
LP-SparseMAP: Differentiable Relaxed Optimization

for Sparse Structured Prediction

Vlad Niculae 1 André F. T. Martins 1 2 3

Abstract

Structured predictors require solving a combina-

torial optimization problem over a large num-

ber of structures, such as dependency trees or

alignments. When embedded as structured hid-

den layers in a neural net, argmin differentiation

and efficient gradient computation are further re-

quired. Recently, SparseMAP has been proposed

as a differentiable, sparse alternative to maxi-

mum a posteriori (MAP) and marginal inference.

SparseMAP returns an interpretable combination

of a small number of structures; its sparsity be-

ing the key to efficient optimization. However,

SparseMAP requires access to an exact MAP ora-

cle in the structured model, excluding, e.g., loopy

graphical models or logic constraints, which gen-

erally require approximate inference. In this pa-

per, we introduce LP-SparseMAP, an extension

of SparseMAP addressing this limitation via a lo-

cal polytope relaxation. LP-SparseMAP uses the

flexible and powerful language of factor graphs

to define expressive hidden structures, support-

ing coarse decompositions, hard logic constraints,

and higher-order correlations. We derive the for-

ward and backward algorithms needed for using

LP-SparseMAP as a structured hidden or output

layer. Experiments in three structured tasks show

benefits versus SparseMAP and Structured SVM.

1. Introduction

The data processed by machine learning systems often has

underlying structure: for instance, language data has inter-

word dependency trees, or alignments, while image data

can reveal object segments. As downstream models benefit

1Instituto de Telecomunicações, Lisbon, Portugal 2Unbabel,
Lisbon, Portugal 3Instituto Superior Técnico, University of Lisbon,
Portugal. Correspondence to: Vlad Niculae <vlad@vene.ro>,
André F. T. Martins <andre.t.martins@tecnico.ulisboa.pt>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

sleep the clock around

BUDGET factor

TREE factor

sleep→the sleep→clock sleep→around

the→sleep the→clock the→around

clock→sleep clock→the clock→around

around→sleep around→the around→clock

fg = TorchFactorGraph()

u = fg.variable_from(arc_scores)

fg.add(DepTree(u))

for k in range(n):

fg.add(Budget(u[:, k], budget=5))

fg.solve()

Figure 1: Parsing model with valency constraints: each

“head” word is constrained to have at most k “modifiers”.

LP-SparseMAP is the first method for tractable, differen-

tiable decoding in such a model. Below: abridged imple-

mentation using our library (more in App. F).

from the hidden structure, practitioners typically resort to

pipelines, training a structure predictor on labelled data,

and using its output as features. This approach requires

annotation, suffers from error propagation, and cannot allow

the structure predictor to adapt to the downstream task.

Instead, a promising direction is to treat structure as latent,

or hidden: learning a structure predictor without supervi-

sion, together with the downstream model in an end-to-end

fashion. Several recent approaches were proposed to tackle

this, based on differentiating through marginal inference

(Kim et al., 2017; Liu and Lapata, 2018), noisy gradient

estimates (Peng et al., 2018; Yogatama et al., 2017), or both

(Corro and Titov, 2019a;b). The work in this area requires

specialized, structure-specific algorithms either for comput-

LP-SparseMAP

ing gradients or for sampling, limiting the choice of the

practitioner to a catalogue of supported types structure. A

slightly more general approach is SparseMAP (Niculae

et al., 2018), which is differentiable and outputs combina-

tions of a small number of structures, requiring only an

algorithm for finding the highest-scoring structure (maxi-

mum a posteriori, or MAP). When increased expressivity

is required, for instance through logic constraints or higher-

order interactions, the search space becomes much more

complicated, and MAP is typically intractable. For example,

adding constraints on the depth of a parse tree makes the

problems NP-hard. Our work improves the hidden structure

modeling freedom available to practitioners, as follows.

• We propose a generic method for differentiable struc-

tured hidden layers, based on the flexible domain-

specific language of factor graphs, familiar to many

structured prediction practitioners.

• We derive an efficient and globally-convergent ADMM

algorithm for the forward pass.

• We prove a compact, efficient form for the backward

pass, reusing quantities precomputed in the forward

pass, without having to unroll a computation graph.

• Our overall method is modular: new factor types can

be added to our toolkit just by providing a MAP oracle,

invoked by the generic forward and backward pass.

• The generic approach may be overridden when special-

ized algorithms are available. We derive efficient spe-

cialized algorithms for core building block factors such

as pairwise, logical OR, negation, budget constraints,

etc., ensuring our toolkit is expressive out-of-the-box.

We show empirical improvements on inducing latent trees

on arithmetic expressions, bidirectional alignments in nat-

ural language inference, and multilabel classification. Our

library, with C++ and python frontends, is available at

https://github.com/deep-spin/lp-sparsemap.

2. Background

2.1. Notation

We denote scalars, vectors and matrices as a, a, and A,

respectively. The set of indices {1, . . . , d} is denoted [d].
The Iverson bracket JCK takes the value 1 if the condition

C is true, otherwise 0. The indicator vector ei is defined as

[ei]k := Ji = kK. The ith column of matrix A is ai. The

canonical simplex is △ := {p ∈ Rd : 〈1,p〉 = 1,p ≥
0}, and the convex hull is conv{a1, . . . ,ad} := {Ap :
p ∈ △}. We denote row-wise stacking of Ai ∈ Rmi×d

as [A1, . . . ,Ak] ∈ R(
∑

i mi)×d. Particularly, [a, b] is the

concatenation of two (column) vectors. Given a vector

b ∈ Rd, diag(b) ∈ Rd×d is the diagonal matrix with b

along the diagonal. Given matrices B1, . . . ,Bk of arbitrary

dimensions Bi ∈ Rmi×ni , define the block-diagonal matrix

bdiag(B1, . . . ,Bk) =

[
B1 · · · 0

.

.

.
. . .

.

.

.

0 · · · Bk

]
∈ R

∑
imi×

∑
ini .

2.2. Tractable structured problems

Structured prediction involves searching for valid structures

over a large, combinatorial space y ∈ Y . We assign a

vector representation ay to each structure. For instance, we

may consider structures to be joint assignments of d binary

variables (corresponding to parts of the structure) and define

(ay)i = 1 if variable i is turned on in structure y, else 0.

The set of valid structures Y is typically non-trivial. For

example, in matching problems between n workers and n
tasks, we have d = n2 binary variables, but the only legal

assignments give exactly one task to each worker, and one

worker to each task.

Maximization (MAP). Given a score vector over parts η,

we assign a score θy = 〈ay,η〉 to each structure. Assem-

bling all ay as columns of a matrix A, the highest-scoring

structure is the one maximizing

max
y∈Y
〈η,ay〉 = max

p∈△
〈η,Ap〉. (1)

MA = conv{ay : y ∈ Y} is called the marginal polytope

(Wainwright and Jordan, 2008), and points µ ∈ MA are

expectations Ey∼p[ay] under some p ∈ △.

