ∈ Vt′ \Xt′ and w ∈ Vt′′ \Xt′′”, or “w ≺ u

for all u ∈ Vt′ \Xt′ and w ∈ Vt′′ \Xt′′”.

This ordering will be used to calculate the inversion number for bijections. Note that for any bijection σ, the inversion
number is defined as N(σ) = {(i, j) | i ≺ j, σ(i) � σ(j)}.

By definition, the number of bits required to express each entry of dpt,s is roughly bounded by log(2nn!)(size(A) +
size(B)) = O(n log n(size(A) + size(B))), which is a polynomial in the input size.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Proof of Lemma E.2. Let v = Xt \ Xt′ . Remark that Vt′ \ Xt′ = Vt \ Xt, and v � w for all w ∈ Vt′ By the separator

property of tree decompositions, A{v},Vt\Xt and AVt\Xt,{v} are zero-matrices. We will define a mapping st
f7→ st′ from a

state for t to a state for t′. Fix a subset S ⊆ Vt \Xt and a state st = (O1, O2, F1, F2, τ,N) for t. We first claim that if
v ∈ F1 or v ∈ F2, then we can immediately declare that Υt,A(S, st) = Υt,B(S, st) = 0. This is because any bijection σ
consistent with S and st satisfies that σ(v) ∈ S ⊆ Vt \Xt or σ−1(v) ∈ S ⊆ Vt \Xt. Hereafter we can safely assume that
v 6∈ F1 and v 6∈ F2. We then handle the following five cases.

(1) if v 6∈ O1, v 6∈ O2:

Since st is also a state for t′ in this case, we define f(st) = st. It is easy to see that

Υt,A(S, st) = Υt′,A(S, f(st)).

(2) if v ∈ O1 \ F1, v 6∈ O2:

Let O′1 = O1 − v ⊆ Xt′ and O′2 = O2 − τ(v) ⊆ Xt′ . Then, we define f(st) = (O′1, O
′
2, F1, F2, τ |Xt′ , N −∆N),

where ∆N = N(σ) − N(σ′) is the difference in inversion number between σ ∈ σ(S, st) and σ′ ∈ σ(S, f(st)).
Regardless of the choice of σ and σ′, this ∆N is uniquely determined as |{w ∈ O′2 | w � τ(v)}|. Then, for any
bijection σ, σ ∈ σ(S, st) if and only if σ|Vt′ ∈ σ(S, f(st)). Consequently, we have that

Υt,A(S, st) = Υt′,A(S, f(st)) ·Av,τ(v).

(3) if v 6∈ O1, v ∈ O2 \ F2: By a similar argument to the case (2), We can safely assume that τ−1(v) exists
since AVt′\Xt′ ,{v} = 0. Let O′1 = O1 − τ−1(v) ⊆ Xt′ and O′2 = O2 − v ⊆ Xt′ . We define f(st) =
(O′1, O

′
2, F1, F2, τ |Xt′ , N − ∆N), where ∆N = {w ∈ O′1 | w � τ−1(v)} is the difference in inversion number

between σ ∈ σ(S, st) and st′ ∈ (S, st′). We then have that

Υt,A(S, st) = Υt′,A(S, f(st)) ·Aτ−1(v),v.

(4-1) if v ∈ O1 \ F1, v ∈ O2 \ F2, τ(v) = v:

Let O′1 = O1 − v and O′2 = O2 − v, and we define f(st) = (O′1, O
′
2, F1, F2, τ |Xt′ , N). We then have that

Υt,A(S, st) = Υt′,A(S, f(st)) ·Av,v.

(4-2) if v ∈ O1 \ F1, v ∈ O2 \ F2, τ(v) 6= v:

Remark that (v, τ(v)) 6= (τ−1(v), v). Let O′1 = O1 − v − τ−1(v) and O′2 = O2 − τ(v) − v, and we define
f(st) = (O′1, O

′
2, F1, F2, τ |Xt′ , N −∆N), where ∆N = |{w ∈ O′2 | w � τ(v)}|+ |{w ∈ O′1 | w � τ−1(v)}|+ 1

is the difference in inversion number. We then have that

Υt,A(S, st) = Υt′,A(S, f(st)) ·Av,τ(v)Aτ−1(v),v.

