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1 Preliminaries

Before we present the proof for the main theorems, the following three lemmas introduce some notations
and basic relations that are required for the proofs. Note that the theorems' numbering are di�erent than
the numbering in the main article.

Lemma 1. The constant matrices Tp ∈ Rp×p and Sp ∈ Rp×p are de�ned as

(Tp)ij = (p− i+ 1) δij , i.e. Tp = diag (p, p− 1, · · · , 1) , (1)

(Sp)ij = p−max(i, j) + 1, i.e. Sp =


p p− 1 · · · 2 1

p− 1 p− 1 · · · 2 1
...

...
. . . 2 1

2 2 2 2 1
1 1 1 1 1

 , e.g. S4 =


4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

 . (2)

Clearly, the diagonal matrix Tp is positive de�nite. Another matrix that will appear in the formulation is

Ŝp := T−1
p SpT

−1
p

(
Ŝp

)
ij

=
(
T−1
p SpT

−1
p

)
ij

=
1

p−min(i, j) + 1
i.e. T−1

p SpT
−1
p =



1
p

1
p · · · 1

p
1
p

1
p

1
p−1 · · · 1

p−1
1
p−1

...
...

. . .
...

...
1
p

1
p−1 · · · 1

2
1
2

1
p

1
p−1 · · · 1

2 1

 ,

e.g. Ŝ4 =


1
4

1
4

1
4

1
4

1
4

1
3

1
3

1
3

1
4

1
3

1
2

1
2

1
4

1
3

1
2 1

 .
The following properties of Hadamard product and matrices Tp and Sp are used throughout:

*All authors are with Department of Computer Science and Engineering, Texas A&M University, Texas.
Correspondence to: Reza Oftadeh <reza.oftadeh@tamu.edu>.
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1. For any arbitrary matrix A ∈ Rn×p,
p∑
i=1

Ii;p = Tp, and (3)

p∑
i=1

Ii;pA
′AIi;p = Sp ◦ (A′A) , (4)

where, ◦ is the Hadamard (element-wise) product.

2. For any matrices M1,M2 ∈ Rp×p and diagonal matrices DDD ,EEE ∈ Rp×p,

DDD (M1 ◦M2)EEE = (DDDM1EEE ) ◦M2 = M1 ◦ (DDDM2EEE ) .

Moreover, if Π1,Π2 ∈ Rp×p are permutation matrices then

Π1 (M1 ◦M2) Π2 = (Π1M1Π2) ◦ (Π1M2Π2) .

3. Sp is invertible and its inverse is a symmetric tridiagonal matrix

(S−1
p )ij =


1 i = j = 1

2 i = j 6= 1

−1 |i− j| = 1

0 otherwise

, i.e. S−1
p =


1 −1 · · · 0 0
−1 2 −1 0 0
...

...
. . .

...
...

0 0 −1 2 −1
0 0 0 −1 2

 .

4. Sp is positive de�nite.

5. For any matrix A ∈ Rn×p, Sp ◦ (A′A) is positive semide�nite. If (not necessarily full rank) A has no
zero column then Sp ◦ (A′A) is positive de�nite.

6. For any diagonal matrix DDD ∈ Rp×p

Sp ◦DDD = TpDDD , and (5)

Ŝp ◦DDD = T−1
p DDD . (6)

7. Let DDD ,EEE ∈ Rp×p be positive semide�nite matrices, where EEE has no zero diagonal element, and DDD is of
rank r ≤ p. Also, let for any r ≤ p, Jr = {i1, · · · , ir}(1 ≤ i1 < · · · < ir < n) be any ordered r−index
set. Then DDD and EEE satisfy

EEE
(
Ŝp ◦DDD

)
=
(
Ŝp ◦ EEE

)
DDD ,

if and only if, the following two conditions are satis�ed:

(a) The matrix DDD is diagonal with p − r zero diagonal elements and r positive diagonal elements
indexed by the set Jr. That is for any i ∈ Jr : (DDD)ii > 0 and the rest of elements of DDD are zero.

(b) For any i, j ∈ Jr and i 6= j we have (EEE )i,j = 0.

Clearly, if DDD is positive de�nite then Jr = Np and hence, both DDD and EEE are diagonal.
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Proof. . The proof of the properties are as follows.

1. eq. (3) is trivial. For eq. (4) note that AIi;p selects the �rst i columns of A (zeros out the rest), and
similarly, Ii;pA

′ selects the �rst i rows of A (zeros out the rest). Therefore, Ii;pA
′AIi;p is a p × p

matrix that its Leading Principal Submatrix of order i (LPSi)
1 is the same as the LPSi of A

′A (and
the rest of the elements are zero). Hence,

∑p
i=1 Ii;pA

′AIi;p (counting backwards) adds LPSp of A
′A

(i.e. A′A itself) with LPSp−1 that doubles LPSp−1 part of the result and then adds LPSp−2 that
triples the LPSp−2 part of result, the process continues until by the last addition LPS1is added to the
result for the pthtimes. This is exactly the same as evaluating Sp ◦ (A′A).

2. This is a standard result (Horn & Johnson, 2012), and no proof is needed.

3. Directly compute SpS
−1
p :

(
SpS

−1
p

)
ij

=

p∑
k=1

(Sp)ik(S−1
p )kj

∀|k−j|>1:(S−1
p )kj=0

=============⇒

=


(Sp)i,j−1(S

−1
p )j−1,j+(Sp)i,j(S

−1
p )j,j+(Sp)i,j+1(S

−1
p )j+1,j 2 ≤ j&

j ≤p− 1

(Sp)i,p−1(S−1
p )p−1,p + (Sp)i,p(S

−1
p )p,p j = p

(Sp)i,1(S−1
p )1,1 + (Sp)i,2(S−1

p )2,1 j = 1

=


−(Sp)i,j−1 + 2(Sp)i,j − (Sp)i,j+1 2 ≤ j ≤ p− 1

−(Sp)i,p−1 + 2(Sp)i,p j = p

(Sp)i,1 − (Sp)i,2 j = 1

=


max(i, j − 1)− 2 max(i, j) + max(i, j + 1) 2 ≤ j ≤ p− 1

−(p−max(i, p− 1) + 1) + 2(p−max(i, p) + 1) j = p

−max(i, 1) + max(i, 2) j = 1

=


max(i, j − 1)− 2 max(i, j) + max(i, j + 1) 2 ≤ j ≤ p− 1

1− p+ max(i, p− 1) j = p

max(i, 2)−max(i, 1) j = 1

=



{
1 i = j

0 i 6= j
1 < j < p{

1 i = p

0 i 6= p
j = p{

1 i = 1

0 i ≥ 2
j = 1

= (Ip)ij .

4. Firstly, note that S−1
p is symmetric and nonsingular so all the eigenvalues are real and nonzero. It is

also a diagonally dominant matrix (Horn & Johnson (2012), Def 6.1.9) since

∀i ∈ {1, · · · , p} : Ci := |(S−1
p )ii| ≥

∑
j=1,j 6=i

|(S−1
p )ij | =: Ri,

1For a p× p matrix, the leading principal submatrix of order i is an i× i matrix derived by removing the last p− i rows and
columns of the original matrix (Horn & Johnson (2012), P17)
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where the inequality is strict for the �rst and the last row and it is equal for the rows in the middle.
Moreover, by Gersgorin circle theorem (Horn & Johnson (2012), Thm 6.1.1) for every eigenvalue li of
S−1
p there exists i such that li ∈ [Ci −Ri, Ci +Ri]. Since ∀i : Ci ≥ Ri we have all the eigenvalues are

non-negative. They are also nonzero, hence, S−1
p is positive de�nite, which implies Sp is also positive

de�nite.

5. For any matrixA ∈ Rn×p,A′A is positive semide�nite. Also, Sp is positive de�nite so by Schur product
theorem (Horn & Johnson (2012), Thm 7.5.3(a)), Sp ◦ (A′A) is positive semide�nite. Moreover, if all
diagonal elements of A′A are positive (i.e. A has no zero column) by the extension of Schur product
theorem (Horn & Johnson (2012), Thm 7.5.3(b)) it is positive de�nite. This can also be easily deduced
using the Oppenheim inequality (Horn & Johnson (2012), Thm 7.8.16); that is for positive semide�nite
matrices Sp andA′A: det(Sp)

∏
i(A
′A)ii ≤ det(Sp◦(A′A)). Since, Sp is positive de�nite, det(Sp) > 0

(in fact it is 1 for any p) and if A′A has no zero diagonal then det(Sp ◦ (A′A)) > 0 and therefore,
Sp ◦ (A′A) is positive de�nite.

6. Clearly, the matrix Tp is achieved by setting the o�-diagonal elements of Sp to zero. Hence, for any
diagonal matrix DDD ∈ Rp×p: Sp ◦DDD = Tp ◦DDD . For the diagonal matrices Hadamard product and matrix
product are interchangeable so the latter may also be written as TpDDD . The same argument applies for
the second identity.

7. This property can easily be proved by induction on p and careful bookkeeping of indices.

Lemma 2 (Simultaneous diagonalization by congruence). Let M1,M2 ∈ Rp×p, where M1 is positive de�nite
and M2 is positive semide�nite. Also, let DDD ,EEE ∈ Rr×r be positive de�nite diagonal matrices with r ≤ p.
Further, assume there is a C ∈ Rr×p of rank r ≤ p such that

CM1C
′ =DDD and

CM2C
′ =DDDEEE .

