Supplementary Document to
“Eliminating the Invariance on the Loss Landscape of Linear Autoencoders”,
Proof of the Theorems

Reza Oftadeh, Jiayi Shen, Zhangyang Wang, Dylan Shell*

1 Preliminaries

Before we present the proof for the main theorems, the following three lemmas introduce some notations
and basic relations that are required for the proofs. Note that the theorems’ numbering are different than
the numbering in the main article.

Lemma 1. The constant matrices T, € RP*P and S, € RP*P are defined as

(T;D)ij = (p72+1)51j7 i.e. TP :dlag(p7p717 31)7 (1)
P p—1 2 1
p—1 p—1 2 1 43 2 1
.. . . . 33 2 1
(Sp)ij =p —max(i,j) + 1, i.e. Sy, = : : .9 1|, e9 Sa= 9 9 9 1 (2)
2 2 2 2 1 1 1 1 1
1 1 1 1 1

Clearly, the diagonal matriz T, is positive definite. Another matriz that will appear in the formulation is
S, = TI;ISPT;1

101 1 1
Por i i
1 p p-1 p—1 p-1
S) =(T,'s, T, =——————ie. T,'S, T, = |0 0 . : I
($0), =@ ST, = e e TS =
D p—1 2 2
1 1 1
» T 7 1
101 1 1
) A S ¢
eg- Sy= |1 1 ¢ 1
I
4 3 2

The following properties of Hadamard product and matrices T, and S, are used throughout:
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. For any arbitrary matricx A € R"*P,

p
Z I, =T,, and (3)
=1
p
Z I,A’ AL, = S, 0 (A'A), (4)

i=1
where, o is the Hadamard (element-wise) product.

. For any matrices My, My € RP*P and diagonal matrices 9,6 € RP*P,
Q(Ml OMg)g = (ngéa) OM2 = M1 o (QMQé’)
Moreover, if I11,II, € RP*P are permutation matrices then

H1 (Ml o MQ) H2 = (H1M1H2) o (H1M2H2) .

. Sy is invertible and its inverse is a symmetric tridiagonal matriz

1 -1 -+ 0 0
1 i=j=1
-1 2 -1 0 0
(S; 1)y = 2 i=g#l ie. STl = .
S Bt L I S
0 otherwise

. S, is positive definite.

. For any matriz A € R"*?, S, 0 (A’ A) is positive semidefinite. If (not necessarily full rank) A has no
zero column then S, o (A’ A) is positive definite.

. For any diagonal matrix @ € RP*P

S,02=T,9, and (5)
S,09=T,'9. (6)
. Let 9, € RP*P be positive semidefinite matrices, where & has no zero diagonal element, and D is of

rank r < p. Also, let for any r < p, J, = {i1, -+ ,i,}(1 < i3 < -+ <, <n) be any ordered r—index
set. Then 2 and & satisfy

&(8,09)=(5,0¢)9,
if and only if, the following two conditions are satisfied:

(a) The matriz D is diagonal with p — r zero diagonal elements and r positive diagonal elements
indexed by the set J,.. That is for any i € J, : (2)i; > 0 and the rest of elements of 9 are zero.

(b) For any i,j € I, and i # j we have (£); ; = 0.

Clearly, if @ is positive definite then I, = N, and hence, both 9 and & are diagonal.



Proof. . The proof of the properties are as follows.

1. eq. is trivial. For eq. note that AI, selects the first ¢ columns of A (zeros out the rest), and
similarly, I,, A’ selects the first ¢ rows of A (zeros out the rest). Therefore, I, A’ AL, is a p x p
matrix that its Leading Principal Submatrix of order i (LPS;) E|is the same as the LPS; of A’A (and
the rest of the elements are zero). Hence, Y *_ I, A’ AL, (counting backwards) adds LPS,, of A’A
(i.e. A’A itself) with LPS,_; that doubles LPS,_; part of the result and then adds LPS,_, that
triples the LPS,,_, part of result, the process continues until by the last addition LPS,is added to the
result for the p'itimes. This is exactly the same as evaluating S, o (A’ A).

2. This is a standard result (Horn & Johnson| [2012), and no proof is needed.
3. Directly compute S,S,!:

V]k—j]>1:(S; )i, =0

P
(SPSp_l)ij = Z(SP)HC(Sp_l)k]
k=1
Sp)ii—10Sy )15 HSp)i Sy )i H(Sp)ig+1(Sy i1y 2<i&
_ j<p-1
(Sp)i,p—l(sgl)pfl,p + (Sp)i,p(s;;l)p,p Jj=p
(Sp)i1 (S )11+ (Sp)i2(S, M2 j=
—(8p)ij—1+2(8p)ij — (Splij+1 2<j<p-—1
= _(Sp)i,pfl + 2(Sp)i,p Jj=p
(Sp)ii — (Sp)i2 j=1
max(i,7 — 1) — 2max(i, j) + max(i,j + 1) 2<j<p-1
=4 —(p—max(i,p— 1)+ 1)+ 2(p — max(i,p) +1) j=p
—max(7,1) + max(s, 2) j=1
max(i,j7 — 1) — 2max(i,j) + max(i,j+1) 2<j<p-—1
=<¢1—p+max(i,p—1) j=p
max(%,2) — max(i, 1) j=1
1 i=j ,
1<)i<
0 i+j =P
1 i=p
— — —(I,);
0 izp )P (Ip)ig
1 2=1
g
0 i>2 ’

4. Firstly, note that S !is symmetric and nonsingular so all the eigenvalues are real and nonzero. It is
also a diagonally dominant matrix (Horn & Johnson| (2012), Def 6.1.9) since

Vie{l,--,p}:Ci=1(S, Dul = Y (8, )] = R,
=1,

1For a p x p matrix, the leading principal submatrix of order 4 is an 4 X 4 matrix derived by removing the last p — i rows and
columns of the original matrix (Horn & Johnson| (2012)), P17)



where the inequality is strict for the first and the last row and it is equal for the rows in the middle.
Moreover, by Gersgorin circle theorem (Horn & Johnson| (2012), Thm 6.1.1) for every eigenvalue /; of
S, ! there exists i such that I; € [C; — R;,C; + R;]. Since Vi : C; > R; we have all the eigenvalues are
non-negative. They are also nonzero, hence, S, ! is positive definite, which implies S, is also positive
definite.

5. For any matrix A € R"*?, A’ A is positive semidefinite. Also, S), is positive definite so by Schur product
theorem (Horn & Johnson| (2012), Thm 7.5.3(a)), Sp, o (A’A) is positive semidefinite. Moreover, if all
diagonal elements of A’ A are positive (i.e. A has no zero column) by the extension of Schur product
theorem (Horn & Johnson| (2012), Thm 7.5.3(b)) it is positive definite. This can also be easily deduced
using the Oppenheim inequality (Horn & Johnson| (2012), Thm 7.8.16); that is for positive semidefinite
matrices S, and A’ A: det(S,) [[,(A’A)s; < det(S,0(A’A)). Since, S, is positive definite, det(S,) > 0
(in fact it is 1 for any p) and if A’A has no zero diagonal then det(S, o (A’A)) > 0 and therefore,
S, 0 (A’A) is positive definite.

6. Clearly, the matrix T}, is achieved by setting the off-diagonal elements of S, to zero. Hence, for any
diagonal matrix 2 € RP*P: §,09 =T, 09. For the diagonal matrices Hadamard product and matrix
product are interchangeable so the latter may also be written as T,9. The same argument applies for
the second identity.