In the sequel, we split A = [M ,N] such that µ = Mp

is the output of interest, (e.g., variable assignments), while

Np captures additional structures or interactions (e.g., tran-

sitions in sequence tagging). We denote the corresponding

division of the score vector as η = [ηM ,ηN]. This dis-

tinction is not essential, as we may always take M = A

and N = [] (i.e., treat additional interactions as first-class

variables), but it is more consistent with pairwise Markov

Random Fields (MRF).

Examples. A model with 3 variables and an XOR constraint

(exactly one variable may be on) has possible configurations

my = ey for y ∈ {1, 2, 3}, thus M = I , and no addition-

als (N = []). A model with the same dimension but without

the constraint has all 23 possible configurations as columns

of M , still with no additionals. One such configuration is

y = 011, with my = [0, 1, 1]. (Throughout this paper, y is

an arbitrary index type with no mathematical properties; we

may as well use an integer base-2 encoding.) A sequence

model with no constraints will have the same valid configu-

rations, but will include additionals for transition potentials:

here it is sufficient to have an additional bit for each con-

secutive pair of variables, assigning 1 if both variables are

simultaneously active. For y = 011 this gives ny = [0, 1].

https://github.com/deep-spin/lp-sparsemap

LP-SparseMAP

Optimization as a hidden layer. Hidden layers in a neu-

ral network are vector-to-vector mappings, and learning

is typically done using stochastic gradients. We may cast

structured maximization in this framework. Assuming fixed

tie-breaking, we may regard the MAP computation as a

function that takes the scores η and outputs a vector of

variable assignments µ ∈ [0, 1]d,

MAPA(η) := µ

where µ := my, y = argmax
y∈Y

〈η,ay〉.
(2)

The solution is always a vertex in {0, 1}d, and, for almost

all η, small changes to η do not change what the highest-

scoring structure is. Thus, wherever MAPA is continuous,

its gradients are null, rendering it unsuitable as a hidden

layer in a neural network trained with gradient-based opti-

mization (Peng et al., 2018).

Marginal inference. In unstructured models (e.g., atten-

tion mechanisms), discrete maximization has the same null

gradient issue identified in the previous paragraph, thus it

is commonly replaced by its relaxation softmax(x). De-

note the Shannon entropy of a distribution p ∈ △ by

H(p) := −
∑

j pj log pj . The structured equivalent of soft-

max is the entropy-regularized problem

max
p∈△
〈η,Ap〉+H(p), (3)

whose solution is p⋆y ∝ exp〈ay,η〉. This Gibbs distribution

is dense and induces a marginal distribution over variable

assignments (Wainwright and Jordan, 2008):

MarginalsA(η) := µ where µ := Ep⋆ [my]. (4)

While generally intractable, for certain models, such as se-

quence tagging, one can efficiently compute MarginalsA(η)
and∇MarginalsA(η) (often, with dynamic programming,

Kim et al., 2017). In many, it is intractable, e.g., matching

(Valiant, 1979; Taskar, 2004, Section 3.5), dependency pars-

ing with valency constraints (McDonald and Satta, 2007).

SparseMAP (Niculae et al., 2018) is a differentiable mid-

dle ground between maximization and expectation. It is

defined via the quadratic objective

max
p∈△
〈η,Ap〉 −

1

2
‖Mp‖2. (5)

where an optimal sparse distribution p and the unique

µ = Mp can be efficiently computed via the active set

method (Nocedal and Wright, 1999, Ch. 16.4 & 16.5), a gen-

eralization of Wolfe’s min-norm point method (Wolfe, 1976)

and an instance of conditional gradient (Frank and Wolfe,

1956). Remarkably, the active set method only requires calls

to a maximization oracle (i.e., finding the highest-scoring

Figure 2: Matching model under two equivalent decomposi-

tions. Left: a coarse one with a single factor. Right: a fine

one with multiple XOR factors.

structure repeatedly, after adjustments), and has linear, finite

convergence. Thus, SparseMAP can be computed efficiently

even when marginal inference is not available, potentially

turning any structured problem with a maximization algo-

rithm available into a differentiable sparse structured hidden

layer. The sparsity not only brings computational advan-

tages, but also aids visualization and interpretation.

However, the requirement of an exact maximization algo-

rithm is still a rather stringent limitation. In the remain-

der of the section, we look into a flexible family of struc-

tured models where maximization is hard. Then, we extend

SparseMAP to cover all such models.

2.3. Intractable structured problems

and factor graph representations

We now turn to more complicated structured problems, con-

sisting of multiple interacting subproblems. As we shall see,

this covers many interesting problems.

Essentially, we represent the global structure as assignments

to d variables, and posit a decomposition of the problem

into local factors f ∈ F , each encoding locally-tractable

scoring and constraints (Kschischang et al., 2001). A factor

may be seen as smaller structured subproblem. Crucially,

factor must agree whenever they overlap, rendering the

subproblems interdependent, non-separable.

Examples. Figure 1 shows a factor graph for a depen-

dency parsing problem in which prior knowledge dictates

valency constraints, i.e., disallowing words to be assigned

more than k dependent modifiers. This encourages depth,

preventing trees from being too flat. For a sentence with m
words, we use m2 binary variables for every possible arc,

(including the root arcs, omitted in the figure). The global

tree factor disallows assignments that are not trees, and the

m budget constraint factors, each governing m− 1 different

variables, disallow more than k dependency arcs out of each

word. Factor graph representations are often not unique.

For instance, consider a matching (linear assignment) model

(Figure 2). We may employ a coarse factorization consist-

ing of a single matching factor, for which maximization

is tractable thanks to the Kuhn-Munkres algorithm (Kuhn,

1955). This problem can also be represented using multiple

LP-SparseMAP

XOR factors, constraining that each row and each column

must have exactly (exclusively) one selected variable.

Denote the variable assignments as µ ∈ [0, 1]d. We regard

each factor f as a separate structured model in its own right,

encoding its permissible assignments as columns of a matrix

Af = [Mf ,Nf], and define a selector matrix Cf such

that Cfµ “selects” the variables from the global vector µ

covered by the factor f . Then, a valid global assignment can

be represented as a tuple of local assignments yf , provided

that the agreement constraints are satisfied:

Y = {y = (yf)|f∈F : ∃ µ, ∀f ∈ F , Cfµ = myf
}. (6)

Finding the highest scoring structure has the same form as

in the tractable case, but the discrete agreement constraints

in Y make it difficult to compute, even when each factor is

computationally friendly:

max
y∈Y

∑

f∈F

〈ηf ,ayf
〉. (7)

In the tractable case, we were able to relax the discrete maxi-

mization into a continuous one with respect to a distribution

over global configurations p ∈ △ (Eq. 1). We take the same

approach, but locally, considering distributions over local

configurations pf ∈ △f for each factor. For compactness,

we shall use the concatenations

p := [pf1 , . . . ,pfn], C := [Cf1 , . . . ,Cfn]

and the block-diagonal matrices

A := bdiag(Af1 , ...,Afn),M := bdiag(Mf1 , ...,Mfn).