Then there exists a nonsingular C̄ ∈ Rp×p that its �rst r rows are the matrix C and

C̄M1C̄
′ =D̄DD and

C̄M2C̄
′ =D̄DDĒEE ,

where, D̄DD = D̄DD ⊕ Ir−p is a p× p diagonal matrix and ĒEE = EEE ⊕ EEE is another p× p diagonal matrix, in which
EEE ∈ Rp−r×p−r is a nonnegative diagonal matrix. Clearly, the rank of M2 is r plus the number of nonzero
diagonal elements of EEE .

Proof. The proof is rather straightforward since this lemma is the direct consequence of Theorem 7.6.4 in
Horn & Johnson (2012). The theorem basically states that if M1,M2 ∈ Rp×p is symmetric and M1 is
positive de�nite then there exists an invertible S ∈ Rp×p such that SM1S

′ = Ip and SM2S
′ is a diagonal

matrix with the same inertia as M2. Here, we have M2 that is positive semide�nite and C ∈ Rr×p of rank
r ≤ p such that (

DDD
−1
2 C

)
M1

(
DDD
−1
2 C

)′
=Ir and
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(
DDD
−1
2 C

)
M2

(
DDD
−1
2 C

)′
=EEE .

Therefore, since S is of full rank p and DDD
−1
2 C is of rank r ≤ p, there exists p− r rows in S that are linearly

independent of rows of DDD
−1
2 C. Establish C̄ ∈ Rp×p by adding those p− r rows to C. Then C̄ has p linearly

independent rows so it is nonsingular, and ful�lls the lemma's proposition that is

C̄M1C̄
′ =D̄DD and

C̄M2C̄
′ =D̄DDĒEE ,

where, D̄DD = D̄DD ⊕ Ir−p is a p× p diagonal matrix and ĒEE = EEE ⊕ EEE is another p× p diagonal matrix, in which
EEE ∈ Rp−r×p−r is a nonnegative diagonal matrix.

Lemma 3. Let A and B de�ne a critical point of L. Further, let V ∈ Rn×p and W ∈ Rp×n are such that
‖V ‖F , ‖W ‖F = O(ε) for some ε > 0. Then

L(A + V ,B + W )− L(A,B) =〈V TpBΣxxB
′,V 〉F

−2〈ΣyxW
′Tp −A (Sp ◦ (BΣxxW

′ + WΣxxB
′)) ,V 〉F

+〈(Sp ◦ (A′A))WΣxx,W 〉F +O(ε3). (7)

Further, for W = W̄ := (Sp ◦ (A′A))
−1

TpV
′ΣyxΣ

−1
xx , the above equation becomes

L(A + V ,B + W̄ )− L(A,B) = Tr (V ′V TpBΣxxB
′)− Tr

(
V ′ΣV Tp (Sp ◦ (A′A))

−1
Tp

)
+2 Tr

(
V ′A

(
Sp ◦

(
BΣxyV Tp (Sp ◦ (A′A))

−1

+ (Sp ◦ (A′A))
−1

TpV
′ΣyxB

′
)))

+O(ε3). (8)

Finally, in case the critical A is of full rank p and so, (A,B) = (UIpΠD, B̂(UIpΠD)), for the encoder
direction V with ‖V ‖F = O(ε) and W = W̄ we have,

L(A + V ,B + W )− L(A,B) = Tr
(
V ′V Π′ΛIpΠTpD

−2
)
− Tr

(
V ′ΣV TpD

−2
)

+2 Tr
(
V ′UIpΠD

(
Sp ◦

(
D−1Π′U ′IpΣV D−2

)))
+2 Tr

(
V ′UIpΠD

(
Sp ◦

(
D−2V ′ΣUIpΠD−1

)))
+O(ε3). (9)

Proof. As described in section 3.1, the second order Taylor expansion for the loss L(A,B) is then given by
eq. (53), i.e.

L(A + V ,B + W )− L(A,B) =dAL(A,B)V + dBL(A,B)W +
1

2
d2
AL(A,B)V 2

+dABL(A,B)V W +
1

2
d2
BL(A,B)W 2 +RV ,W (A,B).
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If ‖V ‖F , ‖W ‖F = O(ε) then ‖R(V ,W )‖ = O(ε3). Moreover, when A and B de�ne a critical point of L
we have dAL(A,B)V = dBL(A,B)W = 0. By setting the derivatives d2

AL(A,B)V 2, dABL(A,B)V W ,
d2
BL(A,B)W 2 that are given by eq. (59), eq. (58), and eq. (56) respectively, the above equation simpli�es
to

L(A + V ,B + W )− L(A,B) =〈V (Sp ◦ (BΣxxB
′)) ,V 〉F

−2〈ΣyxW
′Tp −A (Sp ◦ (BΣxxW

′ + WΣxxB
′)) ,V 〉F

+〈(Sp ◦ (A′A))WΣxx,W 〉F +O(ε3).

Now, based on the �rst item in Corollary 1, BΣxxB
′ is a p × p diagonal matrix, so based on eq. (5):

Sp ◦ (BΣxxB
′) = TpBΣxxB

′. The substitution then yields eq. (7). Finally, in the above equation replace

W with W̄ = (Sp ◦ (A′A))
−1

TpV
′ΣyxΣ

−1
xx . We have

L(A + V ,B + W̄ )− L(A,B) =

= 〈V TpBΣxxB
′,V 〉F − 2〈ΣyxΣ

−1
xxΣxyV Tp (Sp ◦ (A′A))

−1
Tp,V 〉F

+2〈A
(
Sp ◦

(
BΣxxΣ

−1
xxΣxyV Tp(Sp◦(A′A))

−1
+(Sp◦(A′A))

−1
TpV

′ΣyxΣ
−1
xxΣxxB

′
))
,V〉F

+〈(Sp ◦ (A′A)) (Sp ◦ (A′A))
−1

TpV
′ΣyxΣ

−1
xxΣxx, (Sp ◦ (A′A))

−1
TpV

′ΣyxΣ
−1
xx 〉F +O(ε3)

= Tr (V ′V TpBΣxxB
′)− Tr

(
V ′ΣV Tp (Sp ◦ (A′A))

−1
Tp

)
+ 2 Tr

(
V ′A

(
Sp ◦

(
BΣxyV Tp (Sp ◦ (A′A))

−1
+ (Sp ◦ (A′A))

−1
TpV

′ΣyxB
′
)))

+O(ε3),

which is eq. (8). For the �nal equation, we have

TpBΣxxB
′ =TpD

−1Π′U ′Ip ΣyxΣ
−1
xxΣxxΣ

−1
xxΣxy︸ ︷︷ ︸UIpΠD−1

=TpD
−1Π′U ′IpΣUIp︸ ︷︷ ︸ΠD−1 = TpD

−1 Π′ΛIpΠ︸ ︷︷ ︸D−1

=Π′ΛIpΠTpD
−2, and (10)

Tp (Sp ◦ (A′A))
−1

Tp =Tp

(
Sp ◦

(
DΠ′U ′IpUIpΠ︸ ︷︷ ︸D

))−1

Tp

=Tp
(
Sp ◦D2

)−1
Tp = TpT

−1
p D−2Tp = TpD

−2. (11)

Replace the above in eq. (8) and simplify:

L(A + V ,B + W )− L(A,B) = Tr (V ′V TpBΣxxB
′)− Tr

(
V ′ΣV Tp (Sp ◦ (A′A))

−1
Tp

)
+2 Tr

(
V ′A

(
Sp ◦

(
BΣxyV Tp (Sp ◦ (A′A))

−1

+ (Sp ◦ (A′A))
−1

TpV
′ΣyxB

′
)))

+O(ε3)
eq. (10)
====⇒
eq. (11)

L(A + V ,B + W )− L(A,B) = Tr
(
V ′V Π′ΛIpΠTpD

−2
)
− Tr

(
V ′ΣV TpD

−2
)

+2 Tr
(
V ′A

(
Sp ◦

(
BΣxyV D−2 + D−2V ′ΣyxB

′)))
6



+O(ε3)
A=UIpΠD

=========⇒
B=B̂(UIpΠD)

L(A + V ,B + W )− L(A,B) = Tr
(
V ′V Π′ΛIpΠTpD

−2
)
− Tr

(
V ′ΣV TpD

−2
)

+2 Tr
(
V ′UIpΠD

(
Sp ◦

(
D−1Π′U ′IpΣV D−2

)))
+2 Tr

(
V ′UIpΠD

(
Sp ◦

(
D−2V ′ΣUIpΠD−1

)))
+O(ε3),

which �nalizes the proof.

2 Proof of Main Results

Proposition 1. For any �xed matrix A ∈ Rn×p the function L(A,B) is convex in the coe�cients of B and
attains its minimum for any B satisfying the equation

(Sp ◦ (A′A))BΣxx = TpA
′Σyx, (12)

where Tp and Sp are constant matrices de�ned by Eqs 1 and 2. Further, if A has no zero column, then
L(A,B) is strictly convex in B and has a unique minimum when the critical B is

B = B̂(A) = (Sp ◦ (A′A))−1TpA
′ΣyxΣ

−1
xx , (13)

and in the autoencoder case it becomes

B = B̂(A) = (Sp ◦ (A′A))−1TpA
′. (13′)

Proof. For this proof we use the �rst and second order derivatives for L(A,B) wrt B derived in Lemma 5.
From eq. (56), we have that for a given A the second derivative wrt to B of the cost L(A,B) at B, and in
the direction W is the quadratic form

d2
B2L(A,B)W 2 = 2 Tr (W ′ (Sp ◦A′A)WΣxx) .