7. This property can easily be proved by induction on p and careful bookkeeping of indices.

O

Lemma 2 (Simultaneous diagonalization by congruence). Let My, My € RP*P where M is positive definite
and My is positive semidefinite. Also, let D, € R"™*" be positive definite diagonal matrices with r < p.
Further, assume there is a C € R"*P of rank r < p such that

CM,C' =2 and
CM,C' =928&.

Then there exists a nonsingular C € RP*P that its first v rows are the matriz C and

CM,C' =2 and
CM,C' =2¢&,

where, 2 = P & I._, is a p X p diagonal matriz and & =& @ & is another p x p diagonal matriz, in which
& € RP~"XP~" 45 g nonnegative diagonal matriz. Clearly, the rank of Mo is r plus the number of nonzero
diagonal elements of &.

Proof. The proof is rather straightforward since this lemma is the direct consequence of Theorem 7.6.4 in
Horn & Johnson| (2012)). The theorem basically states that if My, My € RP*P ig symmetric and M is
positive definite then there exists an invertible S € RP*? such that SM;S" = I, and SM>S’ is a diagonal
matrix with the same inertia as M>. Here, we have My that is positive semidefinite and C' € R"*? of rank
r < p such that

’

(@%1 c) M, (@%1 C) —1I, and



’

(27 c)m (27 C) =6

Therefore, since S is of full rank p and 2 = C is of rank r < p, there exists p — r rows in S that are linearly
independent of rows of 97 C. Establish C € RP*P by adding those p —r rows to C. Then C has p linearly
independent rows so it is nonsingular, and fulfills the lemma’s proposition that is

CM,C' =2 and

CM,C' =98&,
where, 2 = 2 ¢ I._, is a p x p diagonal matrix and & = & @ & is another p x p diagonal matrix, in which
& € RP~"*P~T" ig a nonnegative diagonal matrix. O

Lemma 3. Let A and B define a critical point of L. Further, let V € R"*P and W € RP*"™ are such that
IVIlg, W] = 0O(e) for some € > 0. Then

L(A+V,B+W) - L(A,B)=(VT,BX,,B',V)p
—2(%,,W'T, — A(S, 0 (BZ,, W' + WX,,B")),V)p
+{(Spo (A A))WE,,., W) + O(?). (7)

Further, for W =W = (S, o (A’A)~! T,V'S,. XL, the above equation becomes

L(A+V,B+W) - L(A,B) =Tt (V'VT,BX,,B') — Tt (V’EVTP (S, 0 (A'A)) " Tp)
+2 Ty (V’A (s,, ° (BszTp (S, 0 (A'A)~"

+ (S, 0 (A’A))*lTpv'zymB'))) T O(%). ®)

Finally, in case the critical A is of full rank p and so, (A, B) = (UHPHD,ﬁ(UHpHD)), for the encoder
direction V' with ||V||r = O(e) and W = W we have,
L(A+V,B4+W)-L(A,B) =Tt (V'VI'A, ,IIT,D?) — Tr (V'EVT,D?)
12Ty (V’UHPHD (sp ° (D‘ll'[’U]prVD_Q)))
+2Tr (V'UL,IID (S, o (D*V'SU, IID ™))
+0(e?). (9)

Proof. As described in section the second order Taylor expansion for the loss L(A, B) is then given by
eq. (53), i.e.

1
L(A+V,B+W)—L(A,B) =daL(A,B)V +dgL(A, B)W + idi,L(A, B)V?

1
+daL(A, B)VW + 5d“‘BL(A, BYW? + Ry w(A, B).



If |[V|p,[Wlp = O(c) then |R(V,W)|| = O(3). Moreover, when A and B define a critical point of L
we have daL(A, B)V = dgL(A, B)W = 0. By setting the derivatives d4 L(A, B)V?, dagL(A, B)VW,
d%L(A, B)W? that are given by eq. (59), eq. (58), and eq. respectively, the above equation simplifies
to

L(A+V,B+W)—L(A,B)=(V (8,0 (BZ.,B)),V)r
~2(8,,W'T, — A(S, 0 (BE,. W' + WX,,B")),V)F
+((Sp 0o (A A)) W, W) + O(e%).

Now, based on the first item in Corollary [I] BX,,B’ is a p x p diagonal matrix, so based on eq. ([):
S, 0 (BX,,B') = T,BX,, B’. The substitution then yields eq. (7). Finally, in the above equation replace
W with W = (S, 0 (A’A)) "' T,V'E,, X, We have

LA+V,B+W)-L(A,B) =

= (VI,BS,, B, V)p — 2(X,, 5,1 5,,VT, (S, 0 (A'A) ' T, V)

+2(A(S, 0 (BR0a B0 50y VT, (S,0(A'A)) 4 (S,0(A'4) ' T, V'S, 5.} 5., B) ) V)

+((8, 0 (A’A)) (S0 (AA)) T, V'S, 21150, (S, 0 (A'A) T V'S, 5. r +0(°)

=Tt (V'VI,BS,,B') — Tt (v’zVTp (S,0(A'A)) " Tp)

+2T0 (V/A (S, 0 (BS,, VT, (S, 0 (4°4) 1 + (8,0 (4'4)) ' TV, B') )) +0(=),
which is eq. . For the final equation, we have

T,B%,.B' =T,D"'II'U; =,,3 '3, %%, U, 1D

x

=T,D~'II'U{ XU, D' =T,D"'II'A, , TID "
ﬁp,_/ ——
=IT'A;, IIT,D~?, and (10)
—1
T, (S, o (A’A)"'T, =T, <s,, o <D H’U]I’pUHpHD)> T,
————
=T, (S,0D*) ' T, = T,T, ' DT, = T,D>. (11)
Replace the above in eq. and simplify:
L(A+V,B+W) - L(A,B) =Tt (V'VT,BX,,B') — T (V’EVT,, (S, 0 (A’ A)) " Tp)
+2Tr (V’A (S,, ° (BEIyVTp (S, 0 (A'A))~"
A'4) ' V'S, B 7y L B
+ (8,0 (AA) T LV'D,.B))) + 0" <

L(A+V,B+W) - L(A,B) =Tr (V'VII'A, IIT,D ) — Tr (V'EVT,D?)
+2Tr (V'A (S, 0 (BZ,,VD?+ D V'S, B')))



+O(€3> A:AU][p 1D

B=B(U,,I1D)

L(A+V,B4+W)-L(A,B) =Tt (V'VI'A, ,IT,D?) - Tr (V'SVT,D?)
2Ty (V’UHPHD (sp ° (D‘ll'[’U]prVD_Q)»
+2Tr (V'UL,IID (S, o (D*V'SU, IID ™))
+0(e%),

which finalizes the proof. O

2 Proof of Main Results

Proposition 1. For any fized matriz A € R™*? the function L(A, B) is convex in the coefficients of B and
attains its minimum for any B satisfying the equation

(Spo(A’A)BX,, = TpA/zyx» (12)

where T}, and S, are constant matrices defined by Eqgs |Z| and . Further, if A has no zero column, then
L(A, B) is strictly convez in B and has a unique minimum when the critical B is

B=B(A)=(S,0(A’A)"'T,A'S,, >} (13)

xx )

and in the autoencoder case it becomes
B =B(A)=(S,0(A'A)"'T,A". (13")

Proof. For this proof we use the first and second order derivatives for L(A, B) wrt B derived in Lemma
From eq. , we have that for a given A the second derivative wrt to B of the cost L(A, B) at B, and in
the direction W is the quadratic form

d5.L(A,B)W? =2Tr (W' (S, 0 AA)WE,,).