We may then write the optimization problem

maximize
µ, p

∑

f∈F

〈ηf ,Afpf 〉

subject to p ∈ △f1 ×△f2 × · · · × △fn ,

Cµ = Mp,

(8)

continuously relaxing each factor independently while en-

forcing agreement. The objective in Eq. 8 is separable, but

the constraints are not. The feasible set,

L = {Ap : p ∈ △f1 × · · · × △fn , Cµ = Mp}, (9)

is called the local polytope and satisfies L ⊇ M =
conv{ay : y ∈ Y}. Therefore, (8) is a relaxation of (7),

known as LP-MAP (Wainwright and Jordan, 2008). In

general, the inclusion L ⊇M is strict. Many LP-MAP al-

gorithms exploiting the graphical model structure have been

proposed, from the perspective of message passing or dual

decomposition (Wainwright et al., 2005; Kolmogorov, 2006;

Komodakis et al., 2007; Globerson and Jaakkola, 2007; Koo

et al., 2010). In particular, AD3 (Martins et al., 2015) tackles

LP-MAP by solving a SparseMAP-like quadratic subprob-

lem for each factor.

It may be tempting to consider building a differentiable

structured hidden layer by using SparseMAP with an LP-

MAP approximate oracle. However, since LP-MAP is an

outer relaxation, solutions are in general not feasible, lead-

ing to divergence. Instead, in the sequel, we apply the LP

relaxation to a smoothed objective, resulting in a general

algorithm for sparse differentiable inference.

3. LP-SparseMAP

By analogy to Eq. 5, we propose the differentiable LP-

SparseMAP inference strategy:

maximize
µ, p

(∑

f∈F

〈ηf ,Afpf 〉
)
− 1/2 ‖µ‖2

subject to p ∈ △f1 ×△f2 × · · · × △fn ,

Cµ = Mp.

(10)

Unlike LP-MAP (Eq. 8), LP-SparseMAP has a non-

separable ℓ2 term in the objective. The next result refor-

mulated the problem as separable consensus optimization.

Proposition 1. Denote by deg(j) = |{f ∈ F : j ∈
f}| > 0, the number of factors governing µj .1 Define

δ as δj =
√

deg(j), and D = diag(Cδ). Denote

C̃ = D−1C,M̃ = D−1M . Then, the problem below

is equivalent to (10):

maximize
µ, p

∑

f∈F

(
〈ηf ,Afpf 〉 − 1/2 ‖M̃fpf‖

2
)

subject to p ∈ △f1 ×△f2 × · · · × △fn ,

C̃µ = M̃p.

(11)

Proof. The constraints Cµ = Mp and C̃µ = M̃p are

equivalent since δ > 0 ensures D invertible. It remains

to show that, at feasibility, ‖µ‖2 = ‖M̃p‖2. This follows

from ‖µ‖2 = ‖C̃µ‖2 (shown in App. A).

3.1. Forward pass

Using this reformulation, we are now ready to introduce an

ADMM algorithm (Glowinski and Marroco, 1975; Gabay

and Mercier, 1976; Boyd et al., 2011) for maximizing

Eq. 11. The algorithm is given in Algorithm 1 and derived

in App. B. Like AD3, it iterates alternating between:

1. solving a SparseMAP subproblem for each factor;

(With the active set algorithm, this requires only cheap

calls to a MAP oracle.)

1Variables not attached to any factor can be removed from the
problem, so we may assume deg(j) > 0.

LP-SparseMAP

Algorithm 1 ADMM for LP-SparseMAP

1: Input: η (scores), T (max. iterations), γ (ADMM step size),

εp, εd (primal and dual stopping criteria).

2: Output: (µ,p) solving Eq. 10.

3: Initialization: µ
(0)
i = 1/deg(i),λ(0) = 0.

4: for t = 1, . . . , T

5: for all f ∈ F # SparseMAP subproblem

6: η̃f,M ←
1

γ+1

(
Dfηf,M − λ

(t−1)
f + γC̃fµ

(t−1)
)

7: η̃f,N ←
1

γ+1
ηf,N

8: p
(t)
f ← argmin

pf∈△f

1

2
‖η̃f,M −M̃fpf‖

2−〈η̃f,N ,Nfpf 〉

9: end for

10: µ(t) ← C̃⊤M̃p(t) # agreement by local averaging

11: λ(t) ← λ(t−1) + γ
(
C̃µ(t) − M̃p(t)

)
dual update

12: if ‖µ(t) − µ(t−1)‖ < εd & ‖C̃µ(t) − M̃p(t)‖ < εp
13: return # converged

14: end if

15: end for

2. enforcing global agreement by averaging;

3. performing a gradient update on the dual variables.

Proposition 2. Algorithm 1 converges to a solution of (10);

moreover, the number of iterations needed to reach ǫ dual

suboptimality is O(1/ǫ).

Proof. The algorithm is an instantiation of ADMM to

Eq. 11, inheriting the proof of convergence of ADMM.

(Boyd et al., 2011, Appendix A). From Proposition 1, this

problem is equivalent to (10). Finally, the rate of conver-

gence is established by Martins et al. (2015, Proposition 8),

as the problems differ only through an additional regulariza-

tion term in the objective.

When there is a single factor, i.e., F = {f}, running for one

iteration with γ = 0 recovers SparseMAP. In practice, in

the inner active set solver we use warm starts and perform

a small number of MAP calls. This leads to an algorithm

more similar in spirit to Frank-Wolfe splitting (Gidel et al.,

2018), with the key difference that by solving the nested

QPs we obtain the necessary quantities to ensure a more

efficient backward pass, as described in the next section.

3.2. Backward pass

Unlike marginal inference, LP-SparseMAP encourages the

local distribution at each factor to become sparse, and yields

a simple form for the LP-SparseMAP Jacobian, defined

in terms of the local SparseMAP Jacobians of each factor

(App. C.1). Denote the local solutions µf = M̃pf and the

Jacobians of the SparseMAP subproblem for each factor as

Jf,M :=
∂µf

∂ηf,M

, Jf,N :=
∂µf

∂ηf,N

. (12)

Algorithm 2 Backward pass for LP-SparseMAP

1: Input: d (the gradient of the loss w.r.t. µ), T (the maximum

number of iterations), ε (stopping criterion).

2: Output: dM ,dN,f (loss gradient w.r.t. ηM and ηN,f).

3: for t = 1, . . . , T

4: for all f ∈ F

5: df ← C̃fd; # split d into copies for each factor

6: dM,f ← J⊤
M,fdf , dN,f ← J⊤

N,fdf ; # local∇

7: end for

8: dM ←
∑

f C̃
⊤
f df . # local averaging

9: if ‖dM − d‖ ≤ ε

10: return (dM ,dN,f). # converged

11: else

12: d← dM

13: end if

14: end for

When using the active set algorithm for SparseMAP,

Jf,{M,N} are precomputed in the forward pass (Niculae

et al., 2018). The LP-SparseMAP backward pass combines

the local Jacobians while taking into account the agreement

constraints, as shown next.