We have an analogue with regard to Υt,B and Υt′,B . Henceforth, for two states stA, stB for t, it holds that

dpt,s

[
stA

stB

]
= dpt′,s

[
f(stA)

f(stB)

]
A(stA)B(stB), (3)

where A(stA) is either of 1, Av,τ(v), Aτ−1(v),v, Av,v, or Av,τ(v)Aτ−1(v),v determined based on the above case analysis.
The same argument applies to B(stB). Because evaluating f(stA), f(stB), A(stA), B(stB) completes in nO(1) time,
so does evaluating dpt,s

[
stA
stB

]
.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Proof of Lemma E.3. Let v = Xt′ \Xt. We will define a mapping (S′, st′)
f7→ (S, st) from a subset-state pair for t′ to a

subset-state pair for t. Fix a subset S′ ⊆ Vt′ \Xt′ and a state st′ = (O′1, O
′
2, F

′
1, F

′
2, τ
′, N ′) for t′.

(1) if v 6∈ O′1, v 6∈ O′2: We define S = S′ and st = st′. Notice that v 6∈ S.

(2) if v ∈ O′1, v ∈ O′2: We first define F1 and F2 as follows:

(2-1) v ∈ F ′1, v ∈ F ′2: F1 = F ′1 − v, F2 = F ′2 − v.

(2-2) v 6∈ F ′1, v ∈ F ′2: F1 = F ′1, F2 = F ′2 + τ ′(v)− v.

(2-3) v ∈ F ′1, v 6∈ F ′2: F1 = F ′1 + τ ′−1(v)− v, F2 = F ′2.

(2-4) v 6∈ F ′1, v 6∈ F ′2, τ(v) 6= v: F1 = F ′1 + τ ′−1(v), F2 = F ′2 + τ ′(v).

(2-5) v 6∈ F ′1, v 6∈ F ′2, τ(v) = v: F1 = F ′1, F2 = F ′2.

We now define S = S′ + v and st = (O′1 − v,O′2 − v, F1, F2, τ
′|Xt , N ′).

(3) if v 6∈ O′1, v ∈ O′2: We do not consider.

(4) if v ∈ O′1, v 6∈ O′2: We do not consider.

Our claim is the following:

Claim. For a subset-state pair (S, st) for t and a bijection σ ∈ σ(S, st), there exists a unique subset-state pair (S′, st′)
for t′ such that σ ∈ σ(S′, st′) and f(S′, st′) = (S, st).

Proof of the claim. Given S ⊆ Vt \ Xt, st = (O1, O2, F1, F2, τ,N), σ ∈ σ(S, st), we construct a subset-state pair
(S′, st′) for t′ as follows:

(1) if v 6∈ S: let S′ = S and st′ = st.

(2) if v ∈ S: We prepare F ′1 and F ′2 as follows:

(2-1) σ(v) 6∈ Xt′ , σ
−1(v) 6∈ Xt′ : F ′1 = F1 + v, F ′2 = F2 + v.

(2-2) σ(v) ∈ Xt′ , σ
−1(v) 6∈ Xt′ : F ′1 = F1, F

′
2 = F2 − σ(v) + v.

(2-3) σ(v) 6∈ Xt′ , σ
−1(v) ∈ Xt′ : F ′1 = F1 − σ−1(v) + v, F ′2 = F2.

(2-4) σ(v) ∈ Xt′ , σ
−1(v) ∈ Xt′ , σ(v) 6= v: F ′1 = F1 − σ−1(v), F ′2 = F2 − σ(v).

(2-5) σ(v) ∈ Xt′ , σ
−1(v) ∈ Xt′ , σ(v) = v: F ′1 = F1, F

′
2 = F2.

Let then S′ = S − v and st′ = (O1 + v,O2 + v, F ′1, F
′
2, σ|Xt′ , N).

It is easy to verify the requirements by case analysis; the uniqueness is obvious.

By this claim, we have that for any S ⊆ Vt \Xt and state st for t,

Υt,A(S, st) =
∑

S′⊆Vt′\Xt′
st′ for t′

f(S′,st′)=(S,st)

Υt′,A(S′, st′).