The matrix X, is positive-definite and by Lemma S,0A’ A is positive-semidefinite. Hence, dg,L(A, B)W?
is clearly non-negative for all W € RP*™. Therefore, L(A, B) is convex in coefficients of B for a fixed matrix
A. Also the critical points of L(A, B) for a fixed A is a matrix B that satisfies VW € RP*" : dg L(A, B)W =
0 and hence, from eq. we have

—2T,A'Y,, — (Spo(A’A)) BE,,,W)r =0.
Setting W =T,A'Y,, — (S, 0 (A’A)) BX,, we have
TPAIEyE - (Sp ° (A/A)) BX,; =0.

For a fixed A, the cost L(A, B) is convex in B, so any matrix B that satisfies the above equation corresponds
to a minimum of L(A, B). Further, if A has no zero column then by Lemma S, 0 A’ A is positive definite.
Hence, YW € RP*" : d5,L(A,B)W? = 2Tr (W' (S, 0 A’A)WX,,) is positive. Therefore, the cost
L(A, B) becomes strictly convex and the unique global minimum is achieved at B = B(A) as defined in

eq. . O



Proposition 2. For any fized matrix B € RP*" the function L(A, B) is a convez function in A. Moreover,
for a fized B, the matriz A that satisfies

A(S,0(Bx%,,B")=%,,B'T, (14)
is a critical point of L(A, B).

Proof. For this proof we use the first and second order derivatives for L(A, B) wrt A derived in Lemma [6]
For a fixed B, based on eq. the second derivative wrt to A of L(A, B) at A, and in the direction V is
the quadratic form

d4:L(A,B)V? =2(V (8,0 (BX,,B")),V)r =2Tr (V (S, 0 (BZ,,B) V').

The matrix X, is positive-definite and by Lemma S, o (BX,;;B’) is positive-semidefinite. Hence,
d%:L1(A, B)V?is non-negative for all V' € R™*P. Therefore, L(A, B) is convex in coefficients of A for
a fixed matrix B. Based on eq. the critical point of L(A, B) for a fixed B is a matrix A that satisfies
for all V' € R™"*P

daL(A,B)V = (-2(2,,B'T, — A(S,o (BX,,B"))),V)p =0 =
¥,.B'T,=A(S,o(BX,,B)),

which is eq. . O

Theorem 1. Let A € R"*P and B € RP*™ be such that A is of rank r < p. Under the given assumptions,
the matrices A and B define a critical point of L(A, B) if and only if for any given r-index set 1., and a
nonsingular diagonal matrix D € R™*", A and B are of the form

A=U; CD, (15)
B =D 'lIcU] 2,57, (16)

xrx
where, C € R™*? is of full rank r with nonzero and normalized columns such that Il = (S, o c'e)™ 7,C’
is a rectangular permutation matriz of rank r and CIlg = I,.. For all 1 < r < p, such C always exists.
In particular, if matriz A is of full rank p, i.e. v = p, the two given conditions on Il are satisfied iff the
invertible matriz C is any squared p X p permutation matriz II. In this case (A, B) define a critical point

of L(A, B) iff they are of the form
A=U D, (17)
B=D 'I'U; =, . (18)
Proof. Before we start, a reminder on notation and some useful identities that are used throughout the proof.

The matrix 3 = EWE;}EW has an eigenvalue decomposition ¥ = UAU’, where the i*" column of U,
denoted as u;, is an eigenvector of ¥ corresponding to the i*" largest eigenvalue of X, denoted as \;. Also,

A = diag(\q, -, A\p) is the diagonal vector of ordered eigenvalues of X, with Ay > Ao > -+ > X\, > 0.
We use the following notation to organize a subset of eigenvectors of ¥ into a rectangular matrix. Let for
any r < p, I, = {i1, -+ ,i}(1 < i3 < -+ < i, < n) be any ordered r—index set. Define Uy, € R"*P as
Up, = [ui,, - ,u; ]. That is the columns of Uy, are the ordered orthonormal eigenvectors of 3 associated

with eigenvalues A\;; < --- < A;,. The following identities are then easy to verify:

Ul U, =I,,



XU =U; A, (19)
Ul SU;, =Ay,. (20)

The sufficient condition:

Let A € R"*Pof rank r < p and no zero column be given by eq. , B € RP*™ given by eq. , and the
accompanying conditions are met. Notice that Uy Uy, = I, implies that DC'CD = DC'U; Uy, CD = A’A,
0!

Ico:=(S,0(Cc’'c)) ' T,C’
B =D 'lIcU, £,,3,} = (ro(0'0))

D-'D=I,
B=D"'(S,0(C'C))"  D"'DT,C'U. 3,5} eumal?
4 DT,=T,D
A'=D'C'U/,

-1
B = (Sp o (DC’CD)) T,DC'U] ¥,,%,}
—_——— N DC'CD=A'A
B=(S,0(A'A) ' T,A'S,. %} = B(A),

which is eq. . Therefore, based on Proposition [1} for the given A, the matrix B defines a critical point
of L(A, B). For the gradient wrt to A, first note that with B given by eq. we have

BY,,B' =D 'IIcU| £,,3,}%,,3,}%,, U, IzD!

x

=D ' U] %,,5;1%,,U;, T, D' <&

BY,.B' =D 'TIcA; IIoD . (21)

The matrix Il¢ is a rectangular permutation matrix so HCAHTH'C is diagonal so as D*IHCALH’CD“.
Therefore, BY,, B’ is diagonal and by eq. (5 in Lemma [1}6 we have

Sp © (BE:EIB/) :TPBEIQJB/ = BEIIB/TP
—D oAy T, D T, A%
A(S, 0 (BS,,B) =AD 'HcA, DT, 22252
A (S, (BE,.B) =U;,CDD e A, D', =222

=Us, Cllg A T D™'T, S5=5

A(Sy 0 (B, B) =Ui, A1, TlD™'T,
~——

=XUj, ’CDflTp
:ZWE;;EMUHT /CD_lTp

’

=X, (D' 3,,3;}) T,

=3,,B'T,,

which is eq. (14)). Therefore, based on Proposition Proposition 2} for the given B, the matrix A define a
critical point of L(A, B). Hence, A and B together define a critical point of L(A, B).