The matrix Σxx is positive-de�nite and by Lemma 1, Sp◦A′A is positive-semide�nite. Hence, d2
B2L(A,B)W 2

is clearly non-negative for all W ∈ Rp×n. Therefore, L(A,B) is convex in coe�cients of B for a �xed matrix
A. Also the critical points of L(A,B) for a �xedA is a matrixB that satis�es ∀W ∈ Rp×n : dBL(A,B)W =
0 and hence, from eq. (54) we have

−2〈TpA′Σyx − (Sp ◦ (A′A))BΣxx,W 〉F = 0.

Setting W = TpA
′Σyx − (Sp ◦ (A′A))BΣxx we have

TpA
′Σyx − (Sp ◦ (A′A))BΣxx = 0.

For a �xedA, the cost L(A,B) is convex inB, so any matrixB that satis�es the above equation corresponds
to a minimum of L(A,B). Further, if A has no zero column then by Lemma 1, Sp ◦A′A is positive de�nite.
Hence, ∀W ∈ Rp×n : d2

B2L(A,B)W 2 = 2 Tr (W ′ (Sp ◦A′A)WΣxx) is positive. Therefore, the cost

L(A,B) becomes strictly convex and the unique global minimum is achieved at B = B̂(A) as de�ned in
eq. (13).
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Proposition 2. For any �xed matrix B ∈ Rp×n the function L(A,B) is a convex function in A. Moreover,
for a �xed B, the matrix A that satis�es

A (Sp ◦ (BΣxxB
′)) =ΣyxB

′Tp (14)

is a critical point of L(A,B).

Proof. For this proof we use the �rst and second order derivatives for L(A,B) wrt A derived in Lemma 6.
For a �xed B, based on eq. (59) the second derivative wrt to A of L(A,B) at A, and in the direction V is
the quadratic form

d2
A2L(A,B)V 2 = 2〈V (Sp ◦ (BΣxxB

′)) ,V 〉F = 2 Tr (V (Sp ◦ (BΣxxB
′))V ′) .

The matrix Σxx is positive-de�nite and by Lemma 1, Sp ◦ (BΣxxB
′) is positive-semide�nite. Hence,

d2
A2L1(A,B)V 2is non-negative for all V ∈ Rn×p. Therefore, L(A,B) is convex in coe�cients of A for
a �xed matrix B. Based on eq. (57) the critical point of L(A,B) for a �xed B is a matrix A that satis�es
for all V ∈ Rn×p

dAL(A,B)V = 〈−2 (ΣyxB
′Tp −A (Sp ◦ (BΣxxB

′))) ,V 〉F = 0 =⇒
ΣyxB

′Tp = A (Sp ◦ (BΣxxB
′)) ,

which is eq. (14).

Theorem 1. Let A ∈ Rn×p and B ∈ Rp×n be such that A is of rank r ≤ p. Under the given assumptions,
the matrices A and B de�ne a critical point of L(A,B) if and only if for any given r-index set Ir, and a
nonsingular diagonal matrix D ∈ Rr×r, A and B are of the form

A = UIrCD, (15)

B = D−1ΠCU ′IrΣyxΣ
−1
xx , (16)

where, C ∈ Rr×p is of full rank r with nonzero and normalized columns such that ΠC := (Sp ◦ (C ′C))
−1

TpC
′

is a rectangular permutation matrix of rank r and CΠC = Ir. For all 1 ≤ r ≤ p, such C always exists.
In particular, if matrix A is of full rank p, i.e. r = p, the two given conditions on ΠC are satis�ed i� the
invertible matrix C is any squared p × p permutation matrix Π. In this case (A,B) de�ne a critical point
of L(A,B) i� they are of the form

A = UIpΠD, (17)

B = D−1Π′U ′IpΣyxΣ
−1
xx . (18)

Proof. Before we start, a reminder on notation and some useful identities that are used throughout the proof.
The matrix Σ := ΣyxΣ

−1
xxΣxy has an eigenvalue decomposition Σ = UΛU ′, where the ith column of U ,

denoted as ui, is an eigenvector of Σ corresponding to the ith largest eigenvalue of Σ, denoted as λi. Also,
Λ = diag(λ1, · · · , λn) is the diagonal vector of ordered eigenvalues of Σ, with λ1 > λ2 > · · · > λn > 0.
We use the following notation to organize a subset of eigenvectors of Σ into a rectangular matrix. Let for
any r ≤ p, Ir = {i1, · · · , ir}(1 ≤ i1 < · · · < ir < n) be any ordered r−index set. De�ne UIr ∈ Rn×p as
UIr = [ui1 , · · · ,uir ]. That is the columns of UIr are the ordered orthonormal eigenvectors of Σ associated
with eigenvalues λi1 < · · · < λir . The following identities are then easy to verify:

U ′IrUIr =Ir,
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ΣUIr =UIrΛIr , (19)

U ′IrΣUIr =ΛIr . (20)

The su�cient condition:

Let A ∈ Rn×pof rank r ≤ p and no zero column be given by eq. (15), B ∈ Rp×n given by eq. (16), and the
accompanying conditions are met. Notice thatU ′IrUIr = Ir implies thatDC ′CD = DC ′U ′IrUIrCD = A′A,
so

B = D−1ΠCU ′IrΣyxΣ
−1
xx

ΠC :=(Sp◦(C′C))
−1

TpC
′

=================⇒
D−1D=Ip

B = D−1 (Sp ◦ (C ′C))
−1

D−1DTpC
′U ′IrΣyxΣ

−1
xx

Lemma 1-2
=======⇒
DTp=TpD

B =

(
Sp ◦ (DC ′CD)︸ ︷︷ ︸

)−1

TpDC ′U ′Ir︸ ︷︷ ︸ΣyxΣ
−1
xx

A′=D′C′U ′Ir=========⇒
DC′CD=A′A

B = (Sp ◦ (A′A))
−1

TpA
′ΣyxΣ

−1
xx = B̂(A),

which is eq. (13). Therefore, based on Proposition 1, for the given A, the matrix B de�nes a critical point
of L(A,B). For the gradient wrt to A, �rst note that with B given by eq. (16) we have

BΣxxB
′ =D−1ΠCU ′IrΣyxΣ

−1
xxΣxxΣ

−1
xxΣxyUIrΠ

′
CD−1

=D−1ΠC U ′IrΣyxΣ
−1
xxΣxyUIr︸ ︷︷ ︸Π′CD−1 eq. (20)

====⇒

BΣxxB
′ =D−1ΠCΛIrΠ

′
CD−1. (21)

The matrix ΠC is a rectangular permutation matrix so ΠCΛIrΠ
′
C is diagonal so as D−1ΠCΛIrΠ

′
CD−1.

Therefore, BΣxxB
′ is diagonal and by eq. (5) in Lemma 1-6 we have

Sp ◦ (BΣxxB
′) =TpBΣxxB

′ = BΣxxB
′Tp

=D−1ΠCΛIrΠ
′
CD−1Tp

A×
==⇒

A (Sp ◦ (BΣxxB
′)) =AD−1ΠCΛIrΠ

′
CD−1Tp

A=UIrCD
=======⇒

A (Sp ◦ (BΣxxB
′)) =UIrCDD−1ΠCΛIrΠ

′
CD−1Tp

A=UIrCD
=======⇒

=UIr CΠC︸ ︷︷ ︸ΛIrΠ
′
CD−1Tp

CΠC=Ir======⇒

A (Sp ◦ (BΣxxB
′)) =UIrΛIr︸ ︷︷ ︸Π′CD−1Tp

eq. (19)
====⇒

=ΣUIrΠ
′
CD−1Tp

=ΣyxΣ
−1
xxΣxyUIrΠ

′
CD−1Tp

=Σyx

(
D−1ΠCU ′IrΣyxΣ

−1
xx

)′︸ ︷︷ ︸Tp
=ΣyxB

′Tp,

which is eq. (14). Therefore, based on Proposition Proposition 2, for the given B, the matrix A de�ne a
critical point of L(A,B). Hence, A and B together de�ne a critical point of L(A,B).
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The necessary condition:

Based on Proposition 1 and Proposition 2, for A (with no zero column) and B, to de�ne a critical point
of L(A,B), B has to be B̂(A) given by eq. (13), and A has to satisfy eq. (14). That is

A
(
Sp ◦

(
B̂ΣxxB̂

′
))

=ΣyxB̂
′Tp

B̂(A) on RHS
=========⇒

A
(
Sp ◦

(
B̂ΣxxB̂

′
))

=ΣxyΣ
−1
xxΣyxATp(Sp ◦ (A′A))−1Tp

×A′
==========⇒
Σ=ΣxyΣ

−1
xxΣyx

A
(
Sp ◦

(
B̂ΣxxB̂

′
))

A′ =ΣATp(Sp ◦ (A′A))−1TpA
′ Σ=UΛU ′′

======⇒
×U ,U ′×

U ′A
(
Sp ◦

(
B̂ΣxxB̂

′
))

A′U =U ′UΛU ′ATp(Sp ◦ (A′A))−1TpA
′U

U ′U=In=====⇒

U ′A
(
Sp ◦

(
B̂ΣxxB̂

′
))