Proposition 3. Let JM = bdiag(Jf,M) and JN =
bdiag(Jf,N) denote the block-diagonal matrices of local

SparseMAP Jacobians. Let J = J⊤ ∈ Rd×d satisfying

J := C̃⊤JM C̃ J . (13)

Then,
∂µ

∂ηM

= J and
∂µ

∂ηN

= JC̃⊤JN . (14)

The proof is given in App. C.2, and J may be computed

using an eigensolver. However, to use LP-SparseMAP as a

hidden layer, we don’t need a materialized Jacobian, just its

multiplication by an arbitary vector d ∈ Rd, i.e.,

(∂µ

∂ηM

)⊤
d, and

(∂µ

∂ηN

)⊤
d.

These can be computed iteratively by Algorithm 2. Since

Cf are highly sparse and structured selector matrices, lines

5 and 8 are fast indexing operations followed by scaling;

the bulk of the computation is line 6, which can be seen

as invoking the backward pass of each factor, as if that

factor were alone in the graph. The structure of Algorithm 2

is similar to Algorithm 1, however, our backward is much

more efficient than “unrolling” Algorithm 1 within a com-

putation graph: Our algorithm only requires access to the

final state of the ADMM solver (Algorithm 1), rather than

all intermediate states, as would be required for unrolling.

3.3. Implementation and specializations

The forward and backward passes of LP-SparseMAP, de-

scribed above, are appealing from the perspective of modu-

LP-SparseMAP

Table 1: Examples of logic constraint factors.

name constraints

XOR (exactly one)
∑d

i=1 µi = 1

AtMostOne
∑d

i=1 µi ≤ 1

OR
∑d

i=1 µi ≥ 1

BUDGET
∑d

i=1 µi ≤ B

Knapsack
∑d

i=1 ciµi ≤ B

OROut
∑d−1

i=1 µi ≥ µd;µi ≤ µd for all i

lar implementation. The outer loop interacts with a factor

with only two interfaces: a SolveSparseMAP function and

a JacobianTimesVector function. In turn, both methods

can be implemented in terms of a SolveMAP maximization

oracle (Niculae et al., 2018).

For certain factors, such as the logic constraints in Ta-

ble 1, faster direct implementations of SolveSparseMAP

and JacobianTimesVector are available, and our algo-

rithm easily allows specialization. This is appealing from a

testing perspective, as the specializations must agree with

the generic implementation. For example, the exclusive-or

XOR factor requires that exactly one out of d variables can

be on. Its marginal polytope is the convex hull of allowed

assignments,MXOR = conv{e1, . . . , ed} = △
d. The re-

quired SparseMAP subproblem with degree corrections is

minimize 1/2 ‖µ− η‖22

subject to

d∑

j=1

δjµj = 1, and 0 ≤ µi ≤ 1/δi.
(15)

When δ = 1 this is a projection onto the simplex (sparse-

max), for which efficient algorithms are well-studied (Mar-

tins and Astudillo, 2016). For general δ, the algorithm of

Pardalos and Kovoor (1990) applies, and the backward pass

involves a generalization of the sparsemax Jacobian.

In App. D, we derive specialized forward and backward

passes for XOR, and the constraint factors in Table 1, as

well as for negated variables, OR, OR-Output, Knapsack

and pairwise (Ising) factors.

4. LP-SparseMAP loss for structured outputs

So far, we described LP-SparseMAP for structured hidden

layers. When supervision is available, either as a down-

stream objective or as partial supervision, a natural convex

loss relaxes the SparseMAP loss (Niculae et al., 2018):

ℓ(η, y) :=max
p,µ

∑

f

〈A⊤
f ηf ,pf−eyf

〉+
1

2
(‖my‖

2−‖µ‖2),

(16)

Figure 3: F1 score for tagging ListOps nodes with their

valency, using a latent tree. Incorporating inductive bias via

budget constraints improves performance.

under the constraints of Eq. 10. Like the SparseMAP loss,

this LP-SparseMAP loss falls into the recently-proposed

class of Fenchel-Young losses (Blondel et al., 2019), which

confirms its convenient properties, notably the margin prop-

erty (Blondel et al., 2020, Proposition 8). Its gradients are

obtained from the LP-SparseMAP solution (µ,p) as

∇ηM
ℓ(η, y) = µ−my, (17)

∇ηf ,N ℓ(η, y) = Nfpf − nyf
. (18)

When already using LP-SparseMAP as a hidden layer, this

loss provides a natural way to incorporate supervision on

the latent structure at no additional cost.

5. Experiments

In this section, we demonstrate LP-SparseMAP for learn-

ing complex latent structures on both toy and real-world

datasets, as well as on a structured output task. Learning

hidden structures solely from a downstream objective is

challenging for powerful models that can bypass the latent

component entirely. For this reason, we design our experi-

ments using simpler, smaller networks where the inferred

structure is an un-bypassable bottleneck, ensuring the predic-

tions depend on it. We use Dynet (Neubig et al., 2017) and

list hyperparameter configurations and ranges in App. E.

5.1. ListOps valency tagging

The ListOps dataset (Nangia and Bowman, 2018) is a syn-

thetic collection of bracketed expressions, such as [max 2

9 [min 4 7] 0]. The arguments are lists of integers, and

the operators are set summarizers such as median, max, sum,

etc. It was proposed as a litmus test for studying latent tree

learning models, since the syntax is essential to the seman-

tics. Instead of tackling the challenging task of learning to

evaluate the expressions, we follow Corro and Titov (2019b)

and study a tagging task: labeling each operator with the

number of arguments it governs.

LP-SparseMAP

Table 2: ListOps tagging results with non-projective latent

trees. The budget constraints bring improvement.

validation test
Acc. F1 Acc. F1

left-to-right 28.14 17.54 28.07 17.43
tree 68.23 68.74 68.74 69.12
tree+budget 82.35 82.59 82.75 82.95

Model architecture. We encode the sequence with a BiL-

STM, yielding vectors h1, . . . ,hL. We compute the score

of dependency arc i → j as the dot product between the

outputs of two mappings, one for encoding the head and

one for the modifier (target word):

fhd(h) = Whdh+ bhd; fmo(h) = Wmoh+ bmo;

ηi→j = 〈fhd(hi),ReLU(fmo(hj))〉.

We perform LP-SparseMAP optimization to get the sparse

arc posterior probabilities, using different factor graph struc-

tures F , described in the next paragraph.

µ = LP-SparseMAPF (η) (19)

The arc posteriors µ correspond to a sparse combination

of dependency trees. We perform one iteration of a Graph

Convolutional Network (GCN) along the edges in µ. Cru-

cially, the input to the GCN is not the BiLSTM output

(h1, . . . ,hL) but a “de-lexicalized” sequence (v, . . . ,v)
where v is a learned parameter vector, repeated L times

regardless of the tokens. This forces the predictions to rely

on the GCN and thus on the latent trees, preventing the

model from using the global BiLSTM to “cheat”. The GCN

produces contextualized representations (g1, . . . , gL) which

we then pass through an output layer to predict the valency

label for each operator node.

Factor graphs. Unlike Corro and Titov (2019b), who use

projective dependency parsing, we consider the general non-

projective case, making the problem more challenging. The

MAP oracle is the maximum arborescence algorithm (Chu

and Liu, 1965; Edmonds, 1967).