The necessary condition:
Based on Proposition [1| and Proposition [2|, for A (with no zero column) and B, to define a critical point
of L(A, B), B has to be B(A) given by eq. (13), and A has to satisfy eq. . That is

(8,0 (B2, B)) =3, BT, ZA0mn

2=%,,5:0%,,
A (Sp e} (BZ]%B’>) A’ :EATP(SPO (A/A)) 1T A, %

U'A (sp ° (BEMB’)) A'U =U'UAU' AT, (S, o (A’A))'T,A'U LY=L
U'A (sp o (BEMB’)) A'U =AA, (22)

where, A == U'AT,(S, o (A’A))"'T,A'U is symmetric and positive semidefinite. The LHS of the above
equation is symmetric so the RHS is symmetric too, so AA = (AA) = A’A’ = AA. Therefore, A
commutes with the diagonal matrix of eigenvalues A. Since, eigenvalues are assumed to be distinct, A
has to be diagonal as well. By Lemma [1| T,,(S, o (A’A))~'T,, is positive definite and U is an orthogonal
matrix. Therefore, r = rank(A) = rank(A) = rank(U’AU), which implies that the diagonal matrix A,
has r nonzero and positive diagonal entries. There exists an r—index set I,. corresponding to the nonzero
diagonal elements of A. Forming a diagonal matrix Ay, € R"*" by filling its diagonal entries (in order) by
the nonzero diagonal elements of A we have

UAU' = U]IT A]IT U]I/T Def of A
UU'AT,(S, o (A'A)) T, AUV’ = Uy, AL Uf, 220
AT, (S, 0 (A'A)) "' T, A" = U, AL Uy, (23)

which indicates that the matrix A has the same column space as Uy,. Therefore, there exists a full rank
matrix C € R™P such that A = Up, C. Since A has no zero column, C has no zero column. Further, by
normalizing the columns of C' we can erte A = U, CD, where D € RP*P ig diagonal that contains the
norms of columns of C. Therefore, A is exactly in the form given by eq. . The matrix C has to satisfy

eq. that is

AT,(S, 0 (A'A) T, A’ = Uy, A, Uf, 2555
/ —1 1Tl , x Uy, Uy, x
Ui, CDT, (S, o (A'A)) "' T,DC'U], = Uy, A, Uj, —==——
CDT,(S, o (DC'CD))"'T,C'D = A,, 2emmel?
CT,DD'(S,0(C'C))"'D™'DT,C" = A, =

CT,(S,0 (C'C))"'T,C' = Ay,. (24)
Now that the structure of A has been identified, evaluate B(A) of eq. by setting A = Uy, CD, that is

B :B(A) =(5p0 (A/A))ilTpAlzyxE;xl

10



~(S, o (DC'CD))"'T,DC'U}. 5,5} Lemmaly
B=D"'(S,0(C'C))'T,C'V{ £, %}

TxT

which by defining Ilg = (S, 0 (C'C))” ' T,C’ gives eq. (19) for B as claimed. While C has to satisfy
eq. (24), A and B in the given form have to satisfy eq. that provides another condition for C' as follows.
First, note that

S,o(B%,.B DS, 0 (C'C))"'T,C'U} U, CT,(S, o (C'C))"'D™!
p p p r P p

= Sp (o]
=S,0(D7!(8,0(C'C))"'T,C'A;,CT,(S,°(C'C))"'D™) Lemma @3

=D (S,0((S,0(C'C)) ' T,C'A;,CT,(S, 0 (C'C))" ")) D!
Now, replace A and B in eq. by their respective identities that we just derived. Performing the same
process for eq. we have

A=U;, CD

U'A (sp o (BEMB’)) AU = AA

Uy, C (S, 0 ((S, 0 (C'C)) "' T,C' Ay, CT,(S, o (C'C)) 1)) C'U}. = UAAU’ %’i;»
[, %
C (Sp o ((Sp0(C'C))'T,C'A;,CT,(S, o (C'C))™ ")) C' =U UAAU'U;, =
C (S, (8,0 (C'C))"MT,C" Ay, CT,(S, o (C'C))™)) C' = Ay, Ay, (25)

Now we have to find C such that it satisfies eq. and eq. . To make the process easier to follow, lets
have them in one place. The matrix C € R"*P have to satisfy

CT, (S,0(C'C))” ' T,C’ =A,, and (26)
C (S, ((S, 0 (C'C))'T,C' A1, CT,(S, o (C'C))™1)) C" =Ay, Ay,. (27)

Since C' is a rectangular matrix, solving above equations for C in this form seems intractable. We use a
trick to temporarily extend C into an invertible square matrix as follows.

e Temporarily, let My = T}, (S, o (C'C))"' T}, and M, = 5,0((Sp 0 (C'C)) "' T,C'A1,CT,y(S, 0 (C'C))71).

Then M is positive definite and M5 is positive semidefinite, so they are simultaneously diagonalizable
by congruence that is based on Lemmaan(j eq. and eq. , there exists a nonsingular C' € RP*P
such that C consists of the first r rows of C' and

CT, (S, (C'C)) ' T,C' =Ay,, (28)
C (8,0 ((8,0(C'C) ™ T,C"A1,CT, (8,0 (C'C)) ') ) €' =, As,, (29)

where, AHT = Ay, ® I, is a p X p diagonal matrix and [XHT = A, @ A is another p x p diagonal
matrix, in which A € R"7P*"7P ig a nonnegative diagonal matrix.

e Substitute Aj, from eq. in eq. (29), then left multiply by C’~!, and right multiply by C'I,.,:

c (sp o ((S,, o (C'C)) ' T,C'A; CT, (S, o (C'C))*l)) C =
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A1, CT, (S, o (C'C) "' T, %
=1 ~ / -1 / ’ -1
C'rL;,C (Sp ° ((Sp o (C'C)) T,C'A,CT, (S, 0 (C'C)) )) =
C'I,.,A;,CT, (S, 0 (C'C)) ' T,
e Now we can revert back everything to C again. Since C consists of the first r rows of C we have
C'I,.,,C =C'C, and C'I,,,A;,C = C'A;, C, which turns the above equation into
c'C (Syo (1,(8,°(C'C) " T,C'ALCT, (S, (C'C) ' I, ) ) =

I,C'A;, CT, (S, 0 (C'C))”'T,.

e In the above equation, replace I, by T, ' T, in LHS and by T, ' (S, o (C'C)) T, ' T, (S, o ce) ',
in the RHS. Use Il¢ = (S, o (C'C)) " T,C" to shrink it into :

C'C (S0 (T, ' T,McAL T, T, ")) =T, " (S, 0 (C'C)) T, ' T,ILc AL I T,
e By the second property of Lemma [1| we can collect diagonal matrices Tp_l’s around S, to arrive at
(c'o) (Sp © (TpHCAL-H/CTp)) = (Sp ° (C/C)) (T,IIcALIICT,),

where, S, =T, 1S, T, L.

e Define p x p matrices &, := C'C and 2, = T,I1c A, II;T,. Substitute in the above to arrive at:
8, (8,09,) = (5,06.) 9,

Both 2. and &, in the above identity are positive semidefinite. Moreover, since by assumption C has
no zero columns, &, has no zero diagonal element. Then the 7** property of Lemma [l implies the
following two conclusions:

1. The matrix 2, is diagonal. The rank of 2, is r so it has exactly r positive diagonal elements
and the rest is zero. This argument is true for Tpflngpfl = HCAHTH'C. Since Aj, is a diagonal

positive definite matrix, the p x  matrix Il := (S, o (C'C)) ™" T, C’ of rank r should have p—r
zero rows. Let J, be an r—index set corresponding to nonzero diagonal elements of IIc Ay, IT.
Then the matrix II¢[J,, N,] (r x r submatrix of Il consist of its J, rows) is nonsingular.

2. For every i,j € J, and i # j, (€,);; = 0. Since &, := C'C and so (&) ; is the inner product of
ith and j*" columns of C, we conclude that the columns of C[N,., J,] (7 x 7 submatrix of C consist
of its J, columns) are orthogonal or in other words C[N,,J,]'C|N,,J,] is diagonal. The columns
of C are normalized. Therefore, C|N,,J,]'C|N,,J,] = I, and hence, C|N,,J,] is an orthogonal

matrix.

e We use the two conclusions to solve the original eq. and eq. 1} . First use Il := (S, o (C’C))_1 T,Cc’
to shrink them into :

CT,IIc =A,, (30)
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C (Sp o (HcAHTHIC)) C/ :AHTA]IT' (31)

Next, by the first conclusion, the matrix T, '@, T, ! = Ilc Ay, ITf; is diagonal and so eq. (31 becomes

CT,MIc A TILC' =A; Ay,
N——

A]ITA]I,‘HICC/ :A]ITA]IT —
/CC/ = CIl¢c =1, (32)

which is one of the two claimed conditions. What is left is to show that Il is a rectangular permutation
matrix. From the first conclusion we also have Il has exactly r nonzero columns indexed by J, so

C[Nra JT’]HC [Jr, Nr] :Ir.