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

We have an analogue regarding Υt,B and Υt′,B . Consequently, dpt,s can be decomposed into two sums as follows.

dpt,s

[
stA

stB

]
=

∑
S∈(Vt\Xts)

Υt,A(S, stA) ·Υt,B(S, stB)

=
∑

S∈(Vt\Xts):v 6∈S

∑
S′A⊆Vt′\Xt′
st′A for t′

f(S′A,st
′
A)=(S,stA)

∑
S′B⊆Vt′\Xt′
st′B for t′

f(S′B ,st
′
B)=(S,stB)

Υt′,A(S′A, st
′
A) ·Υt′,B(S′B , st

′
B)

+
∑

S∈(Vt\Xts):v∈S

∑
S′A⊆Vt′\Xt′
st′A for t′

f(S′A,st
′
A)=(S,stA)

∑
S′B⊆Vt′\Xt′
st′B for t′

f(S′B ,st
′
B)=(S,stB)

Υt′,A(S′A, st
′
A) ·Υt′,B(S′B , st

′
B)

=
∑

S∈(Vt\Xts):v 6∈S

∑
st′A for t′

f(st′A)=stA
v 6∈O′A1,v 6∈O

′
A2

∑
st′B for t′

f(st′B)=stB
v 6∈O′B1,v 6∈O

′
B2

Υt′,A(S, st′A) ·Υt′,B(S, st′B)

+
∑

S∈(Vt\Xts):v∈S

∑
st′A for t′

f(st′A)=stA
v∈O′A1,v∈O

′
A2

∑
st′B for t′

f(st′B)=stB
v∈O′B1,v∈O

′
B2

Υt′,A(S − v, st′A) ·Υt′,B(S − v, st′B)

=
∑

st′A for t′

f(st′A)=stA
v 6∈O′A1,v 6∈O

′
A2

∑
st′B for t′

f(st′B)=stB
v 6∈O′B1,v 6∈O

′
B2

∑
S′∈(Vt′ \Xt′s)

Υt′,A(S′, st′A) ·Υt′,B(S′, st′B)

+
∑

st′A for t′

f(st′A)=stA
v∈O′A1,v∈O

′
A2

∑
st′B for t′

f(st′B)=stB
v∈O′B1,v∈O

′
B2

∑
S′∈(Vt′ \Xt′s−1)

Υt′,A(S′, st′A) ·Υt′,B(S′, st′B)

=
∑

st′A for t′

f(st′A)=stA
v 6∈O′A1,v 6∈O

′
A2

∑
st′B for t′

f(st′B)=stB
v 6∈O′B1,v 6∈O

′
B2

dpt′,s

[
st′A
st′B

]
+

∑
st′A for t′

f(st′A)=stA
v∈O′A1,v∈O

′
A2

∑
st′B for t′

f(st′B)=stB
v∈O′B1,v∈O

′
B2

dpt′,s−1

[
st′A
st′B

]
.

Note that we let dpt′,s−1[·] = 0 if s = 0. Running through all possible combinations of st′A and st′B , we can compute

dpt,s

[
stA
stB

]
by wO(w)nO(1) arithmetic operations.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Proof of Lemma E.4. Without loss of generality, we can assume that v′ ≺ v′′ whenever v′ ∈ Vt′ \Xt′ and v′′ ∈ Vt′′ \Xt′′ .

We will define a mapping (s′, s′′, st′, st′′)
f7→ (s, st) from two integer-state pairs for t′ and t′′ to an integer-state pair for t.

Fix s′ ∈ [0, n], s′′ ∈ [0, n], st′ = (s′, O′1, O
′
2, F

′
1, F

′
2, τ
′, N ′) for t′ and st′′ = (s′′, O′′1 , O

′′
2 , F

′′
1 , F

′′
2 , τ

′′, N ′′) for t′′.

(1) if the following conditions are satisfied:

• O′1 \ F ′1 = O′′1 \ F ′′1 .
• O′2 \ F ′2 = O′′2 \ F ′′2 .
• F ′1 ∩ F ′′1 = ∅.
• F ′2 ∩ F ′′2 = ∅.
• τ ′ = τ ′′.