First, we consider a factor graph with a single non-projective

TREE factor: in this case, LP-SparseMAP reduces to a

SparseMAP baseline. Motivated by multiple observations

that SparseMAP and similar latent structure learning meth-

ods tend to learn trivial trees (Williams et al., 2018) we next

consider overlaying constraints in the form of BUDGET

factors on top of the TREE factor. For every possible head

i, we include a BUDGET factor allowing at most five of the

possible outgoing arcs (µi→1, . . . , µi→L) to be selected.

Results. Figure 3 confirms that, unsurprisingly, the base-

line with access to gold dependency structure quickly learns

Table 3: NLI accuracy scores with structured attention. The

LP-SparseMAP models perform competitively.

SNLI MultiNLI
valid test valid test

softmax 84.44 84.62 70.06 69.42
matching 84.57 84.16 70.84 70.36
LP-matching 84.70 85.04 70.57 70.64
LP-sequential 83.96 83.67 71.10 71.17

to predict perfectly, while the simple left-to-right base-

line cannot progress. LP-SparseMAP with BUDGET con-

straints on the modifiers outperforms SparseMAP by over

10 percentage points (Table 2).

5.2. Natural language inference

with decomposable structured attention

We now turn to the task of natural language inference, using

LP-SparseMAP to uncover hidden alignments for structured

attention networks. Natural language inference is a pairwise

classification task. Given a premise of length m, and a

hypothesis of length n, the pair must be classified into one

of three possible relationships: entailment, contradiction, or

neutrality. We use the English language SNLI and MultiNLI

datasets (Bowman et al., 2015; Williams et al., 2017), with

the same preprocessing and splits as Niculae et al. (2018).

Model architecture. We use the model of Parikh et al.

(2016) with no intra-attention. The model computes a joint

attention score matrix S of size m× n, where sij depends

only on ith word in the premise and the jth word in the

hypothesis (hence decomposable). For each premise word

i, we apply softmax over the ith row of S to get a weighted

average of the hypothesis. Then, similarly, for each hypothe-

sis word j, we apply softmax over the jth row of S yielding

a representation of the premise. From then on, each word

embedding is combined with its corresponding weighted

context using an affine function, the results are sum-pooled

and passed through an output multi-layer perceptron to make

a classification. We propose replacing the independent soft-

max attention with structured, joint attention, normalizing

over both rows and columns simultaneously in several dif-

ferent ways, using LP-SparseMAP with scores ηij = sij .

We use frozen GloVe embeddings (Pennington et al., 2014),

and all our models have 130k parameters (cf. App. E).

Factor graphs. Assume m ≤ n. First, like Niculae et al.

(2018), we consider a matching factor f :

Mf =
{
µ ∈ [0, 1]mn;

∑

j∈[n]

µij = 1,
∑

i∈[m]

µij ≤ 1
}
. (20)

When m = n, linear maximization on this constraint set

LP-SparseMAP

Figure 4: Attention induced using softmax (left) and LP-

SparseMAP sequential (right) on a MultiNLI example. With

this inductive bias, LP-SparseMAP learns a bi-directional

alignment anchoring longer phrases.

corresponds to the linear assignment problem, solved by the

Kuhn-Munkres (Kuhn, 1955) or Jonker-Volgenant (Jonker

and Volgenant, 1987) algorithms, and the solution is a dou-

bly stochastic matrix. When m < n, the scores can be

padded with −∞ to a square matrix prior to invoking the

algorithm. A linear maximization thus takes O(n3), and

this instantiation of structured matching attention can be

tackled by SparseMAP. Next we consider a relaxed equiva-

lent formulation which we call LP-matching, as shown in

Figure 2, with one XOR factor per row and one AtMostOne

factor per column:

F = {XOR(µi1, . . . , µin) : i ∈ [m]}

∪ {AtMostOne(µ1j , . . . , µmj) : j ∈ [n]}
(21)

Each subproblem can be solved inO(n) for a total complex-

ity of O(n2) per iteration (cf. Appendix D). While more

iterations may be necessary to converge, the finer-grained

approach might make faster progress, yielding more useful

latent alignments. Finally, we consider a more expressive

joint alignment that encourages continuity. Inspired by the

sequential alignment of Niculae et al. (2018), we propose

a bi-directional model called LP-sequence, consisting of

a coarse, linear-chain Markov factor (with MAP provided

by the Viterbi algorithm; Rabiner, 1989) parametrized by

a single transition score ηN for every pair of alignments

(i, j)−(i+1, j±1). By itself, this factor may align multiple

premise words to the same hypothesis word. We symmetrize

it by overlaying m AtMostOne factors, like in Eq. 21, en-

suring each hypothesis word is aligned on average to at most

one premise word. Effectively, this results in a sequence

tagger constrained to use each of the m states at most once.

For both LP-SparseMAP approaches, we rescale the result

by row sums to ensure feasibility.

Results. Table 3 reveals that LP-matching is the best

performing mechanism on SNLI, and LP-sequential on

Table 4: Multilabel classification test F1 scores.

bibtex bookmarks

Unstructured 42.28 35.76
Structured hinge loss 37.70 33.26
LP-SparseMAP loss 43.43 36.07

MultiNLI. The ηN transition score learned by LP-sequential

is 1.6 on SNLI and 2.5 on MultiNLI, and Figure 4 shows

an example of the useful inductive bias it learns. On

both datasets, the relaxed LP-matching outperforms the

coarse matching factor, suggesting that, indeed, equivalent

parametrizations of a model may perform differently when

not run until convergence.

5.3. Multilabel classification

Finally, to confirm that LP-SparseMAP is also suitable as in

the supervised setting, we evaluate on the task of multilabel

classification. Our factor graph has k binary variables (one

for each label), and a pairwise factor for every label pair:

F = {PAIR(µi, µj ; ηij) : 1 ≤ i < j ≤ k}. (22)

This yields the standard fully-connected pairwise MRF:

〈η,µ〉 =
∑

i

µiηi +
∑

i<j

µiµjηij . (23)

Neural network parametrization. We use a 2-layer

multi-layer perceptron to compute the score for each vari-

able. In the structured models, we have an additional
1/2 k(k−1) parameters for the co-occurrence score of every

pair of classes. We compare an unstructured baseline (using

the binary logistic loss for each label), a structured hinge

loss (with LP-MAP inference) and a LP-SparseMAP loss

model. We solve LP-MAP using AD3 and LP-SparseMAP

with our proposed algorithm (cf. Appendix E).

Results. Table 4 shows the example F1 score on the

test set for the bibtex and bookmarks benchmark datasets

(Katakis et al., 2008). The structured hinge loss model

is worse than the unstructured (binary logistic loss) base-

line; the LP-SparseMAP loss model outperforms both. This

suggests that the LP-SparseMAP loss is promising for struc-

tured output learning. We note that, in strictly-supervised

setting, approaches that blend inference with learning (e.g.,

Chen et al., 2015; Tang et al., 2016) may be more efficient;

however, LP-SparseMAP can work both as a hidden layer

and a loss, with no redundant computation.