A′U =Λ∆, (22)

where, ∆ := U ′ATp(Sp ◦ (A′A))−1TpA
′U is symmetric and positive semide�nite. The LHS of the above

equation is symmetric so the RHS is symmetric too, so Λ∆ = (Λ∆)′ = ∆′Λ′ = ∆Λ. Therefore, ∆
commutes with the diagonal matrix of eigenvalues Λ. Since, eigenvalues are assumed to be distinct, ∆
has to be diagonal as well. By Lemma 1 Tp(Sp ◦ (A′A))−1Tp is positive de�nite and U is an orthogonal
matrix. Therefore, r = rank(A) = rank(∆) = rank(U ′∆U), which implies that the diagonal matrix ∆,
has r nonzero and positive diagonal entries. There exists an r−index set Ir corresponding to the nonzero
diagonal elements of ∆. Forming a diagonal matrix ∆Ir ∈ Rr×r by �lling its diagonal entries (in order) by
the nonzero diagonal elements of ∆ we have

U∆U ′ = UIr∆IrU
′
Ir

Def of ∆
=====⇒

UU ′ATp(Sp ◦ (A′A))−1TpA
′UU ′ = UIr∆IrU

′
Ir

UU ′=In=====⇒
ATp(Sp ◦ (A′A))−1TpA

′ = UIr∆IrU
′
Ir , (23)

which indicates that the matrix A has the same column space as UIr . Therefore, there exists a full rank
matrix C̃ ∈ Rr×p such that A = UIrC̃. Since A has no zero column, C̃ has no zero column. Further, by
normalizing the columns of C̃ we can write A = UIrCD, where D ∈ Rp×p is diagonal that contains the
norms of columns of C̃. Therefore, A is exactly in the form given by eq. (15). The matrix C has to satisfy
eq. (23) that is

ATp(Sp ◦ (A′A))−1TpA
′ = UIr∆IrU

′
Ir

A=UIrC=====⇒

UIrCDTp(Sp ◦ (A′A))−1TpDC ′U ′Ir = UIr∆IrU
′
Ir

×UIr ,UIr×=========⇒
A′A=DC′CD

CDTp(Sp ◦ (DC ′CD))−1TpC
′D = ∆Ir

Lemma 1-2
=======⇒

CTpDD−1(Sp ◦ (C ′C))−1D−1DTpC
′ = ∆Ir =⇒

CTp(Sp ◦ (C ′C))−1TpC
′ = ∆Ir . (24)

Now that the structure of A has been identi�ed, evaluate B̂(A) of eq. (13) by setting A = UIrCD, that is

B =B̂(A) = (Sp ◦ (A′A))−1TpA
′ΣyxΣ

−1
xx
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=(Sp ◦ (DC ′CD))−1TpDC ′U ′IrΣyxΣ
−1
xx

Lemma 1-2
=======⇒

B =D−1(Sp ◦ (C ′C))−1TpC
′U ′IrΣyxΣ

−1
xx ,

which by de�ning ΠC := (Sp ◦ (C ′C))
−1

TpC
′ gives eq. (19) for B as claimed. While C has to satisfy

eq. (24), A and B in the given form have to satisfy eq. (22) that provides another condition for C as follows.
First, note that

Sp ◦
(
B̂ΣxxB̂

′
)

= Sp ◦
(
D−1(Sp ◦ (C ′C))−1TpC

′U ′IrΣUIrCTp(Sp ◦ (C ′C))−1D−1
)

= Sp ◦
(
D−1(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1D−1
) Lemma 1-2

=======⇒
= D−1

(
Sp ◦

(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1
))

D−1

Now, replace A and B in eq. (22) by their respective identities that we just derived. Performing the same
process for eq. (22) we have

U ′A
(
Sp ◦

(
B̂ΣxxB̂

′
))

A′U = Λ∆
A=UIrCD
=======⇒
×U ′,U×

UIrC
(
Sp ◦

(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1
))

C ′U ′Ir = UΛ∆U ′
×UIr===⇒
U ′Ir×

C
(
Sp ◦

(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1
))

C ′ = U ′IrUΛ∆U ′UIr =⇒
C
(
Sp ◦

(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1
))

C ′ = ΛIr∆Ir . (25)

Now we have to �nd C such that it satis�es eq. (24) and eq. (25). To make the process easier to follow, lets
have them in one place. The matrix C ∈ Rr×p have to satisfy

CTp (Sp ◦ (C ′C))
−1

TpC
′ =∆Ir and (26)

C
(
Sp ◦

(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1
))

C ′ =ΛIr∆Ir . (27)

Since C is a rectangular matrix, solving above equations for C in this form seems intractable. We use a
trick to temporarily extend C into an invertible square matrix as follows.

� Temporarily, letM1 = Tp (Sp ◦ (C ′C))
−1

Tp, andM2 = Sp◦
(
(Sp ◦ (C ′C))−1TpC

′ΛIrCTp(Sp ◦ (C ′C))−1
)
.

Then M1 is positive de�nite and M2 is positive semide�nite, so they are simultaneously diagonalizable
by congruence that is based on Lemma 2 and eq. (26) and eq. (27), there exists a nonsingular C̄ ∈ Rp×p
such that C consists of the �rst r rows of C̄ and

C̄Tp (Sp ◦ (C ′C))
−1

TpC̄
′ =∆̄Ir , (28)

C̄
(
Sp ◦

(
(Sp ◦ (C ′C))

−1
TpC

′ΛIrCTp (Sp ◦ (C ′C))
−1
))

C̄ ′ =Λ̄Ir∆̄Ir , (29)

where, ∆̄Ir = ∆Ir ⊕ Ir−p is a p × p diagonal matrix and Λ̄Ir = ΛIr ⊕ Λ is another p × p diagonal
matrix, in which Λ ∈ Rr−p×r−p is a nonnegative diagonal matrix.

� Substitute ∆̄Ir from eq. (28) in eq. (29), then left multiply by C̄ ′−1, and right multiply by C̄ ′Ir;p:

C̄
(
Sp ◦

(
(Sp ◦ (C ′C))

−1
TpC

′ΛIrCTp (Sp ◦ (C ′C))
−1
))

C̄ ′ =
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Λ̄IrC̄Tp (Sp ◦ (C ′C))
−1

TpC̄
′ C̄′Ir;p×

=====⇒
×C̄′−1

C̄ ′Ir;pC̄
(
Sp ◦

(
(Sp ◦ (C ′C))

−1
TpC

′ΛIrCTp (Sp ◦ (C ′C))
−1
))

=

C̄ ′Ir;pΛ̄IrC̄Tp (Sp ◦ (C ′C))
−1

Tp.

� Now we can revert back everything to C again. Since C consists of the �rst r rows of C̄ we have
C̄ ′Ir;pC̄ = C ′C, and C̄ ′Ir;pΛ̄IrC̄ = C ′ΛIrC, which turns the above equation into

C ′C
(
Sp ◦

(
Ip (Sp ◦ (C ′C))

−1
TpC

′ΛIrCTp (Sp ◦ (C ′C))
−1

Ip

))
=

IpC
′ΛIrCTp (Sp ◦ (C ′C))

−1
Tp.

� In the above equation, replace Ip by T−1
p Tp in LHS and by T−1

p (Sp ◦ (C ′C))T−1
p Tp (Sp ◦ (C ′C))

−1
Tp

in the RHS. Use ΠC := (Sp ◦ (C ′C))
−1

TpC
′ to shrink it into :

C ′C
(
Sp ◦

(
T−1
p TpΠCΛIrΠ

′
CTpT

−1
p

))
=T−1

p (Sp ◦ (C ′C))T−1
p TpΠCΛIrΠ

′
CTp.

� By the second property of Lemma 1 we can collect diagonal matrices T−1
p 's around Sp to arrive at

(C ′C)
(
Ŝp ◦ (TpΠCΛIrΠ

′
CTp)

)
=
(
Ŝp ◦ (C ′C)

)
(TpΠCΛIrΠ

′
CTp) ,

where, Ŝp := T−1
p SpT

−1
p .

� De�ne p× p matrices EEE r := C ′C and DDDr := TpΠCΛIrΠ
′
CTp. Substitute in the above to arrive at:

EEE r

(
Ŝp ◦DDDr

)
=
(
Ŝp ◦ EEE r

)
DDDr.

Both DDDr and EEE r in the above identity are positive semide�nite. Moreover, since by assumption C has
no zero columns, EEE r has no zero diagonal element. Then the 7th property of Lemma 1 implies the
following two conclusions:

1. The matrix DDDr is diagonal. The rank of DDDr is r so it has exactly r positive diagonal elements
and the rest is zero. This argument is true for T−1

p DDDrT
−1
p = ΠCΛIrΠ

′
C . Since ΛIr is a diagonal

positive de�nite matrix, the p× r matrix ΠC := (Sp ◦ (C ′C))
−1

TpC
′ of rank r should have p− r

zero rows. Let Jr be an r−index set corresponding to nonzero diagonal elements of ΠCΛIrΠ
′
C .

Then the matrix ΠC [Jr,Nr] (r × r submatrix of ΠC consist of its Jr rows) is nonsingular.
2. For every i, j ∈ Jr and i 6= j, (EEE r)i,j = 0. Since EEE r := C ′C and so (EEE r)i,j is the inner product of
ith and jth columns of C, we conclude that the columns of C[Nr, Jr] (r×r submatrix of C consist
of its Jr columns) are orthogonal or in other words C[Nr, Jr]′C[Nr, Jr] is diagonal. The columns
of C are normalized. Therefore, C[Nr, Jr]′C[Nr, Jr] = Ir and hence, C[Nr, Jr] is an orthogonal
matrix.