Then, for any S′ ∈
(
Vt′\Xt′
s′

)
, S′′ ∈

(
Vt′′\Xt′′

s′′

)
, σ′ ∈ σ(S′, st′), σ′′ ∈ σ(S′′, st′′), let ∆N = N(σ′ ∪ σ′′)−N(σ′)−

N(σ′′). Regardless of the choice of S′, S′′, σ′, σ′′, this ∆N is uniquely determined; it holds, in fact, that

∆N = −N(τ ′) + s′′(|F ′1|+ |F ′2|) + |F ′1| · |F ′′2 |+ |F ′2| · |F ′′1 |+ |{(v, w) ∈ F ′1 × F ′′1 | v � w}|+ |{(v, w) ∈ F ′2 × F ′′2 | v � w}|.

We now define

s = s′ + s′′,

st = (O′1 ∪O′′1 , O′2 ∪O′′2 , F ′1] F ′′1 , F ′2] F ′′2 , τ ′(= τ ′′), N ′ +N ′′ + ∆N).

(2) otherwise: We do not consider.

We claim the following:

Claim. For a subset-state pair (S, st) for t and a bijection σ ∈ σ(S, st), there exist two unique subset-state pairs (S′, st′)
for t′ and (S′′, st′′) for t′′ such that σ|Vt′ ∈ σ(S′, st′), σ|Vt′′ ∈ σ(S′′, st′′), and f(|S′|, |S′′|, st′, st′′) = (|S|, st) and
S′] S′′ = S.

Proof of the claim. Given S ⊆ Vt \ Xt, st = (O1, O2, F1, F2, τ,N), σ ∈ σ(S, st), we construct S′, S′′, st′, st′′ as
follows:

S′ = S ∩ (Vt′ \Xt′) S′′ = S ∩ (Vt′′ \Xt′′)

O′1 = σ−1(S′)] σ−1(O2) O′′1 = σ−1(S′′)] σ−1(O2)

O′2 = σ(S′)] σ(O1) O′′2 = σ(S′′)] σ(O1)

F ′1 = σ−1(S′) F ′′1 = σ−1(S′′)

F ′2 = σ(S′) F ′′2 = σ(S′′)

τ ′ = σ|Xt τ ′′ = σ|Xt
N ′ = N(σ|Vt′) N ′′ = N(σ|Vt′′)

Observe that Vt \Xt = (Vt′ \Xt′)] (Vt′′ \Xt′′). Hence, it is easy to verify the requirements; the uniqueness is obvious.

By this claim, we have that for any S ⊆
(
Vt\Xt
s

)
and st for t,

Υt,A(S, st) =
∑

s′∈[0,n],s′′∈[0,n]
st′ for t′,st′′ for t′′

f(s′,s′′,st′,st′′)=(s,st)

∑
S′∈(

V
t′ \Xt′
s′)

S′′∈(
V
t′′ \Xt′′
s′′)

S′]S′′=S

Υt′,A(S′, st′) ·Υt′′,A(S′′, st′′)

A(τ)
.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Division by A(τ) is due to double count. The same relation applies to Υt,B . Consequently, dpt,s can be decomposed into
the sum over dpt′,s′ times dpt′′,s′′ as follows.

dpt,s

[
stA

stB

]
=

∑
S∈(Vt\Xts)

Υt,A(S, stA) ·Υt,B(S, stB)

=
∑

S∈(Vt\Xts)
s′∈[0,n]
s′′∈[0,n]

∑
st′A,st

′′
A,st

′
B ,st

′′
B

f(s′,s′′,st′A,st
′′
A)=(s,stA)

f(s′,s′′,st′B ,st
′′
B)=(s,stB)

∑
S′A∈(

V
t′ \Xt′
s′)

S′′A∈(
V
t′′ \Xt′′
s′′)

S′A]S
′′
A=S

S′B∈(
V
t′ \Xt′
s′)

S′′B∈(
V
t′′ \Xt′′
s′′)

S′B]S
′′
B=S

Υt′,A(S′A, st
′
A) ·Υt′′,A(S′′A, st

′′
A)

A(τ)