6. Related work

Differentiable optimization. The most related research

direction involves bi-level optimization, or argmin differ-

LP-SparseMAP

entiation (Gould et al., 2016; Djolonga and Krause, 2017);

Typically, such research assumes problems are expressible

in a standard form, for instance using quadratic programs

(Amos and Kolter, 2017) or generic disciplined convex pro-

grams (Section 7, Amos, 2019; Agrawal et al., 2019a;b).

We take inspiration from this line of work by developping

LP-SparseMAP as a flexible domain-specific language for

defining latent structure. The generic approaches are not

applicable for the typical optimization problems arising in

structured prediction, because of the intractably large num-

ber of constraints typically necessary, and the difficulty of

formulating many problems in standard forms. Our method

instead assumes interacting through the problem through

local oracle algorithms, exploiting the structure of the factor

graph and allowing for more efficient handling of coarse

factors and logic constraints via nested subproblems.

Latent structure models. Our motivation and applica-

tions are mostly focused on learning with latent structure.

Specifically, we are interested in global optimization meth-

ods, which require marginal inference or similar relaxations

(Kim et al., 2017; Liu and Lapata, 2018; Corro and Titov,

2019a;b; Niculae et al., 2018), rather than incremental

methods based on policy gradients (Yogatama et al., 2017).

Promising methods exist for approximate marginal infer-

ence in factor graphs with MAP calls (Belanger et al., 2013;

Krishnan et al., 2015; Tang et al., 2016), relying on entropy

approximation penalties. Such approaches focus on super-

vised structure prediction, which is not our main goal; and

their backward passes has not been studied to our knowl-

edge. Importantly, as these penalties are non-quadratic,

the active set algorithm does not apply, falling back to the

more general variants of Frank-Wolfe. The active set al-

gorithm is a key ingredient of our work, as it exhibits fast

finite convergence, finds sparse solutions and – crucially –

provides precomputation of the matrix inverse required in

the backward pass (Niculae et al., 2018). In contrast, the

quadratic penalty (Meshi et al., 2015; Niculae et al., 2018)

is more amenable to optimization, as well as bringing other

sparsity benefits. The projection step of Peng et al. (2018)

can be cast as a SparseMAP problem, thus our algorithm

can be used to also extend their method to arbitrary factor

graphs. For pairwise MRFs (a class of factor graphs), dif-

ferentiating belief propagation, either through unrolling or

perturbation-based approximation, has been studied (Stoy-

anov et al., 2011; Domke, 2013). Our approach instead

computes implicit gradients, which is more efficient, thanks

to quantities precomputed in the forward pass, and in some

circumstances has been shown to work better (Rajeswaran

et al., 2019). Finally, MRF-based approaches have not been

explored in the presence of logic constraints or coarse fac-

tors, while our formulation is built from the beginning with

such use cases in mind.

7. Conclusions

We introduced LP-SparseMAP, an extension of SparseMAP

to sparse differentiable optimization in any factor graph,

enabling neural hidden layers with arbitrarily complex struc-

ture, specified using a familiar domain-specific language.

We have shown LP-SparseMAP to outperform SparseMAP

for latent structure learning, and outperform the structured

hinge for structured output learning. We hope that our

toolkit empowers future research on latent structure, lead-

ing to powerful models based on domain knowledge. In

future work, we shall investigate further applications where

expertise about the domain structure, together with mini-

mal self-supervision deployed via the LP-SparseMAP loss,

may lead to data-efficient learning, even for more expressive

models without artificial bottlenecks.

Acknowledgements

We are grateful to Brandon Amos, Mathieu Blondel,

Gonçalo Correia, Caio Corro, Erick Fonseca, Pedro Mar-

tins, Tsvetomila Mihaylova, Nikita Nangia, Fabian Pe-

dregosa, Marcos Treviso, and the reviewers, for their valu-

able feedback and discussions. This work is built on open-

source software; we acknowledge the scientific Python stack

(Van Rossum and Drake, 2009; Oliphant, 2006; Walt et al.,

2011; Virtanen et al., 2020; Behnel et al., 2011) and the

developers of Eigen (Guennebaud et al., 2010). This work

was supported by the European Research Council (ERC

StG DeepSPIN 758969), by the Fundação para a Ciência

e Tecnologia through contracts UID/EEA/50008/2019 and

CMUPERI/TIC/0046/2014 (GoLocal), and by the MAIA

project, funded by the P2020 program under contract num-

ber 045909.

REFERENCES

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,

and Kolter, J. Z. (2019a). Differentiable convex optimiza-

tion layers. In Proc. of NeurIPS.

Agrawal, A., Barratt, S., Boyd, S., Busseti, E., and Moursi,

W. M. (2019b). Differentiating through a cone program.

Journal of Applied and Numerical Optimization, 2019(2).

Amos, B. (2019). Differentiable Optimization-Based Model-

ing for Machine Learning. PhD thesis, Carnegie Mellon

University.

Amos, B. and Kolter, J. Z. (2017). OptNet: Differentiable

optimization as a layer in neural networks. In Proc. of

ICML.

Anderson Jr, W. N., Harner, E. J., and Trapp, G. E. (1985).

Eigenvalues of the difference and product of projections.

Linear and Multilinear Algebra, 17(3-4):295–299.

http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers.pdf
https://arxiv.org/abs/1904.09043
https://github.com/bamos/thesis
https://github.com/bamos/thesis
http://proceedings.mlr.press/v70/amos17a.html
http://proceedings.mlr.press/v70/amos17a.html
https://www.tandfonline.com/doi/abs/10.1080/03081088508817661?journalCode=glma20

LP-SparseMAP

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn,

D. S., and Smith, K. (2011). Cython: the best of both

worlds. Computing in Science & Engineering, 13(2):31–

39.

Belanger, D., Sheldon, D., and McCallum, A. (2013).

Marginal inference in MRFs using Frank-Wolfe. In Proc.

of the NeurIPS Workshop on Greedy Optimization, Frank-

Wolfe and Friends.

Blondel, M., Martins, A. F., and Niculae, V. (2019). Learn-

ing classifiers with Fenchel-Young losses: Generalized

entropies, margins, and algorithms. In Proc. of AISTATS.

Blondel, M., Martins, A. F., and Niculae, V. (2020). Learn-

ing with Fenchel-Young losses. Journal of Machine

Learning Research, 21(35):1–69.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D.

(2015). A large annotated corpus for learning natural

language inference. In Proc. of EMNLP.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.

(2011). Distributed optimization and statistical learning

via the alternating direction method of multipliers. Foun-

dations and Trends® in Machine learning, 3(1):1–122.

Chen, L.-C., Schwing, A., Yuille, A., and Urtasun, R. (2015).

Learning deep structured models. In Proc. of ICML.

Chu, Y.-J. and Liu, T.-H. (1965). On the shortest arbores-

cence of a directed graph. Science Sinica, 14:1396–1400.

Clarke, F. H. (1990). Optimization and Nonsmooth Analysis.

SIAM.

Corro, C. and Titov, I. (2019a). Differentiable Perturb-

and-Parse: Semi-Supervised Parsing with a Structured

Variational Autoencoder. In Proc. of ICLR.