By the second conclusion C[N,,J,] is an orthogonal matrix therefore, II¢[J,, N,] is the orthogonal
matrix C[N,.,J,]. Moreover, we had T}, ' 9, T, " = Il A, Il is a p x p diagonal matrix with exactly r
nonzero diagonal elements. Hence, IL¢(N;, J,]JAr, II5 [N, J,] is an 7 xr positive definite diagonal matrix
with Ay having distinct diagonal elements, and II¢[N,., J,] being orthogonal. Therefore, IIc[J,., N,]
(as well as C[N,,J,]) should be a square permutation matrix. Putting back the zero columns, we
conclude that C should be such that II¢ == (S, o (C’ ) T,C' is a rectangular permutation matrix
and CTlIg = I,.. Note that it is possible to further analyze these conditions and determine the exact
structure of C. However, this is not needed in general for the critical point analysis of the next theorem
except for the case where r = p and C' is a square invertible matrix. In this case, square matrix Il is
of full rank p, J, = N, and therefore, C|N,,J,] = C|N,,N,] = C. Hence, C is any square permutation
matrix II, C'C = II'Il = I, and Il = (S,0(C'C)) ' T,C" = T, 'T,II' = II', which verifies
eq. (17) and eq. for A and B when A is of full rank p.

O

Corollary 1. Let (A, B) be a critical point of L(A, B) under the given assumptions and rankA =r < p.
Then the following hold:

1. The matrizx BX,, B’ is a p X p diagonal matriz of rank r.
2. For all 1 <r <p, for any critical pair (A, B), the global map G = AB becomes
G=U,U{ %, . (33)
For the autoencoder case (Y = X ) the global map is simply G = UHTU]I/T~
3. (A, B) is also the critical point of the classical loss L(A, B) = LY - ABX||§,.

Proof. 1. We already show in the proof Theorem (1] that for critical (A, B) the matrix BX,, B’ is given
by eq. that is

BX,,B' =D 'TIcA; ITIoD .

The matrix Il is a p X r rectangular permutation matrix so IIc Ay Il is diagonal as well as
D~ 'TIcA; IT; D~ Therefore, BY,, B’ is diagonal. The diagonal matrix Ay, is of rank r therefore,
BXY,. B’ is of rank r.
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2. Again by Theorem [1] critical (A, B) is of the form given by eq. and eq. with the proceeding
conditions on the invariance C. Therefore, the global map is

G =AB=U;, CDD 'IIcU; 3,2,
G=U,U{ x,,%,,.
3. Based on Baldi & Hornik| (1989) (A, B) define a critical point of L(A, B) = >.7_, ||Y — ABXH% iff
they satisfy

A'ABY,, =A'S,, and (34)
ABY,,B =%,,B'. (35)

Again by assumption (A, B) define a critical point of L(A, B) so by Theorem [1| they are of the form
given by eq. and eq. with the proceeding conditions on the invariance C. Hence,

A'ABS,, =DC'U; U, CDD"‘TIcU %, £,'%,,
—— — N N—_——

—-DC'Clg Ul %, ZHe=l

A'ABY,, =DC'U{ £, = A'S,,.

Hence, eq. is satisfied. For the second equation we use the first property of this corollary that is
BY,. B’ is diagonal and satisfy eq. of Proposition [2] that is

BX,.. B’ is diagonal

A(S,o(B%,,B) =%,,B'T,

BX..B’ is diagonal

AT,BS,,.B' =%,,B'T,
ABY,,B'T,=%,,B'T, —
ABY,,B =%,,B'.

Hence, the second condition, eq. is also satisfied. Therefore, any critical point of L(A, B) is a
critical point of L(A, B).

O
Lemma 4. The loss function L(A, B) can be written as
L(A,B) =pTr(%,,) —2Tr (AT,BX,,)
+Tr (B’ (S,0(A’A)) BE,,). (36)

Proof. We have

p
IY — AL,BX|[;. = > (Y — Al;;, BX,Y — AI;;,BX)p

i=1 i=1

L(A,B) =

M=

(Y, Y)r+(Y,-Al;;,BX)r+ (—AL;;, BX,Y)r

-

i=1
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+(—AlL,BX,—-Al BX)r)

- - ea. @)
— (YY) —2(Y, A (Z IZ-;,,> BX)p + > (AL, BX,AL,BX)r
i=1 i=1
p
=pTe(YY') = 2Tr (AT,BXY') + > Tr(X'B'I;;, A'Al, BX)
1=1

. @

= pTI‘(Eyy) —2Tr (ATpBEwy) + Tr (XX/B/ Z (Ii;pA/AIi;p) B) %

i=1

=pTr(X,,) —2Tr (AT,BX,,) + Tr (B’ (S, 0 (A’A)) BX,,),

which is eq. . O]

Theorem 2. Let A* € R"*P and B* € RP*™ such that A* is of rank r < p. Under the given assumptions,
(A*, B*) define a local minima of the proposed loss function iff they are of the form

A* =UiypDy, (37)
B*=D,'U; %%} (38)

xrx
where the it" column of Uy., is a unit eigenvector of ¥ = Y. X.08,, corresponding the it" largest eigen-
value and D, is a diagonal matriz with nonzero diagonal elements. In other words, A* contains ordered
unnormalized eigenvectors of X corresponding to the p largest eigenvalues. Moreover, all the local minima
are global minima with the value of the loss function at those global minima being

-

L(A*,B*) =p Tr(Zyy) — ) (p—i+ 1)\, (39)

=1

where \; is the i largest eigenvalue of 3.

Proof. The full rank matrices A* and B* given by eq. and eq. are clearly of the form given by
Theorem (1| with I, = N, := {1,2,--- ,p}, and II, = I,. Hence, they define a critical point of L(A, B). We
want to show that these are the only local minima, that is any other critical (A, B) is a saddle points. The
proof is similar to the second partial derivative test. However, in this case the Hessian is a forth order tensor.
Therefore, the second order Taylor approximation of the loss, derived in Lemma[3] is used directly. To prove
the necessary condition, we show that at any other critical point (A, B), where the first order derivatives are
zero, there exists infinitesimal direction along which the second derivative of loss is negative. Next, for the
sufficient condition we show that the any critical point of the form (A*, B*) is a local and global minima.