Υt′,B(S′B , st
′
B) ·Υt′′,A(S′′B , st

′′
B)

B(τ)

=
∑
s′,s′′

∑
st′A,st

′′
A,st

′
B ,st

′′
B

f(s′,s′′,st′A,st
′′
A)=(s,stA)

f(s′,s′′,st′B ,st
′′
B)=(s,stB)

∑
S∈(Vt\Xts)
S′∈(

V
t′ \Xt′
s′)

S′′∈(
V
t′′ \Xt′′
s′′)

S′]S′′=S

Υt′,A(S′, st′A) ·Υt′′,A(S′′, st′′A)

A(τ)

Υt′,B(S′, st′B) ·Υt′′,B(S′′, st′′B)

B(τ)

=
∑

s′,s′′,st′A,st
′′
A,st

′
B ,st

′′
B

f(s′,s′′,st′A,st
′′
A)=stA

f(s′,s′′,st′B ,st
′′
B)=stB

(∑
S′∈(

V
t′ \Xt′
s′)

Υt′,A(S′, st′A) ·Υt′,B(S′, st′B)

A(τ)

)(∑
S′′∈(

V
t′′ \Xt′′
s′′)

Υt′′,A(S′′, st′′A) ·Υt′′,B(S′′, st′′B)

B(τ)

)

=
1

A(τ) ·B(τ)

∑
s′,s′′,st′A,st

′′
A,st

′
B ,st

′′
B

f(s′,s′′,st′A,st
′′
A)=stA

f(s′,s′′,st′B ,st
′′
B)=stB

dpt′,s′

[
st′A
st′B

]
· dpt′′,s′′

[
st′′A
st′′B

]
.

Iterating through all possible combinations of s′, s′′, st′A, st′′A, st′B and st′′B , we can compute each entry of dpt by
wO(w)nO(1) arithmetic operations.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Proof of Theorem 5.10

Let A1, . . . ,Am bemmatrices in Qn×n, and (T, {Xt}t∈T) be a nice tree decomposition for the graph ([n],
⋃
i∈[m] nz(Ai)),

which is of width at most w and rooted at r ∈ T . We aim to compute the following quantity for each node t ∈ T :∑
S⊆Vt\Xt

∏
i∈[m]

∑
Oi,1,Oi,2⊆Xt:|Oi,1|=|Oi,2|

σi:S∪Oi,1�→S∪Oi,2

sgn(σi)A
i(σi). (4)

In particular, this is equal to Zm(A1, . . . ,Am) at the root r. States for node t are defined as a tuple st =
(O1, O2, F1, F2, τ,N) in the same manner as in Section 5.2 excepting that N ∈ {0, 1}, which denotes the parity of
the inversion number. We say that a bijection σ is consistent with S ⊆ Vt \Xt and st = (O1, O2, F1, F2, τ,N) if (1) σ is a
bijection S ∪O1 �→ S ∪O2, (2) F1 = σ−1(S) ∩O1, F2 = σ(S) ∩O2, (3) τ = σ|O1\F1

, and (4) N = N(σ)⊕ 1.

Lemma 5.7 can be adapted to the present definition. For each i ∈ [m], letting sti = (Oi,1, Oi,2, Fi,1, Fi,2, τi, Ni) a state
for node t, we can express Eq. (4) as follows:∑

st1,...,stm for t
s∈[0,n]

(−1)N1⊕···⊕Nm
∑

S⊆(Vt\Xts)

∏
i∈[m]

Υt,i(S, sti),

where for all i ∈ [m],

Υt,i(S, sti) =
∑

σi∈σ(S,sti)

Ai(σi).

We then define the table dpt,s for each node t ∈ T and s ∈ [0, n] to store the following quantity with key

st1

...
stm

:

dpt,s

st1

...
stm

 =
∑

S∈(Vt\Xts)

∏
i∈[m]

Υt,i(S, sti).

By definition dpt,s contains at most wmw8mw = wO(mw) entries.

Assuming all arithmetic operations on the inversion number to be performed modulo 2, it is not difficult to observe that the
claims in the proof of Lemmas E.2–E.4 still hold for the present definition. We thus easily extend those lemmas for the case
of m matrices as follows.