� We use the two conclusions to solve the original eq. (26) and eq. (27). First use ΠC := (Sp ◦ (C ′C))
−1

TpC
′

to shrink them into :

CTpΠC =∆Ir , (30)
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C (Sp ◦ (ΠCΛIrΠ
′
C))C ′ =ΛIr∆Ir . (31)

Next, by the �rst conclusion, the matrix T−1
p DDDrT

−1
p = ΠCΛIrΠ

′
C is diagonal and so eq. (31) becomes

CTpΠC︸ ︷︷ ︸ΛIrΠ
′
CC ′ =ΛIr∆Ir

eq. (30)
====⇒

∆IrΛIrΠ
′
CC ′ =ΛIr∆Ir =⇒

Π′CC ′ = CΠC =Ir, (32)

which is one of the two claimed conditions. What is left is to show that ΠC is a rectangular permutation
matrix. From the �rst conclusion we also have ΠC has exactly r nonzero columns indexed by Jr so

C[Nr, Jr]ΠC [Jr,Nr] =Ir.

By the second conclusion C[Nr, Jr] is an orthogonal matrix therefore, ΠC [Jr,Nr] is the orthogonal
matrix C[Nr, Jr]′. Moreover, we had T−1

p DDDrT
−1
p = ΠCΛIrΠ

′
C is a p×p diagonal matrix with exactly r

nonzero diagonal elements. Hence, ΠC [Nr, Jr]ΛIrΠ
′
C [Nr, Jr] is an r×r positive de�nite diagonal matrix

with ΛIr having distinct diagonal elements, and ΠC [Nr, Jr] being orthogonal. Therefore, ΠC [Jr,Nr]
(as well as C[Nr, Jr]) should be a square permutation matrix. Putting back the zero columns, we

conclude that C should be such that ΠC := (Sp ◦ (C ′C))
−1

TpC
′ is a rectangular permutation matrix

and CΠC = Ir. Note that it is possible to further analyze these conditions and determine the exact
structure of C. However, this is not needed in general for the critical point analysis of the next theorem
except for the case where r = p and C is a square invertible matrix. In this case, square matrix ΠC is
of full rank p, Jr = Np and therefore, C[Nr, Jr] = C[Np,Np] = C. Hence, C is any square permutation

matrix Π, C ′C = Π′Π = Ip and ΠC := (Sp ◦ (C ′C))
−1

TpC
′ = T−1

p TpΠ
′ = Π′, which veri�es

eq. (17) and eq. (18) for A and B when A is of full rank p.

Corollary 1. Let (A,B) be a critical point of L(A,B) under the given assumptions and rankA = r ≤ p.
Then the following hold:

1. The matrix BΣxxB
′ is a p× p diagonal matrix of rank r.

2. For all 1 ≤ r ≤ p, for any critical pair (A,B), the global map G := AB becomes

G = UIrU
′
IrΣyxΣ

−1
xx . (33)

For the autoencoder case (Y = X) the global map is simply G = UIrU
′
Ir .

3. (A,B) is also the critical point of the classical loss L̃(A,B) =
∑p
i=1 ‖Y −ABX‖2F .

Proof. 1. We already show in the proof Theorem 1 that for critical (A,B) the matrix BΣxxB
′ is given

by eq. (21) that is

BΣxxB
′ =D−1ΠCΛIrΠ

′
CD−1.

The matrix ΠC is a p × r rectangular permutation matrix so ΠCΛIrΠ
′
C is diagonal as well as

D−1ΠCΛIrΠ
′
CD−1. Therefore, BΣxxB

′ is diagonal. The diagonal matrix ΛIr is of rank r therefore,
BΣxxB

′ is of rank r.
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2. Again by Theorem 1 critical (A,B) is of the form given by eq. (15) and eq. (16) with the proceeding
conditions on the invariance C. Therefore, the global map is

G = AB = UIrCDD−1ΠCU ′IrΣyxΣ
−1
xx

= UIrCΠCU ′IrΣyxΣ
−1
xx

CΠC=Ir======⇒
G = UIrU

′
IrΣyxΣ

−1
xx .

3. Based on Baldi & Hornik (1989) (A,B) de�ne a critical point of L̃(A,B) =
∑p
i=1 ‖Y −ABX‖2F i�

they satisfy

A′ABΣxx =A′Σyx and (34)

ABΣxxB
′ =ΣyxB

′. (35)

Again by assumption (A,B) de�ne a critical point of L(A,B) so by Theorem 1 they are of the form
given by eq. (15) and eq. (16) with the proceeding conditions on the invariance C. Hence,

A′ABΣxx =DC ′U ′IrUIr︸ ︷︷ ︸CDD−1︸ ︷︷ ︸ΠCU ′IrΣyx Σ−1
xxΣxx︸ ︷︷ ︸

=DC ′CΠC︸ ︷︷ ︸U ′IrΣyx
CΠC=Ir======⇒

A′ABΣxx =DC ′U ′IrΣyx = A′Σyx.

Hence, eq. (34) is satis�ed. For the second equation we use the �rst property of this corollary that is
BΣxxB

′ is diagonal and satisfy eq. (14) of Proposition 2 that is

A (Sp ◦ (BΣxxB
′)) =ΣyxB

′Tp
BΣxxB

′ is diagonal
============⇒

ATpBΣxxB
′ =ΣyxB

′Tp
BΣxxB

′ is diagonal
============⇒

ABΣxxB
′Tp =ΣyxB

′Tp =⇒
ABΣxxB

′ =ΣyxB
′.

Hence, the second condition, eq. (35) is also satis�ed. Therefore, any critical point of L(A,B) is a
critical point of L̃(A,B).

Lemma 4. The loss function L(A,B) can be written as

L(A,B) = pTr(Σyy)− 2 Tr (ATpBΣxy)

+ Tr (B′ (Sp ◦ (A′A))BΣxx) . (36)

Proof. We have

L(A,B) =

p∑
i=1

‖Y −AIi;pBX‖2F =

p∑
i=1

〈Y −AIi;pBX,Y −AIi;pBX〉F

=

p∑
i=1

(〈Y ,Y 〉F + 〈Y ,−AIi;pBX〉F + 〈−AIi;pBX,Y 〉F

14



+〈−AIi;pBX,−AIi;pBX〉F )

= p〈Y ,Y 〉F − 2〈Y ,A

(
p∑
i=1

Ii;p

)
BX〉F +

p∑
i=1

〈AIi;pBX,AIi;pBX〉F
eq. (3)
====⇒

= pTr(Y Y ′)− 2 Tr (ATpBXY ′) +

p∑
i=1

Tr (X ′B′Ii;pA
′AIi;pBX)

= pTr(Σyy)− 2 Tr (ATpBΣxy) + Tr

(
XX ′B′

p∑
i=1

(Ii;pA
′AIi;p)B

)
eq. (4)
====⇒

= pTr(Σyy)− 2 Tr (ATpBΣxy) + Tr (B′ (Sp ◦ (A′A))BΣxx) ,

which is eq. (36).

Theorem 2. Let A∗ ∈ Rn×p and B∗ ∈ Rp×n such that A∗ is of rank r ≤ p. Under the given assumptions,
(A∗,B∗) de�ne a local minima of the proposed loss function i� they are of the form

A∗ = U1:pDp, (37)

B∗ = D−1
p U ′1:pΣyxΣ

−1
xx , (38)

where the ith column of U1:p is a unit eigenvector of Σ := ΣyxΣ
−1
xxΣxy corresponding the ith largest eigen-

value and Dp is a diagonal matrix with nonzero diagonal elements. In other words, A∗ contains ordered
unnormalized eigenvectors of Σ corresponding to the p largest eigenvalues. Moreover, all the local minima
are global minima with the value of the loss function at those global minima being

L(A∗,B∗) = p Tr(Σyy)−
p∑
i=1

(p− i+ 1)λi, (39)

where λi is the i
th largest eigenvalue of Σ.

Proof. The full rank matrices A∗ and B∗ given by eq. (37) and eq. (38) are clearly of the form given by
Theorem 1 with Ip = Np := {1, 2, · · · , p}, and Πp = Ip. Hence, they de�ne a critical point of L(A,B). We
want to show that these are the only local minima, that is any other critical (A,B) is a saddle points. The
proof is similar to the second partial derivative test. However, in this case the Hessian is a forth order tensor.
Therefore, the second order Taylor approximation of the loss, derived in Lemma 3, is used directly. To prove
the necessary condition, we show that at any other critical point (A,B), where the �rst order derivatives are
zero, there exists in�nitesimal direction along which the second derivative of loss is negative. Next, for the
su�cient condition we show that the any critical point of the form (A∗,B∗) is a local and global minima.

The necessary condition:

Recall that UIp is the matrix of eigenvectors indexed by the p−index set Ip and Π is a p× p permutation
matrix. Since all the index sets Ir, r ≤ p are assumed to be ordered, the only way to have UNp

= UIpΠ is
by having Ip = Np and Π = Ip. Let A (with no zero column) and B de�ne an arbitrary critical point of
L(A,B). Then Based on the previous theorem, either A = UIrC with r < p or A = UIpΠD while in both

cases B = B̂(A) given by eq. (13). If (A,B) is not of the form of (A∗,B∗) then there are three possibilities
either 1) A = UIrCD with r < p, or 2) A = UIpΠD with Ip 6= Np or 2) A = UNp

ΠD but Π 6= Ip. The �rst
two cases corresponds to not having the �right� and/or �enough� eigenvectors, and the third corresponds to
not having the �right� ordering. We introduce the following notation and investigate each case separately.
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Let ε > 0 and Ui;j ∈ Rn×p be a matrix of all zeros except the ith column, which contains uj ; the eigenvector
of Σ corresponding to the jth largest eigenvalue. Therefore,

U ′i;jΣUi;j = U ′i;jUΛU ′Ui;j = λjEi, (40)

where, Ei ∈ Rp×p is matrix of zeros except the ith diagonal element that contains 1. In what follows, for each
case we de�ne a encoder direction V ∈ Rn×p with ‖V ‖F = O(ε), and set the decoder direction W ∈ Rp×n

as W = W̄ := (Sp ◦ (A′A))
−1

TpV
′ΣyxΣ

−1
xx . Then we use eq. (8) and eq. (9) of Lemma 3, to show that the

given direction (V ,W ) in�nitesimally reduces the loss and hence, in every case the corresponding critical
(A,B) is a saddle point.