The necessary condition:

Recall that Uy, is the matrix of eigenvectors indexed by the p—index set I, and IT is a p x p permutation
matrix. Since all the index sets I, r < p are assumed to be ordered, the only way to have Uy, = Uy, II is
by having I, = N, and IT = I,. Let A (with no zero column) and B define an arbitrary critical point of
L(A, B). Then Based on the previous theorem, either A = Uy, C with r < p or A = Uy, IID while in both
cases B = B(A) given by eq. (13). If (A, B) is not of the form of (A*, B*) then there are three possibilities
either 1) A = U, CD with r < p, or 2) A = U IID with I, # N, or 2) A = Uy, II1D but IT # I,. The first
two cases corresponds to not having the “right” and/or “enough” eigenvectors, and the third corresponds to
not having the “right” ordering. We introduce the following notation and investigate each case separately.
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Let € > 0 and U;;; € R™*? be a matrix of all zeros except the ith column, which contains u;; the eigenvector
of ¥ corresponding to the ;%™ largest eigenvalue. Therefore,

U/;3U;;; = U, ,UAU'U;; = \E;, (40)

where, E; € RP*P is matrix of zeros except the it" diagonal element that contains 1. In what follows, for each
case we define a encoder direction V' € R"*P with ||V = O(¢), and set the decoder direction W' € RP*"
as W =W :=(S,0(A’A))"" T,V'S,, 2, . Then we use eq. (8) and eq. @ of Lemma to show that the
given direction (V, W) infinitesimally reduces the loss and hence, in every case the corresponding critical
(A, B) is a saddle point.

1. For the case A = U, CD, with r < p, note that based on the first item in Corollary 1, BX,, B’ is
a p x p diagonal matrix of rank 7 so it has p — r zero diagonal elements. Pick an i € N, such that
(BX,.B’),, is zero and a j € N, \ .. Set V = eU;;;D and W = W. Clearly,

V'A ==DU];U; CD =0, (41)
V'VT,B%,,B =D U, ,U;; DT,B%.,, B’
N—_——
=e’DE;DT,BY,,B’ = ¢*D*T,E; (BX,,B’) = 0 and (42)
V'SV =*DU] ;UAU'U;;;D = £°\; D*E;. (43)

Notice, [V, [[W|z = O(e), so based on eq. (8) of Lemma [3} we have
L(A+V,B+W)—L(A B) =
Tt (V'VT,BS,,B') — Tt (V’EVTP (S,0(A'A)) ! Tp)
+2Tr (V’A (sp o (BEIyVTp (S, 0 (A'A) " + (8,0 (A'A)) ! Tpv'zyzB/)))

+ 0(63) eq. 1'
eq.
LA+V,B+W)— L(A,B) =
eq. (43)

- ) /a1 3
Te (V/EVT, (8,0 (4'4)) 7' T, ) +0(c) ==

L(A+V,B+W)-L(A,B) =
-1
—&?\; Tr | D*E; D! ((Tplspr1> o (C’C)) D' | +0@E*) =
N———,

— 2, ((sp o (C’C))_1> +0().

i

Therefore, since (Sp o (C’C)) is a positive definite matrix, as ¢ — 0, we have L(A+V , B+ W) <
L(A, B). Hence, any (A, B) = (U CD, B(U; CD)) with r < p is a saddle point.

2. Next, consider the case where A = Uy ILD with I, # N,,. Then there exists at least one j € I,\N, and
i € N, \ I, such that ¢ < j (so A; > A;). Let ¢ be the permutation corresponding to the permutation
matrix IT. Also, let € > 0 and U, ;),; € R"*? be a matrix of all zeros except the a(j)™ column, which
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contains u;; the eigenvector of 3 corresponding to the ith

W = W. Then, since ¢ ¢ I, we have

largest eigenvalue. Set V' = €U, ;),;D and

V/U]]p :EDU;.(])71U]IP = 0, (4:4)
V'V =£2DU, ;). U,(j)iD = €* D*E,(;), and (45)
V'SV =?DU, ;) JUAU'U, ;D = £*X\; D’ E, ;. (46)

Since |V, [[W]l; = O(e), based on eq. () of Lemma [3} we have
L(A+V,B+W) - L(A,B) =Tt (V'VII'A ,IIT,D ) — Tr (V'SVT,D?)
+2Tr (V'U, 1D (S, o (DU £V D~2)))
+2Tr (V'UL,IID (S, o (D*V'SU, IID™)))
eq. (44)
eq. ,eq‘
L(A+V,B+W) - L(A,B) =Tr (e?D*E, ;IT'A;,TIT,D?)
—Tr (A D*E, 5y T,D™?) + O(*)

+0(?)

=2 Tr (Eg(j)H/AHpH Tp) _52>\i TI‘(Ea(j)Tp) +O(€3)
—

=’ Tr (E,(yT,) — €2\ Tr (B, T,) + O(e?)
=—eXp—a(j) +1) (N — X)) + O?).

Note that in the above, the diagonal matrix IT' Ay IT has the same diagonal elements as Ay, but they
are permuted by 0. So E,(;II' Ay IT selects o(j)*™ diagonal element of IT’ Ay IT that is the j*"diagonal
element of Ay, which is nothing but ;. Now, since i < j so A\; > A; and o(j) < p, as ¢ — 0, we have

L(A+V,B+ W) < L(A,B). Hence, any (A, B) = (U 11D, B(UHPHD)) is a saddle point.

. Finally consider the case where A = Uy IID with IT # I,. Since II # I,, the permutation o of the set
N,, corresponding to the permutation matrix IT, has at least a cycle (i142 - - - ix), where 1 < iy < ig--- <
ir < pand 2 < k < p. Hence, IT can be decomposed as IT = H(iliz.‘.ik)f[, where II is the permutation
matrix corresponding to other cycles of o. The cycle (i1is - - - ix) can be decomposed into transpositions
as (ilig te ik) = (ikikfl) s (ikil), which in matrix form is H(ilig--ik) = H(’ikil)]‘_‘[(ikig) cee H(ikikq)'
Therefore, IT can be decomposed as II = H(ikil)f[, where II = H(iki2)~-~1'[(ikik_l)f[. Note that
I1(;, ;,), the permutation matrix corresponding to transposition (i1 ) is a symmetric involutory matrix,
te. I, ;= I Set V =e(Uy, — Ui,..,)TID and W = W. Again we replace V and W in eq.

of Lemma[3] There are some tedious steps to simplify the equation, which is given in section The
final result is as follows. With the given V' and W the third and forth terms of the RHS of eq. @[)
are canceled and the first two terms are simplified to

Tr (V'VIV Ay, IT,D~?) =e°X;, (p — i1 + 1) + €°Xi, (p — i + 1), and (47)
Tt (V'EVT,D?) =*N\;, (p— i1 + 1) + 2Ny, (p — i + 1), (48)

in which, m = max{k — 1,2}. This means that If the selected cycle is just a transposition (i1iz) then
im = i2. But if for the selected cycle (iyis---ix), k is greater than 2 then i,, = ix,_;. Using above
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equations, eq. @D yields
L(A+V,B+W)-L(A,B)=Tr (V'VII'A,, IT,D %) —-Tr (V'EVT,D ?)+O0(*
=N (p— i1 + 1) + 2N, (p — iy + 1)
N\ (p—i1+1) =X (p—im + 1) + O(%)
= — 52i1)\ik — Eg’imAil + 821'1)\1'1 + 52im)\ik

== ((\iy = Ai)(im — 1)) + O(%). (49)

By the above definition of i,,, we have 7,, —4; > 0 and since ¢; < ig, A\i; — A, > 0. Hence, the first
term in the above equation is negative and as ¢ — 0, we have L(A+ V , B+ W) — L(A,B) < 0.
Therefore, any any (A, B) = (U, IID, B(UHPHD)) with II # I, is a saddle point.