Lemma E.5 (Introduce nodes). Let t be an introduce node such that Xt = Xt′ + v, and s ∈ [0, n]. Given dpt′,s′ for all s′,
we can compute each entry of dpt,s in time wO(wm)nO(1).

Proof. Using a mapping f introduced in the proof of Lemma E.2, for m states st1, . . . , stm for t, we have that

dpt,s

st1

...
stm

 = dpt′,s

 f(st1)
...

f(stm)

A1(st1) · · ·Am(stm),

where Ai(sti) for i ∈ [m] is either of 1, Aiv,τ(v), A
i
τ−1(v),v, Aiv,v, or Aiv,τ(v)A

i
τ−1(v),v determined based on the case

analysis in the proof of Lemma E.2. Since evaluating f(sti), A
i(sti) for all i ∈ [m] completes in time (mn)O(1), so does

evaluating dpt,s.

Lemma E.6 (Forget nodes). Let t be a forget node such that Xt = Xt′ − v, and s ∈ [0, n]. Given dpt′,s′ for all s′, we can
compute each entry of dpt,s in time wO(wm)nO(1).

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Proof. Using a mapping f introduced in the proof of Lemma E.3, we have that for any S ⊆ Vt \Xt, st for t, and i ∈ [m],

Υt,i(S, st) =
∑

S′⊆Vt′\Xt′
st′i for t′

f(S′,st′)=(S,st)

Υt′,i(S
′, st′).

Consequently, dpt,s can be decomposed into two sums as follows.

dpt,s

st1

...
stm

 =
∑

st′1 for t′

f(st′1)=st1
v 6∈O′1,1,v 6∈O

′
1,2

· · ·
∑

st′m for t′

f(st′m)=stm
v 6∈O′m,1,v 6∈O

′
m,2

dpt′,s

st
′
1

...
st′m

+
∑

st′1 for t′

f(st′1)=st1
v∈O′1,1,v∈O

′
1,2

· · ·
∑

st′m for t′

f(st′m)=stm
v∈O′m,1,v∈O

′
m,2

dpt′,s

st
′
1

...
st′m

 .

Running through all possible combinations of st′1, . . . , st
′
m, we can compute dpt,s[st1, . . . , stm] in time wO(wm)nO(1).

Lemma E.7 (Join nodes). Let t be a join node such that Xt = Xt′ = Xt′′ , and s ∈ [0, n]. Given dpt′,s′ , dpt′′,s′′ for all
s′, s′′, we can compute each entry of dpt,s in time wO(wm)nO(1).

Proof. Using a mapping f introduced in the proof of Lemma E.4, we have that for any S ⊆ Vt \Xt, st for t, and i ∈ [m],

Υt,i(S, st) =
∑

s′,s′′∈[0,n]
st′ for t′,st′′ for t′′

f(s′,s′′,st′,st′′)=(s,st)

∑
S′∈(

V
t′ \Xt′
s′)

S′′∈(
V
t′′ \Xt′′
s′′)

S′]S′′=S

Υt′,i(S
′, st′) ·Υt′′,i(S

′′, st′′)

Ai(τ)
.

Consequently, dpt,s can be decomposed as follows.

dpt,s

st1

...
stm

 =
1

A1(τ) · · ·Am(τ)

∑
s′,s′′

∑
st′1,st

′′
1

f(s′,s′′,st′1,st
′′
1)=st1

· · ·
∑

st′m,st
′′
m

f(s′,s′′,st′m,st
′′
m)=stm

dpt′,s′

st
′
1

...
st′m

 · dpt′′,s′′
st

′′
1

...
st′′m

 .
Iterating through all possible combinations of s′, s′′, st′1, st

′′
1 , . . . , st

′
m, st

′′
m, we can compute each entry of dpt,s in time

wO(wm)nO(1).

Proof of Theorem 5.10. Our parameterized algorithm is almost identical that for Theorem 5.5. Let (T, {Xt}t∈T) be a nice
tree decomposition rooted at r of width at most w that has at mostO(wn) nodes. For every leaf ` of T , we initialize dp`,s as

dp`,s

∅, ∅, ∅, ∅, ∅�→ ∅, 0...
∅, ∅, ∅, ∅, ∅�→ ∅, 0

 =

{
1 if s = 0,

0 otherwise.