1. For the case A = UIrCD, with r < p, note that based on the �rst item in Corollary 1, BΣxxB
′ is

a p × p diagonal matrix of rank r so it has p − r zero diagonal elements. Pick an i ∈ Np such that
(BΣxxB

′)ii is zero and a j ∈ Np \ Ir. Set V = εUi;jD and W = W̄ . Clearly,

V ′A =εDU ′i;jUIrCD = 0, (41)

V ′V TpBΣxxB
′ =ε2DU ′i;jUi;j︸ ︷︷ ︸DTpBΣxxB

′,

=ε2DEiDTpBΣxxB
′ = ε2D2TpEi (BΣxxB

′) = 0 and (42)

V ′ΣV =ε2DU ′i;jUΛU ′Ui;jD = ε2λjD
2Ei. (43)

Notice, ‖V ‖F , ‖W ‖F = O(ε), so based on eq. (8) of Lemma 3, we have

L(A + V ,B + W )− L(A,B) =

Tr (V ′V TpBΣxxB
′)− Tr

(
V ′ΣV Tp (Sp ◦ (A′A))

−1
Tp

)
+ 2 Tr

(
V ′A

(
Sp ◦

(
BΣxyV Tp (Sp ◦ (A′A))

−1
+ (Sp ◦ (A′A))

−1
TpV

′ΣyxB
′
)))

+O(ε3)
eq. (41)
====⇒
eq. (42)

L(A + V ,B + W )− L(A,B) =

− Tr
(
V ′ΣV Tp (Sp ◦ (A′A))

−1
Tp

)
+O(ε3)

eq. (43)
=========⇒
A′A=DC′CD

L(A + V ,B + W )− L(A,B) =

− ε2λj Tr

(
D2EiD

−1

((
T−1
p SpT

−1
p︸ ︷︷ ︸
)
◦ (C ′C)

)−1

D−1

)
+O(ε3) =

− ε2λj

((
Ŝp ◦ (C ′C)

)−1
)
ii

+O(ε3).

Therefore, since
(
Ŝp ◦ (C ′C)

)−1

is a positive de�nite matrix, as ε→ 0, we have L(A+V ,B +W ) ≤
L(A,B). Hence, any (A,B) = (UIrCD, B̂(UIrCD)) with r < p is a saddle point.

2. Next, consider the case where A = UIpΠD with Ip 6= Np. Then there exists at least one j ∈ Ip\Np and
i ∈ Np \ Ip such that i < j (so λi > λj). Let σ be the permutation corresponding to the permutation
matrix Π. Also, let ε > 0 and Uσ(j);i ∈ Rn×p be a matrix of all zeros except the σ(j)th column, which
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contains ui; the eigenvector of Σ corresponding to the ith largest eigenvalue. Set V = εUσ(j);iD and
W = W̄ . Then, since i /∈ Ip we have

V ′UIp =εDU ′σ(j);iUIp = 0, (44)

V ′V =ε2DU ′σ(j);iUσ(j);iD = ε2D2Eσ(j), and (45)

V ′ΣV =ε2DU ′σ(j);iUΛU ′Uσ(j);iD = ε2λiD
2Eσ(j). (46)

Since ‖V ‖F , ‖W ‖F = O(ε), based on eq. (9) of Lemma 3, we have

L(A + V ,B + W )− L(A,B) = Tr
(
V ′V Π′ΛIpΠTpD

−2
)
− Tr

(
V ′ΣV TpD

−2
)

+2 Tr
(
V ′UIpΠD

(
Sp ◦

(
D−1Π′U ′IpΣV D−2

)))
+2 Tr

(
V ′UIpΠD

(
Sp ◦

(
D−2V ′ΣUIpΠD−1

)))
+O(ε3)

eq. (44)
==========⇒
eq. (45),eq. (46)

L(A + V ,B + W )− L(A,B) = Tr
(
ε2D2Eσ(j)Π

′ΛIpΠTpD
−2
)

−Tr
(
ε2λiD

2Eσ(j)TpD
−2
)

+O(ε3)

=ε2 Tr

(
Eσ(j)Π

′ΛIpΠ︸ ︷︷ ︸Tp
)
−ε2λi Tr

(
Eσ(j)Tp

)
+O(ε3)

=ε2λj Tr
(
Eσ(j)Tp

)
− ε2λi Tr

(
Eσ(j)Tp

)
+O(ε3)

=− ε2(p− σ(j) + 1) (λi − λj) +O(ε3).

Note that in the above, the diagonal matrix Π′ΛIpΠ has the same diagonal elements as ΛIp but they
are permuted by σ. So Eσ(j)Π

′ΛIpΠ selects σ(j)th diagonal element of Π′ΛIpΠ that is the jthdiagonal
element of ΛIp , which is nothing but λj . Now, since i < j so λi > λj and σ(j) ≤ p, as ε→ 0, we have

L(A + V ,B + W ) ≤ L(A,B). Hence, any (A,B) = (UIpΠD, B̂(UIpΠD)) is a saddle point.

3. Finally consider the case where A = UNp
ΠD with Π 6= Ip. Since Π 6= Ip, the permutation σ of the set

Np, corresponding to the permutation matrix Π, has at least a cycle (i1i2 · · · ik), where 1 < i1 < i2 · · · <
ik < p and 2 ≤ k ≤ p. Hence, Π can be decomposed as Π = Π(i1i2···ik)Π̂, where Π̂ is the permutation
matrix corresponding to other cycles of σ. The cycle (i1i2 · · · ik) can be decomposed into transpositions
as (i1i2 · · · ik) = (ikik−1) · · · (iki1), which in matrix form is Π(i1i2···ik) = Π(iki1)Π(iki2) · · ·Π(ikik−1).

Therefore, Π can be decomposed as Π = Π(iki1)Π̃, where Π̃ = Π(iki2) · · ·Π(ikik−1)Π̂. Note that
Π(iki1), the permutation matrix corresponding to transposition (iki1) is a symmetric involutory matrix,

i.e. Π2
(iki1) = Ip. Set V = ε(Ui1;i1 −Uik;ik)Π̃D and W = W̄ . Again we replace V and W in eq. (9)

of Lemma 3. There are some tedious steps to simplify the equation, which is given in section 2.1. The
�nal result is as follows. With the given V and W , the third and forth terms of the RHS of eq. (9)
are canceled and the �rst two terms are simpli�ed to

Tr
(
V ′V Π′ΛNpΠTpD

−2
)

=ε2λik(p− i1 + 1) + ε2λi1(p− im + 1), and (47)

Tr
(
V ′ΣV TpD

−2
)

=ε2λi1(p− i1 + 1) + ε2λik(p− im + 1), (48)

in which, m = max{k − 1, 2}. This means that If the selected cycle is just a transposition (i1i2) then
im = i2. But if for the selected cycle (i1i2 · · · ik), k is greater than 2 then im = ik−1. Using above
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equations, eq. (9) yields

L(A+V ,B+W )−L(A,B)=Tr
(
V ′V Π′ΛIpΠTpD

−2
)
−Tr

(
V ′ΣV TpD

−2
)
+O(ε3)

=ε2λik(p− i1 + 1) + ε2λi1(p− im + 1)

−ε2λi1(p− i1 + 1)− ε2λik(p− im + 1) +O(ε3)

=− ε2i1λik − ε2imλi1 + ε2i1λi1 + ε2imλik

=− ε2 ((λi1 − λik)(im − i1)) +O(ε3). (49)

By the above de�nition of im, we have im − i1 > 0 and since i1 < ik, λi1 − λik > 0. Hence, the �rst
term in the above equation is negative and as ε → 0, we have L(A + V ,B + W ) − L(A,B) < 0.

Therefore, any any (A,B) = (UIpΠD, B̂(UIpΠD)) with Π 6= Ip is a saddle point.

The Su�cient condition:

From Lemma 4 we know that the loss L(A,B) can be written in the form of eq. (36). Use this equation

to evaluate loss at (A∗,B∗) =
(
UNp

Dp,D
−1
p U ′Np

ΣyxΣ
−1
xx

)
as follows

L(A∗,B∗) = pTr(Σyy)− 2 Tr (A∗TpB
∗Σxy) + Tr

(
B∗
′
(
Sp ◦

(
A∗
′
A∗
))

B∗Σxx

)
=⇒

L(A∗,B∗) = pTr(Σyy)− 2 Tr

(
UNpDpTpD

−1
p U ′Np

ΣyxΣ
−1
xxΣxy︸ ︷︷ ︸

)
+ Tr

((
Sp ◦

(
DpU

′
Np
UNp︸ ︷︷ ︸Dp

))
D−1
p U ′Np

ΣyxΣ
−1
xxΣxxΣ

−1
xxΣxy︸ ︷︷ ︸UNp

D−1
p

)
=⇒

L(A∗,B∗) = pTr(Σyy)− 2 Tr

(
TpDpD

−1
p︸ ︷︷ ︸U ′Np

ΣUNp︸ ︷︷ ︸
)

+ Tr

((
Sp ◦ (Ip)︸ ︷︷ ︸

)
DpD

−1
p︸ ︷︷ ︸U ′Np

ΣUNp︸ ︷︷ ︸D−1
p Dp︸ ︷︷ ︸

)
=⇒

L(A∗,B∗) = pTr(Σyy)− 2 Tr
(
TpΛNp

)
+ Tr

(
TpΛNp

)
=⇒

L(A∗,B∗) = pTr(Σyy)− Tr
(
TpΛNp

)
= p Tr(Σyy)−

p∑
i=1

(p− i+ 1)λi,

which is eq. (39), as claimed. Notice that the above value is independent of the diagonal matrix Dp. From
the necessary condition we know that any critical point not in the form of (A∗,B∗) is a saddle point. Hence,
due to the convexity of the loss at least one (A∗,B∗) is a global minimum but since the value of the loss
at (A∗,B∗) is independent of Dp all these critical points yield the same value for the loss. Therefore, any
critical point in the form of (A∗,B∗) is a local and global minima.