Corro, C. and Titov, I. (2019b). Learning latent trees with

stochastic perturbations and differentiable dynamic pro-

gramming. In Proc. of ACL.

Djolonga, J. and Krause, A. (2017). Differentiable learning

of submodular models. In Proc. of NeurIPS.

Domke, J. (2013). Learning graphical model parame-

ters with approximate marginal inference. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

35(10):2454–2467.

Edmonds, J. (1967). Optimum branchings. J. Res. Nat. Bur.

Stand., 71B:233–240.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic

programming. Nav. Res. Log., 3(1-2):95–110.

Gabay, D. and Mercier, B. (1976). A dual algorithm for

the solution of nonlinear variational problems via finite

element approximation. Computers & Mathematics with

Applications, 2(1):17–40.

Gidel, G., Pedregosa, F., and Lacoste-Julien, S. (2018).

Frank-Wolfe splitting via augmented Lagrangian method.

In Proc. of AISTATS.

Globerson, A. and Jaakkola, T. (2007). Fixing Max-Product:

Convergent message passing algorithms for MAP LP-

relaxations. In Proc. of NeurIPS.

Glowinski, R. and Marroco, A. (1975). Sur l’approximation,

par éléments finis d’ordre un, et la résolution, par

pénalisation-dualité d’une classe de problèmes de Dirich-

let non linéaires. ESAIM: Mathematical Modelling and

Numerical Analysis-Modélisation Mathématique et Anal-

yse Numérique, 9(R2):41–76.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz,

R. S., and Guo, E. (2016). On differentiating parame-

terized argmin and argmax problems with application to

bi-level optimization. preprint arXiv:1607.05447.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.

http://eigen.tuxfamily.org.

Jonker, R. and Volgenant, A. (1987). A shortest augmenting

path algorithm for dense and sparse linear assignment

problems. Computing, 38(4):325–340.

Katakis, I., Tsoumakas, G., and Vlahavas, I. (2008). Multil-

abel text classification for automated tag suggestion. In

Proc. of ECML/PKDD.

Kim, Y., Denton, C., Hoang, L., and Rush, A. M. (2017).

Structured attention networks. In Proc. ICLR.

Kolmogorov, V. (2006). Convergent Tree-Reweighted Mes-

sage Passing for energy minimization. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

28(10):1568–1583.

Komodakis, N., Paragios, N., and Tziritas, G. (2007). MRF

optimization via dual decomposition: Message-Passing

revisited. In Proc. of ICCV.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and Sontag,

D. (2010). Dual decomposition for parsing with non-

projective head automata. In Proc. of EMNLP.

Krishnan, R. G., Lacoste-Julien, S., and Sontag, D. (2015).

Barrier Frank-Wolfe for marginal inference. In Proc. of

NeurIPS.

Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001).

Factor graphs and the sum-product algorithm. IEEE T.

Inform. Theory, 47(2):498–519.

https://ieeexplore.ieee.org/document/5582062
https://ieeexplore.ieee.org/document/5582062
http://www.cmap.polytechnique.fr/~jaggi/NIPS-workshop-FW-greedy/papers/belanger_sheldon_mccallum_final.pdf
https://arxiv.org/abs/1805.09717
https://arxiv.org/abs/1805.09717
https://arxiv.org/abs/1805.09717
https://arxiv.org/abs/1901.02324
https://arxiv.org/abs/1901.02324
https://arxiv.org/abs/1508.05326
https://arxiv.org/abs/1508.05326
https://stanford.edu/~boyd/papers/admm_distr_stats.html<Paste>
https://stanford.edu/~boyd/papers/admm_distr_stats.html<Paste>
http://proceedings.mlr.press/v37/chenb15.pdf
http://epubs.siam.org/doi/book/10.1137/1.9781611971309
https://arxiv.org/abs/1807.09875
https://arxiv.org/abs/1807.09875
https://arxiv.org/abs/1807.09875
https://www.aclweb.org/anthology/P19-1551/
https://www.aclweb.org/anthology/P19-1551/
https://www.aclweb.org/anthology/P19-1551/
http://papers.nips.cc/paper/6702-differentiable-learning-of-submodular-models
http://papers.nips.cc/paper/6702-differentiable-learning-of-submodular-models
https://arxiv.org/abs/1301.3193
https://arxiv.org/abs/1301.3193
https://doi.org/10.6028%2Fjres.071b.032
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1002/nav.3800030109
https://www.sciencedirect.com/science/article/pii/0898122176900031
https://www.sciencedirect.com/science/article/pii/0898122176900031
https://www.sciencedirect.com/science/article/pii/0898122176900031
http://proceedings.mlr.press/v84/gidel18a.html
https://papers.nips.cc/paper/3200-fixing-max-product-convergent-message-passing-algorithms-for-map-lp-relaxations
https://papers.nips.cc/paper/3200-fixing-max-product-convergent-message-passing-algorithms-for-map-lp-relaxations
https://papers.nips.cc/paper/3200-fixing-max-product-convergent-message-passing-algorithms-for-map-lp-relaxations
https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/1607.05447
https://arxiv.org/abs/1607.05447
http://eigen.tuxfamily.org
https://link.springer.com/article/10.1007/BF02278710
https://link.springer.com/article/10.1007/BF02278710
https://link.springer.com/article/10.1007/BF02278710
https://pdfs.semanticscholar.org/1570/99d6ffd3ffca8cfca7955aff7c5f1a979ac9.pdf
https://pdfs.semanticscholar.org/1570/99d6ffd3ffca8cfca7955aff7c5f1a979ac9.pdf
http://arxiv.org/abs/1702.00887
http://ieeexplore.ieee.org/document/1677515/
http://ieeexplore.ieee.org/document/1677515/
http://ieeexplore.ieee.org/document/4408890/
http://ieeexplore.ieee.org/document/4408890/
http://ieeexplore.ieee.org/document/4408890/
https://www.aclweb.org/anthology/D10-1125/
https://www.aclweb.org/anthology/D10-1125/
https://arxiv.org/abs/1511.02124
https://doi.org/10.1109/18.910572

LP-SparseMAP

Kuhn, H. W. (1955). The Hungarian method for the assign-

ment problem. Nav. Res. Log., 2(1-2):83–97.

Liu, Y. and Lapata, M. (2018). Learning structured text

representations. TACL, 6:63–75.

Martins, A. F. and Astudillo, R. F. (2016). From softmax to

sparsemax: A sparse model of attention and multi-label

classification. In Proc. of ICML.

Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith,

N. A., and Xing, E. P. (2015). AD3: Alternating direc-

tions dual decomposition for MAP inference in graphical

models. JMLR, 16(1):495–545.

McDonald, R. T. and Satta, G. (2007). On the complexity of

non-projective data-driven dependency parsing. In Proc.

of ICPT.

Meshi, O., Mahdavi, M., and Schwing, A. G. (2015).

Smooth and strong: MAP inference with linear conver-

gence. In Proc. of NeurIPS.

Nangia, N. and Bowman, S. (2018). ListOps: A diagnostic

dataset for latent tree learning. In Proc. of NAACL SRW.