Then, for each non-leaf node t ∈ T , we apply Lemmas E.5–E.7 to fill dpt,s using already-filled dtt′,s′ for all children t′ of t
and all s′ ∈ [0, n] in a bottom-up fashion. Completing dynamic programming, we compute Zm as

Zm(A1, . . . ,Am) =
∑

s,N1,...,Nm

(−1)N1⊕···⊕Nm · dpr,s

 ∅, ∅, ∅, ∅, ∅�→ ∅, N1

...
∅, ∅, ∅, ∅, ∅�→ ∅, Nm

 .
The correctness follows from Lemmas E.5–E.7. We finally bound the complexity. Because T has at most wn nodes, each
table is of size wO(wm), and each table entry can be computed in time wO(wm)nO(1) by Lemmas E.5–E.7, the whole time
complexity is bounded by wO(wm)nO(1).

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

F. Proof in Section 5.3
Proof of Theorem 5.11. We reduce from the problem of counting all (imperfect) matchings in a bipartite graph of maximum
degree 4, which is #P-complete (Vadhan, 2001). Let H = (X] Y,E) be a bipartite graph of maximum degree 4, where
E ⊆ X × Y is a set of m edges between X and Y . Recall (Gillenwater, 2014)’s reduction to construct two positive
semi-definite matrices A,B ∈ {0, 1}m×m indexed by edges of E so that Ai,j is 1 if edges i, j in E share a common vertex
in X and 0 otherwise, and Bi,j is 1 if edges i, j in E share a common vertex in Y and 0 otherwise. Then, Z2(A,B) is
exactly equal to the number of all (not necessarily perfect) matchings in H , and thus the #P-hardness follows.

By construction, A and B must be block-diagonal matrices, each block of which is a k × k all-one matrix for k ∈ [4].
Because the graph ([n],nz(A)) is the disjoint union of cliques of size at most 4, whose treewidth is at most 3, it holds that
tw(A) ≤ 3. Similarly, tw(B) ≤ 3.

References
Affandi, R. H., Fox, E. B., Adams, R. P., and Taskar, B. Learning the parameters of determinantal point process kernels. In

ICML, pp. 1224–1232, 2014.

Anari, N. and Gharan, S. O. A generalization of permanent inequalities and applications in counting and optimization. In
STOC, pp. 384–396, 2017.

Anari, N., Liu, K., Gharan, S. O., and Vinzant, C. Log-concave polynomials II: High-dimensional walks and an FPRAS for
counting bases of a matroid. In STOC, pp. 1–12, 2019.

Arnborg, S. and Proskurowski, A. Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl.
Math., 23(1):11–24, 1989.

Arvind, V. and Kurur, P. P. Graph isomorphism is in SPP. Inf. Comput., 204(5):835–852, 2006.

Bodlaender, H. L., Drange, P. G., Dregi, M. S., Fomin, F. V., Lokshtanov, D., and Pilipczuk, M. A ckn 5-approximation
algorithm for treewidth. SIAM J. Comput., 45(2):317–378, 2016.

Borodin, A. and Rains, E. M. Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys., 121(3–4):
291–317, 2005.

Burton, R. and Pemantle, R. Local characteristics, entropy and limit theorems for spanning trees and domino tilings via
transfer-impedances. Ann. Probab., 21(3):1329–1371, 1993.

Celis, L. E., Deshpande, A., Kathuria, T., Straszak, D., and Vishnoi, N. K. On the complexity of constrained determinantal
point processes. In APPROX/RANDOM, pp. 36:1–36:22, 2017.

Celis, L. E., Keswani, V., Straszak, D., Deshpande, A., Kathuria, T., and Vishnoi, N. K. Fair and diverse DPP-based data
summarization. In ICML, pp. 715–724, 2018.

Chen, J., Kanj, I. A., and Xia, G. Improved upper bounds for vertex cover. Theor. Comput. Sci., 411(40–42):3736–3756,
2010.

Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., and Saurabh, S. Parameterized
Algorithms. Springer, 2015.