The Sufficient condition:
From Lemma we know that the loss L(A, B) can be written in the form of eq. . Use this equation
to evaluate loss at (A*, B*) = (UNpra Dp_lUR’IPEWE;;) as follows
L(A*, B") = pTi(S,,) - 2Tr (AT, B"S,,) + Tt (B (8,0 (474") ) B'S,,) —
L(A*,B*) =pTr(X,,) —2Tr (UN D,T,D,'Uj, %,,%.,%, >
%,_/

—I—Tr((Spo (D,,U&pUNp Dp>)Dp—1UN 2,518, 5" 1EMUNPDP—1> —
———

L(A*,B*) =pTr(¥,,) - 2Tr (Tp D,D;" U&szNJ

+ T ((s o(I ))D D, ' U{, ZUpy, D;1Dp> =
H,—/ H,_/\W__/H,_/
L(A*,B") =pTr(3,,) —2Tr (TpANp) + Tr (TpANp) -
p
L(A*, B") = pTr(3y,) — Tr (TPANp) =p Tr(Zyy) - Z (p—i+1)A,

i=1

which is eq. , as claimed. Notice that the above value is independent of the diagonal matrix D,,. From
the necessary condition we know that any critical point not in the form of (A*, B*) is a saddle point. Hence,
due to the convexity of the loss at least one (A*, B*) is a global minimum but since the value of the loss
at (A*, B*) is independent of D, all these critical points yield the same value for the loss. Therefore, any
critical point in the form of (A*, B*) is a local and global minima. O

2.1 Supplementary details of the proof of Theorem

'Llﬂl Tkiik

To verify e . eq. D and eq. in the proof of Theorem l we want to replace V and W in eq. @D
of Lemma [3 i with V' = ¢( — U )HD and W = W and simplify. eq. (Eb

L(A+V,B+W) - L(A,B) =Tr (V'VII'A, IIT,D ) — Tr (V'SVT,D?)
+2Tr (V'U, 1D (S, 0 (D' £V D2)))
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+2Tr (V'ULIID (S, o (D*V'SU,IID™')))
+0(e?).

We investigate each term on the RHS separately. but before note that

BATI = (AL1) B, = (T,) E = (p—&'() + E, (50)

id F-1(i),6-1(3)

! are permutations corresponding to IT and IT’ respectively. fITpr’

where, ¢ and its function inverse 6~
is a diagonal matrix where diagonal elements of T}, are ordered based on ~'. Moreover, recall that we

decomposed the permutation matrix IT in A with a cycle (iyiz - - i) as IT = I ;,) T(,4,) - - - H(ikik—l)ﬂ =

H(ilik)f[, where i1, s, - - - i are fixed points of IL. Therefore, with ¢ being the permutation corresponding
to II we have

5(iy) =iy = & '(iy) =1, and (51)

&(ik—l) = Z.m - &71(ik) = imy (52)
where, m = max{k — 1,2}. This means that If the selected cycle is just a transposition (i;i2) then i,, = is.

But if for the selected cycle (i142 - - - ix), k is greater than 2 then 4,, = ix_1.
For the first term we have

’ 2 o/ / / - U;I?ilUik;ik:O
V'V ="DII'(U},;, — U;,;, ) WUi,i, — Uiy, )IID
V'V =D (U}, U, UL, Uy JILD — i =En
= (U;,.0,Uiysi, + U}, 3, Uiy i) Ul U, E.
Uit itk ¢
N - I’ (E;, +E;, )II is diagonal
V'V —2DIT(E,, + E, )IID —— ot Za L' dagona
V'V =*IT'(E;, + E;,)TID? —
—~N = . B
Tr (V'VII' Ay, IIT,D™?) =Tr (V’V D‘QH’H(ilik)ANPH(ilik)HTp)
=Tr | 1T (E;, + E;,) ID*D°IU I ; ;) An, T (i, 5, TIT,
IP
=22 Tr ((Bi, + Biy )T, A, T3, TITIT )
262 Tr (/\Zk EilﬁTpﬁ/ + )\ilEikl:[Tpf[/)
/ / -2 2 ~ 1/ 2 ~ 1. eq. (51)
Tr (V'VIV Ay IIT,D %) =2\, (p — 6 (i1) + 1) Ei, + € Ni, (p — 6 (ix) + 1) E;, =
eq.

Tr (V'VIV Ay, IIT,D™?) =£°\;, (p — i1 + 1) By, + 7N, (p — i + 1) By,

which is eq. as claimed.
For the second term we have

—U! )TID

9
V'SV =¢ DH/(Ui/l;il Tkilk

YWOWAU' (Ui, — U;

kitk
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=’DII' (U}, UAU'U;,;, — U], UNU'U;,;,
Aiy Eiq 0
~-U, ;, UANU'U,,,;, + U], UNU'U;,;, )IID
0 i By,

:521:[/()\i1Ei1 + )\ikEik)fIDz .
Tt (V'EVI,D?) =Tr (5211'(&1132-1 n )\ikEik)ﬁDngDﬂ)
=c* Tr ()‘il E, NT,IT + )\, E;, ﬁTpﬂ’) ea- (O]

) eq. (51

T (V'EVT,D72) =2\, (p— 6 (i 1 2N (p—c1( 1
r( pD7) =X (p =67 i) + )+ (o= 57 (i) +1) =

Tt (V'EVT,D?) =*\;,(p— i1 + 1) + €°Xi, (p — i + 1),

which is eq. as claimed.
Finally, we have to show that the third and the forth terms of the eq. @ are canceled. First, observe
that

Ty (V/UN,,HD (Sp o (Dfll'[/U{NPEVsz))
Tr <5DH’(U{1 o = Ul Uy, IT (Spo (H'U&PVDﬂ))

eTr (H’(Eil _E ) (S,, ° (H’U&pEVD—Z)) D)=

E)II

e* Tr (fI’(El-l - E;, )11 (Sp o (H'(A“Eil = Ay ))
2T (B, - B,,) (TIS,11) o (T (A, Bi, — \i, B )HH’))
2T ((TS,01) o (B, — Ei) (A By = X, i)

2 Tr ((HSpﬂ’> o (N, Ei, + N\i, E;,) ), and

Tt (V'Un,IID (S, 0 (D ?V'SUy, IID ™)) =
(gDH/(Ul/1 Z1 UZ/k 1k)UNpH (Sp © (DilV,EUNDHDil)) =
)

eTr (H’(Eil — B, )TI(S, 0 (D 'V'SU, I

2Ty ((E ~E)II (s,, ° (fI’()\ilEil — )\ikEik)H)) I

N— N N N N N N~
Il

2T (B, —Eik)((HS f[’)o(l‘[fl’(/\ilE,l X, By )T ) )
2T (B, - By (TS, H’) (W0 N By = A B ) i,) ) ) =
c Tr( _ ((HS H’) (O, Eip — )\ikEil))> =
€ Tr((HS H’) o —E; )M\, Eiy, — N Ey)) ) =
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2Ty ((Hspfl/) o(Ai, Ei, + AikEil)) -

Ty ((Hspﬂ’) o (i, Es, + AikEil)).

Now, note that in both cases the matrices that are multiplied elementwise with HS,,I:[’ are diagonal and
hence, we only need to look at diagonal elements of ILS,II'. Moreover,
HSPH/ = Hiyi) Higig) - H(ikik—l)HSPH/H(ikik—l) Mg

where, i - - - i) are fixed points of permutation corresponding to II so f[Spr’ has the same values at diagonal
positions 4; and i as the original matrix S),. The only permutation that is only on the left side is II;,;,)
which exchanges the i, and ¢, rows of S;,. Since S, is such that the elements at each row before the diagonal
element are the same and 45, > i1, we have the ¢; and ¢, diagonal elements of ILS,IT’ have the same value. Let
that value be denoted as s. Then the sum of the above two equations yields m(\;, +A;,) —m(Ai; +Ai,,) =0,
as claimed.