2.1 Supplementary details of the proof of Theorem 2

To verify eq. (47), eq. (48), and eq. (49) in the proof of Theorem 2, we want to replace V and W in eq. (9)
of Lemma 3 with V = ε(Ui1;i1 −Uik;ik)Π̃D and W = W̄ and simplify. eq. (9) is

L(A + V ,B + W )− L(A,B) = Tr
(
V ′V Π′ΛIpΠTpD

−2
)
− Tr

(
V ′ΣV TpD

−2
)

+2 Tr
(
V ′UIpΠD

(
Sp ◦

(
D−1Π′U ′IpΣV D−2

)))
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+2 Tr
(
V ′UIpΠD

(
Sp ◦

(
D−2V ′ΣUIpΠD−1

)))
+O(ε3).

We investigate each term on the RHS separately. but before note that

EiΠ̃TpΠ̃
′ =

(
Π̃TpΠ̃

′
)
i,i

Ei = (Tp)σ̃−1(i),σ̃−1(i) Ei = (p− σ̃−1(i) + 1)Ei, (50)

where, σ̃ and its function inverse σ̃−1 are permutations corresponding to Π̃ and Π̃′ respectively. Π̃TpΠ̃
′

is a diagonal matrix where diagonal elements of Tp are ordered based on σ̃−1. Moreover, recall that we

decomposed the permutation matrix Π in A with a cycle (i1i2 · · · ik) as Π = Π(i1ik) Π(iki2) · · ·Π(ikik−1)Π̂︸ ︷︷ ︸ =

Π(i1ik)Π̃, where i1, i2, · · · ik are �xed points of Π̂. Therefore, with σ̃ being the permutation corresponding

to Π̃ we have

σ̃(i1) = i1 =⇒ σ̃−1(i1) = i1, and (51)

σ̃(ik−1) = im =⇒ σ̃−1(ik) = im, (52)

where, m = max{k − 1, 2}. This means that If the selected cycle is just a transposition (i1i2) then im = i2.
But if for the selected cycle (i1i2 · · · ik), k is greater than 2 then im = ik−1.

For the �rst term we have

V ′V =ε2DΠ̃′(U ′i1;i1 −U ′ik;ik
)(Ui1;i1 −Uik;ik)Π̃D

U ′i1;i1
Uik;ik

=0
=========⇒

V ′V =ε2DΠ̃′(U ′i1;i1Ui1;i1 + U ′ik;ik
Uik;ik)Π̃D

U ′i1;i1
Ui1;i1

=Ei1
===========⇒
U ′ik;ik

Uik;ik
=Eik

V ′V =ε2DΠ̃′(Ei1 + Eik)Π̃D
Π̃′(Ei1+Eik

)Π̃ is diagonal
=================⇒

V ′V =ε2Π̃′(Ei1 + Eik)Π̃D2 =⇒

Tr
(
V ′V Π′ΛNp

ΠTpD
−2
)

= Tr

(︷ ︸︸ ︷
V ′V D−2Π̃′Π(i1ik)ΛNp

Π(i1ik)Π̃Tp

)

= Tr

ε2Π̃′(Ei1 + Eik) Π̃D2D−2Π̃′︸ ︷︷ ︸
Ip

Π(i1ik)ΛNp
Π(i1ik)Π̃Tp


=ε2 Tr

(
(Ei1 + Eik)Π(i1ik)ΛNpΠ(i1ik)Π̃TpΠ̃

′
)

=ε2 Tr
(
λikEi1Π̃TpΠ̃

′ + λi1EikΠ̃TpΠ̃
′
)

eq. (50)
====⇒

Tr
(
V ′V Π′ΛNp

ΠTpD
−2
)

=ε2λik(p− σ̃−1(i1) + 1)Ei1 + ε2λi1(p− σ̃−1(ik) + 1)Eik

eq. (51)
====⇒
eq. (52)

Tr
(
V ′V Π′ΛNp

ΠTpD
−2
)

=ε2λik(p− i1 + 1)Ei1 + ε2λi1(p− im + 1)Eik ,

which is eq. (47) as claimed.
For the second term we have

V ′ΣV =ε2DΠ̃′(U ′i1;i1 −U ′ik;ik
)UΛU ′(Ui1;i1 −Uik;ik)Π̃D
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=ε2DΠ̃′(U ′i1;i1UΛU ′Ui1;i1︸ ︷︷ ︸
λi1Ei1

−U ′i1;i1UΛU ′Uik;ik︸ ︷︷ ︸
0

−U ′ik;ik
UΛU ′Ui1;i1︸ ︷︷ ︸

0

+U ′ik;ik
UΛU ′Uik;ik︸ ︷︷ ︸
λik

Eik

)Π̃D

=ε2Π̃′(λi1Ei1 + λikEik)Π̃D2 =⇒

Tr
(
V ′ΣV TpD

−2
)

= Tr
(
ε2Π̃′(λi1Ei1 + λikEik)Π̃D2TpD

−2
)

=ε2 Tr
(
λi1Ei1Π̃TpΠ̃

′ + λikEikΠ̃TpΠ̃
′
)

eq. (50)
====⇒

Tr
(
V ′ΣV TpD

−2
)

=ε2λi1(p− σ̃−1(i1) + 1) + ε2λik(p− σ̃−1(ik) + 1)
eq. (51)
====⇒
eq. (52)

Tr
(
V ′ΣV TpD

−2
)

=ε2λi1(p− i1 + 1) + ε2λik(p− im + 1),

which is eq. (48) as claimed.
Finally, we have to show that the third and the forth terms of the eq. (9) are canceled. First, observe

that

Tr
(
V ′UNp

ΠD
(
Sp ◦

(
D−1Π′U ′Np

ΣV D−2
)))

=

Tr
(
εDΠ̃′(U ′i1;i1 −U ′ik;ik

)UNp
Π
(
Sp ◦

(
Π′U ′Np

ΣV D−2
)))

=

εTr
(
Π̃′(Ei1 −Eik)Π

(
Sp ◦

(
Π′U ′Np

ΣV D−2
))

D
)

=

ε2 Tr
(
Π̃′(Ei1 −Eik)Π

(
Sp ◦

(
Π′(λi1Ei1 − λikEik)Π̃

)))
=

ε2 Tr
(

(Ei1 −Eik)
((

ΠSpΠ̃
′
)
◦
(
ΠΠ′(λi1Ei1 − λikEik)Π̃Π̃′

)))
=

ε2 Tr
((

ΠSpΠ̃
′
)
◦ ((Ei1 −Eik) (λi1Ei1 − λikEik))

)
=

ε2 Tr
((

ΠSpΠ̃
′
)
◦ (λi1Ei1 + λikEik)

)
, and

Tr
(
V ′UNpΠD

(
Sp ◦

(
D−2V ′ΣUNpΠD−1

)))
=

Tr
(
εDΠ̃′(U ′i1;i1 −U ′ik;ik

)UNp
Π
(
Sp ◦

(
D−1V ′ΣUNp

ΠD−1
)))

=

εTr
(
Π̃′(Ei1 −Eik)Π

(
Sp ◦

(
D−1V ′ΣUNp

Π
)))

=

ε2 Tr
(

(Ei1 −Eik)Π
(
Sp ◦

(
Π̃′(λi1Ei1 − λikEik)Π

))
Π̃′
)

=

ε2 Tr
(

(Ei1 −Eik)
((

ΠSpΠ̃
′
)
◦
(
ΠΠ̃′(λi1Ei1 − λikEik)ΠΠ̃′

)))
=

ε2 Tr
(

(Ei1 −Eik)
((

ΠSpΠ̃
′
)
◦
(
Π(i1ik)(λi1Ei1 − λikEik)Π(i1ik)

)))
=

ε2 Tr
(

(Ei1 −Eik)
((

ΠSpΠ̃
′
)
◦ ((λi1Eik − λikEi1))

))
=

ε2 Tr
((

ΠSpΠ̃
′
)
◦ ((Ei1 −Eik)(λi1Eik − λikEi1))

)
=
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−ε2 Tr
((

ΠSpΠ̃
′
)
◦ (λi1Eik + λikEi1)

)
=

−ε2 Tr
((

ΠSpΠ̃
′
)
◦ (λi1Eik + λikEi1)

)
.