Djolonga, J. and Krause, A. From MAP to marginals: Variational inference in Bayesian submodular models. In NIPS, pp.
244–252, 2014.

Downey, R. G. and Fellows, M. R. Parameterized Complexity. Springer, 2012.

Edmonds, J. Systems of distinct representatives and linear algebra. J. Res. Natl. Bur. Stand., 71B:241–245, 1967.

Eiben, E., Ganian, R., Kanj, I., and Szeider, S. The parameterized complexity of cascading portfolio scheduling. In NeurIPS,
pp. 7666–7676, 2019.

On the (In)tractability of Computing Normalizing Constants for the Product of Determinantal Point Processes

Ganian, R., Kanj, I., Ordyniak, S., and Szeider, S. Parameterized algorithms for the matrix completion problem. In ICML,
pp. 1656–1665, 2018.

Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

Gartrell, M., Paquet, U., and Koenigstein, N. Low-rank factorization of determinantal point processes. In AAAI, pp.
1912–1918, 2017.

Gartrell, M., Brunel, V.-E., Dohmatob, E., and Krichene, S. Learning nonsymmetric determinantal point processes. In
NeurIPS, pp. 6715–6725, 2019.

Gillenwater, J. A. Approximate Inference for Determinantal Point Processes. PhD thesis, University of Pennsylvania, 2014.

Gong, B., Chao, W., Grauman, K., and Sha, F. Diverse sequential subset selection for supervised video summarization. In
NIPS, pp. 2069–2077, 2014.

Gotovos, A., Hassani, S. H., and Krause, A. Sampling from probabilistic submodular models. In NIPS, pp. 1945–1953,
2015.

Gurvits, L. On the complexity of mixed discriminants and related problems. In MFCS, pp. 447–458, 2005.

Halin, R. S-functions for graphs. J. Geom., 8(1-2):171–186, 1976.

Harvey, D., van der Hoeven, J., and Lecerf, G. Even faster integer multiplication. J. Complexity, 36:1–30, 2016.

Jerrum, M., Sinclair, A., and Vigoda, E. A polynomial-time approximation algorithm for the permanent of a matrix with
nonnegative entries. J. ACM, 51(4):671–697, 2004.

Kogan, G. Computing permanents over fields of characteristic 3: Where and why it becomes difficult (extended abstract). In
FOCS, pp. 108–114, 1996.

Krause, A., Singh, A., and Guestrin, C. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms
and empirical studies. J. Mach. Learn. Res., 9:235–284, 2008.

Kulesza, A. and Taskar, B. k-DPPs: Fixed-size determinantal point processes. In ICML, pp. 1193–1200, 2011.

Kulesza, A. and Taskar, B. Determinantal point processes for machine learning. Found. Trends Mach. Learn., 5(2–3):
123–286, 2012.

Li, C., Jegelka, S., and Sra, S. Fast DPP sampling for Nyström with application to kernel methods. In ICML, pp. 2061–2070,
2016.

Macchi, O. The coincidence approach to stochastic point processes. Adv. Appl. Probab., 7(1):83–122, 1975.

Mariet, Z. E., Sra, S., and Jegelka, S. Exponentiated strongly Rayleigh distributions. In NeurIPS, pp. 4464–4474, 2018.

O’Donnell, R. and Ta, F. Semidefinite programs and the max-cut problem, lecture 10. http://www.cs.cmu.edu/
afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture10.pdf, 2011.

Robertson, N. and Seymour, P. D. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309–322, 1986.

Robinson, J., Sra, S., and Jegelka, S. Flexible modeling of diversity with strongly log-concave distributions. In NeurIPS, pp.
15199–15209, 2019.

Schrijver, A. Theory of Linear and Integer Programming. Wiley–Interscience Series in Discrete Mathematics and
Optimization. Wiley, 1999.

Vadhan, S. P. The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput., 31(2):398–427, 2001.

Valiant, L. G. The complexity of computing the permanent. Theor. Comput. Sci., 8(2):189–201, 1979.

van der Maaten, L. and Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res., 9(11):2579–2605, 2008.

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture10.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-f11/www/notes/lecture10.pdf