3 Derivatives of the Loss function

3.1 First and Second Order Fréchet Derivative

In order to derive and analyze the critical points of the cost function which is a real-valued function of
matrices we use the first and second order Fréchet derivatives as described in chapter 4 of |Zeidler| (1995]).
For a function f: R™*™ — R the first order Fréchet derivative at the point A € R"*™ is a linear functional
df (A) : R™*™ — R such that

L A+ V) — FA) - V]
v VI |

where we used the shorthand df(A)V = (df(A))(V). Similarly, the 2nd derivative is a bilinear functional
d’f(A) : R™*™ x R™*™ — R such that

oy YA+ VK — df(A)K — *f(A)VE| _
V=0 VIl

for all || K||» < 1, where again d* f(A)V K = (d*>f(A))(V, K). The generalized Taylor formula then becomes:

0,

FA+V) = f(A) + AWV + L2 FAV +ol|[ V),

Moreover, we derive functions Vf : R™*™ — R™ ™ and H(A) : R™*™ — R™ ™ such that df(A)V =
(Vf(A),V)r and d*>f(A)V? = (H(A)V,V)r, where again H(A)V = H(A)(V). Then clearly, A €
R™*™ig a critical point of f iff Vf(A) = 0 and for such As the sign of the bilinear form (H(A)V,V)over
directions V determines the type of the critical point.

Extending the generalized Taylor theorem of [Zeidler| (1995), the second order Taylor expansion for the
loss L(A, B) is then given by

L(A+V,B+W) - L(A,B) =dsL(A,B)V +dgL(A, B)W + %di,L(A, B)V?
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1
+dapL(A, B)VW + SdpL(A,B)W* + Ry w(A, B),  (53)

where, if | V||, [[W]|» = O(¢) then || R(V,W)| = O(£?). Clearly, as at critical points where daL(A, B)V +
dpL(A,B)W =0, as € — 0 we have Ry w (A, B) — 0 and the sign of the sum of the second order partial
Fréchet derivatives determines the type of the critical point very much similar to second partial derivative
test for two variable functions. However, here for local minima we have to show the sign is positive in all
directions and for saddle points have to show the sign is positive in some directions and negative at least
in on direction. Finally, note that the smoothness of the loss entails that Fréchet derivative and directional
derivative (Gateaux) both exist and (foregoing some subtleties in definition) are the same.

3.2 First and Second Order Derivative of the Loss wrt to B

Lemma 5. The first and second (partial Fréchet ) derivative of the loss L(A,B) wrt to B is derived as
follows.

dpL(A,B)W= —2Tr (W' (T,A'S,, — (S, 0 (A'A)) BS,,)) (54)
= —2T,A'S,, — (S, 0 (A'A)) BS,,,W)p. (55)
A%, L(A, BYW? = 2((S, 0 (A/A) Wy, W)p = 2Tt (W' (S, 0 (A’A)) WE,,). (56)

Proof. Directly compute

M=

L(A,B+W) =3 |Y - AL,(B+ W)X|3
=1
p
=Y (Y — AL,,(B+W)X,Y — AL, (B + W)X)r
=1
p p
=> (Y - AL,BX,Y - AL,,BX)r + Y (Y — AL,,BX, -~ AL, ,WX)p
=1 =1
b D
+Y (~AL,WX,Y - AL, BX)p + Y (-AL,WX,-AL,WX)p
=1 i=1

p
=L(A,B) =Y 2(Y - AL, BX, AL, ,WX) + O(|W|[3) =
i=1

p
L(A,B+ W)~ L(A,B) = —2) (Y - AI,BX, AL,WX)p + O(|W|[}) "=’
i=1
P
dpL(A,B)W = -2 Tr(X'W'I;, A'(Y — AI,,BX))

i=1

p p
= —2Tr (W’ ((Z Ii;p> AYX' - (Z Ii;pA’AIi;p> BXX’))
i=1 i=1

= 2Tr (W (T,A'YX' — (S, 0 (A’A)) BXX")),
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which can be written as the given form. For the second derivative wrt B we have

dpL(A,B)W = —2(T,A'S,, — (S,0(A’A)) BX,,,W)r —
dpL(A,B+ W)W = —2(T,A’S,, — (S, 0 (A’A)) (B+W)Z,,, W)p
-2(T,A'S yx (_ o(A’A)) B, W)r
+2((Sp o (AA) Wy, W)p =
dpL(A,B+ W)W —dgL(A, B)W = 2((S, o (A’ ))WZM,W>F,
which by having W — 0 results in the second order partial derivative. O

3.3 First and Second Order Derivative of the Loss wrt to A

Lemma 6. The first and second (partial Fréchet ) derivative of the loss L(A, B) wrt to A is derived as
follows.

daL(A,B)V=-2(%,,B'T,— A(S, o (BZ,.B")),V)p, (57)
d4gL(A,B)VW=-2(%, W'T, — A(S, 0 (BX,,W')) -~ A(S,0(WX,,B")),V)p, (58)
d%4:L(A, B)V?=2(V (S, 0 (BZ,.B")),V)p. (59)

Proof. Directly compute

LA+V,B)=> (Y — (A+V)I,;,BX,Y — (A+ V)I,,BX)

-

N
Il
—

p
(Y — AI;,BX.Y — AI;,BX)r — Y (Y — AI;,BX ,VI;,BX)p
i=1
p
(~-VI;,BXY — ALy,BX)p + Y (-VI;,BX,~VI;,BX)p

1 =1

Il
-M“

N
I
—

M=

+

.
Il

b p
> 2AY-AILL,BX,VI;,BX)r+» (VI;,BX,VI,,BX)rp
=1

i=1

L(A+V,B) - L(A,B)=-Y 2(Y — AI,,BX,VI,,BX)r + O(|V|?%) &=

s
Il
_

-

daL(A,B)V = -5 2(Y — AI,BX,VI,,BX)p

-

Il
—

p p
= 2Tr(V'(2yeB' > Iipy— A I:,B%..B'I;;)) =
=1 =1
daL(A,B)V = —2(%,,B'T, — A(S, o (BZ,,B")),V)r —
daL(A+V,B)V = -2(%,,B'T, — (A+V)(S,0(BX,,B)),V)p

daL(A+V,B)V —dsL(A, B)V = 2(V (S, 0 (BE,.B)),V)p =
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d%:L(A,B)(V,V)=2(V(S,0(BX,,B")),V)r —
d4:L(A, B)V? =2(V (S, 0 (BX,,B")),V)r

daL(A,B+W)V =—-2(3,,(B+W)'T,,V)p
—2(-=A(Spo ((B+ W)Xy, (B+W))),V)r
-2(2y,B'T, - A(S, o (BX,;,B")),V)r
=daL(A,B)V —2(£,,W'T,,V)p
~2(~A(S, 0 (BE;,W')) = A(S, 0 (WE,,B)),V)r +O(|W|}) =

daL(A, B+ W)V —daL(A,B)V = 72<2y$W/Tp, Vg
-2(-A (Sp © (BEmW/)) —A (Sp © (WzamB/)) S V)r

+o(w|%) =°

d4gL(A,B)VW = -2(%,,W'T, — A(S, 0 (BZ,,W')) — A(S, 0 (WE,,B")),V)p.
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