Now, note that in both cases the matrices that are multiplied elementwise with ΠSpΠ̃
′ are diagonal and

hence, we only need to look at diagonal elements of ΠSpΠ̃
′. Moreover,

ΠSpΠ̃
′ = Π(i1ik)Π(iki2) · · ·Π(ikik−1)Π̂SpΠ̂

′Π(ikik−1) · · ·Π(iki2),

where, i1 · · · ik are �xed points of permutation corresponding to Π̂ so Π̂SpΠ̂
′ has the same values at diagonal

positions i1 and ik as the original matrix Sp. The only permutation that is only on the left side is Π(i1ik)

which exchanges the i1 and ik rows of Sp. Since Sp is such that the elements at each row before the diagonal

element are the same and ik > i1, we have the i1 and ik diagonal elements of ΠSpΠ̃
′ have the same value. Let

that value be denoted as s. Then the sum of the above two equations yields m(λi1 +λik)−m(λi1 +λik) = 0,
as claimed.

3 Derivatives of the Loss function

3.1 First and Second Order Fréchet Derivative

In order to derive and analyze the critical points of the cost function which is a real-valued function of
matrices we use the �rst and second order Fréchet derivatives as described in chapter 4 of Zeidler (1995).
For a function f : Rn×m → R the �rst order Fréchet derivative at the point A ∈ Rn×m is a linear functional
df(A) : Rn×m → R such that

lim
V→0

|f(A + V )− f(A)− df(A)V |
‖V ‖F

= 0,

where we used the shorthand df(A)V ≡ (df(A))(V ). Similarly, the 2nd derivative is a bilinear functional
d2f(A) : Rn×m × Rn×m → R such that

lim
V→0

|df(A + V )K − df(A)K − d2f(A)V K|
‖V ‖F

= 0,

for all ‖K‖F ≤ 1, where again d2f(A)V K ≡ (d2f(A))(V ,K). The generalized Taylor formula then becomes:

f(A + V ) = f(A) + df(A)V +
1

2
d2f(A)V 2 + o(‖V ‖2),

Moreover, we derive functions ∇f : Rn×m → Rn×m and H(A) : Rn×m → Rn×m such that df(A)V =
〈∇f(A),V 〉F and d2f(A)V 2 = 〈H(A)V ,V 〉F , where again H(A)V ≡ H(A)(V ). Then clearly, A ∈
Rn×mis a critical point of f i� ∇f(A) = 0 and for such As the sign of the bilinear form 〈H(A)V ,V 〉over
directions V determines the type of the critical point.

Extending the generalized Taylor theorem of Zeidler (1995), the second order Taylor expansion for the
loss L(A,B) is then given by

L(A + V ,B + W )− L(A,B) =dAL(A,B)V + dBL(A,B)W +
1

2
d2
AL(A,B)V 2
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+dABL(A,B)V W +
1

2
d2
BL(A,B)W 2 +RV ,W (A,B), (53)

where, if ‖V ‖F , ‖W ‖F = O(ε) then ‖R(V ,W )‖ = O(ε3). Clearly, as at critical points where dAL(A,B)V +
dBL(A,B)W = 0, as ε→ 0 we have RV ,W (A,B)→ 0 and the sign of the sum of the second order partial
Fréchet derivatives determines the type of the critical point very much similar to second partial derivative
test for two variable functions. However, here for local minima we have to show the sign is positive in all
directions and for saddle points have to show the sign is positive in some directions and negative at least
in on direction. Finally, note that the smoothness of the loss entails that Fréchet derivative and directional
derivative (Gateaux) both exist and (foregoing some subtleties in de�nition) are the same.

3.2 First and Second Order Derivative of the Loss wrt to B

Lemma 5. The �rst and second (partial Fréchet ) derivative of the loss L(A,B) wrt to B is derived as
follows.

dBL(A,B)W= −2 Tr (W ′ (TpA
′Σyx − (Sp ◦ (A′A))BΣxx)) (54)

= −2〈TpA′Σyx − (Sp ◦ (A′A))BΣxx,W 〉F . (55)

d2
B2L(A,B)W 2 = 2〈(Sp ◦ (A′A))WΣxx,W 〉F = 2 Tr (W ′ (Sp ◦ (A′A))WΣxx) . (56)

Proof. Directly compute

L(A,B + W ) =

p∑
i=1

‖Y −AIi;p(B + W )X‖2F

=

p∑
i=1

〈Y −AIi;p(B + W )X,Y −AIi;p(B + W )X〉F

=

p∑
i=1

〈Y −AIi;pBX,Y −AIi;pBX〉F +

p∑
i=1

〈Y −AIi;pBX,−AIi;pWX〉F

+

p∑
i=1

〈−AIi;pWX,Y −AIi;pBX〉F +

p∑
i=1

〈−AIi;pWX,−AIi;pWX〉F

= L(A,B)−
p∑
i=1

2〈Y −AIi;pBX,AIi;pWX〉+O(‖W ‖2F ) =⇒

L(A,B + W )− L(A,B) = −2

p∑
i=1

〈Y −AIi;pBX,AIi;pWX〉F +O(‖W ‖2F )
W→0
=⇒

dBL(A,B)W = −2

p∑
i=1

Tr(X ′W ′Ii;pA
′(Y −AIi;pBX))

= −2 Tr

(
W ′

((
p∑
i=1

Ii;p

)
A′Y X ′−

(
p∑
i=1

Ii;pA
′AIi;p

)
BXX ′

))
= −2 Tr (W ′ (TpA

′Y X ′ − (Sp ◦ (A′A))BXX ′)) ,
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which can be written as the given form. For the second derivative wrt B we have

dBL(A,B)W = −2〈TpA′Σyx − (Sp ◦ (A′A))BΣxx,W 〉F =⇒
dBL(A,B + W̄ )W = −2〈TpA′Σyx − (Sp ◦ (A′A)) (B + W̄ )Σxx,W 〉F

= −2〈TpA′Σyx − (Sp ◦ (A′A))BΣxx,W 〉F
+ 2〈(Sp ◦ (A′A)) W̄Σxx,W 〉F =⇒

dBL(A,B + W̄ )W − dBL(A,B)W = 2〈(Sp ◦ (A′A)) W̄Σxx,W 〉F ,

which by having W̄ → 0 results in the second order partial derivative.

3.3 First and Second Order Derivative of the Loss wrt to A

Lemma 6. The �rst and second (partial Fréchet ) derivative of the loss L(A,B) wrt to A is derived as
follows.

dAL(A,B)V = −2〈ΣyxB
′Tp −A (Sp ◦ (BΣxxB

′)) ,V 〉F , (57)

d2
ABL(A,B)V W= −2〈ΣyxW

′Tp −A (Sp ◦ (BΣxxW
′))−A (Sp ◦ (WΣxxB

′)) ,V 〉F , (58)

d2
A2L(A,B)V 2= 2〈V (Sp ◦ (BΣxxB

′)) ,V 〉F . (59)

Proof. Directly compute

L(A + V ,B) =

p∑
i=1

〈Y − (A + V )Ii;pBX,Y − (A + V )Ii;pBX〉F

=

p∑
i=1

〈Y −AIi;pBX,Y −AIi;pBX〉F −
p∑
i=1

〈Y −AIi;pBX,V Ii;pBX〉F

+

p∑
i=1

〈−V Ii;pBX,Y −AIi;pBX〉F +

p∑
i=1

〈−V Ii;pBX,−V Ii;pBX〉F

= L(A,B)−
p∑
i=1

2〈Y −AIi;pBX,V Ii;pBX〉F +

p∑
i=1

〈V Ii;pBX,V Ii;pBX〉F

L(A + V ,B)− L(A,B) = −
p∑
i=1

2〈Y −AIi;pBX,V Ii;pBX〉F +O(‖V ‖2F )
V→0
=⇒

dAL(A,B)V = −
p∑
i=1

2〈Y −AIi;pBX,V Ii;pBX〉F

= −2 Tr(V ′(ΣyxB
′
p∑
i=1

Ii;p −A

p∑
i=1

Ii;pBΣxxB
′Ii;p)) =⇒

dAL(A,B)V = −2〈ΣyxB
′Tp −A (Sp ◦ (BΣxxB

′)) ,V 〉F =⇒
dAL(A + V̄ ,B)V = −2〈ΣyxB

′Tp − (A + V̄ ) (Sp ◦ (BΣxxB
′)) ,V 〉F

dAL(A + V̄ ,B)V − dAL(A,B)V = 2〈V̄ (Sp ◦ (BΣxxB
′)) ,V 〉F

V̄→0
=⇒
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d2
A2L(A,B)(V , V̄ ) = 2〈V̄ (Sp ◦ (BΣxxB

′)) ,V 〉F =⇒
d2
A2L(A,B)V 2 = 2〈V (Sp ◦ (BΣxxB

′)) ,V 〉F

dAL(A,B + W )V =− 2〈Σyx(B + W )′Tp,V 〉F
−2〈−A (Sp ◦ ((B + W )Σxx(B + W )′)) ,V 〉F
−2〈ΣyxB

′Tp −A (Sp ◦ (BΣxxB
′)) ,V 〉F

=dAL(A,B)V − 2〈ΣyxW
′Tp,V 〉F

−2〈−A (Sp ◦ (BΣxxW
′))−A (Sp ◦ (WΣxxB

′)) ,V 〉F +O(‖W ‖2F ) =⇒

dAL(A,B + W )V − dAL(A,B)V = −2〈ΣyxW
′Tp,V 〉F

− 2〈−A (Sp ◦ (BΣxxW
′))−A (Sp ◦ (WΣxxB

′)) ,V 〉F

+O(‖W ‖2F )
W→0
=⇒

d2
ABL(A,B)V W = −2〈ΣyxW

′Tp −A (Sp ◦ (BΣxxW
′))−A (Sp ◦ (WΣxxB

′)) ,V 〉F .
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