Neubig, G., Dyer, C., Goldberg, Y., Matthews, A., Am-

mar, W., Anastasopoulos, A., Ballesteros, M., Chiang,

D., Clothiaux, D., Cohn, T., Duh, K., Faruqui, M., Gan,

C., Garrette, D., Ji, Y., Kong, L., Kuncoro, A., Kumar,

G., Malaviya, C., Michel, P., Oda, Y., Richardson, M.,

Saphra, N., Swayamdipta, S., and Yin, P. (2017). DyNet:

The dynamic neural network toolkit. arXiv e-prints.

Niculae, V., Martins, A. F., Blondel, M., and Cardie, C.

(2018). SparseMAP: Differentiable sparse structured

inference. In Proc. of ICML.

Nocedal, J. and Wright, S. (1999). Numerical Optimization.

Springer New York.

Oliphant, T. E. (2006). A guide to NumPy, volume 1. Trelgol

Publishing USA.

Omladic, M. (1987). Spectra of the difference and product of

projections. Proceedings of the American Mathematical

Society, 99:317–317.

Pardalos, P. M. and Kovoor, N. (1990). An algorithm for

a singly constrained class of quadratic programs subject

to upper and lower bounds. Mathematical Programming,

46(1-3):321–328.

Parikh, A., Täckström, O., Das, D., and Uszkoreit, J. (2016).

A decomposable attention model for natural language

inference. In Proc. of EMNLP.

Parikh, N. and Boyd, S. (2014). Proximal algorithms. Foun-

dations and Trends® in Optimization, 1(3):127–239.

Peng, H., Thomson, S., and Smith, N. A. (2018). Backprop-

agating through structured argmax using a SPIGOT. In

Proc. of ACL.

Pennington, J., Socher, R., and Manning, C. D. (2014).

GloVe: Global vectors for word representation. In Proc.

of EMNLP.

Peters, B., Niculae, V., and Martins, A. F. (2019). Sparse

sequence-to-sequence models. In Proc. ACL.

Piziak, R., Odell, P., and Hahn, R. (1999). Constructing

projections on sums and intersections. Computers &

Mathematics with Applications, 37(1):67–74.

Rabiner, L. R. (1989). A tutorial on Hidden Markov Models

and selected applications in speech recognition. P. IEEE,

77(2):257–286.

Rajeswaran, A., Finn, C., Kakade, S., and Levine, S.

(2019). Meta-learning with implicit gradients. In Proc.

of NeurIPS.

Stoyanov, V., Ropson, A., and Eisner, J. (2011). Empirical

risk minimization of graphical model parameters given

approximate inference, decoding, and model structure. In

Proc. of AISTATS.

Tang, K., Ruozzi, N., Belanger, D., and Jebara, T. (2016).

Bethe learning of graphical models via MAP decoding.

In Proc. of AISTATS.

Taskar, B. (2004). Learning Structured Prediction Mod-

els: A Large Margin Approach. PhD thesis, Stanford

University.

Valiant, L. G. (1979). The complexity of computing the

permanent. Theor. Comput. Sci., 8(2):189–201.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference

Manual. CreateSpace, Scotts Valley, CA.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,

Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,

Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,

Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.

R. J., Jones, E., Kern, R., Larson, E., Carey, C., Polat,

İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D.,

Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,

Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,

F., van Mulbregt, P., and Contributors, S. . . (2020). SciPy

1.0: Fundamental Algorithms for Scientific Computing

in Python. Nature Methods.

Wainwright, M., Jaakkola, T., and Willsky, A. (2005). MAP

estimation via agreement on trees: Message-Passing and

Linear Programming. IEEE Transactions on Information

Theory, 51(11):3697–3717.

http://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109/abstract
http://onlinelibrary.wiley.com/doi/10.1002/nav.3800020109/abstract
https://arxiv.org/abs/1705.09207
https://arxiv.org/abs/1705.09207
https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
https://arxiv.org/abs/1602.02068
http://jmlr.org/papers/v16/martins15a.html
http://jmlr.org/papers/v16/martins15a.html
http://jmlr.org/papers/v16/martins15a.html
https://dl.acm.org/citation.cfm?id=1621410.1621426
https://dl.acm.org/citation.cfm?id=1621410.1621426
https://papers.nips.cc/paper/5710-smooth-and-strong-map-inference-with-linear-convergence
https://papers.nips.cc/paper/5710-smooth-and-strong-map-inference-with-linear-convergence
https://www.aclweb.org/anthology/N18-4013
https://www.aclweb.org/anthology/N18-4013
https://arxiv.org/abs/1701.03980
https://arxiv.org/abs/1701.03980
https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1802.04223
https://doi.org/10.1007/b98874
https://web.mit.edu/dvp/Public/numpybook.pdf
https://www.ams.org/journals/proc/1987-099-02/S0002-9939-1987-0870792-X/
https://www.ams.org/journals/proc/1987-099-02/S0002-9939-1987-0870792-X/
https://doi.org/10.1007/BF01585748
https://doi.org/10.1007/BF01585748
https://doi.org/10.1007/BF01585748
https://arxiv.org/abs/1606.01933
https://arxiv.org/abs/1606.01933
http://web.stanford.edu/~boyd/papers/prox_algs.html
https://arxiv.org/abs/1805.04658
https://arxiv.org/abs/1805.04658
https://nlp.stanford.edu/pubs/glove.pdf
https://arxiv.org/abs/1802.04223
https://arxiv.org/abs/1802.04223
https://www.sciencedirect.com/science/article/pii/S0898122198002429
https://www.sciencedirect.com/science/article/pii/S0898122198002429
https://doi.org/10.1109/5.18626
https://doi.org/10.1109/5.18626
http://arxiv.org/abs/1909.04630
http://proceedings.mlr.press/v15/stoyanov11a.html
http://proceedings.mlr.press/v15/stoyanov11a.html
http://proceedings.mlr.press/v15/stoyanov11a.html
http://proceedings.mlr.press/v51/tang16a.pdf
https://homes.cs.washington.edu/~taskar/pubs/thesis.pdf
https://homes.cs.washington.edu/~taskar/pubs/thesis.pdf
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1016/0304-3975(79)90044-6
https://dl.acm.org/doi/book/10.5555/1593511
https://dl.acm.org/doi/book/10.5555/1593511
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://arxiv.org/abs/cs/0508070
https://arxiv.org/abs/cs/0508070
https://arxiv.org/abs/cs/0508070

LP-SparseMAP

Wainwright, M. J. and Jordan, M. I. (2008). Graphical

models, exponential families, and variational inference.

Found. Trends Mach. Learn., 1(1–2):1–305.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The

NumPy array: a structure for efficient numerical computa-

tion. Computing in Science & Engineering, 13(2):22–30.

Williams, A., Drozdov, A., and Bowman, S. R. (2018). Do

latent tree learning models identify meaningful structure

in sentences? TACL.

Williams, A., Nangia, N., and Bowman, S. R. (2017). A

broad-coverage challenge corpus for sentence understand-

ing through inference. preprint arXiv:1704.05426.

Wolfe, P. (1976). Finding the nearest point in a polytope.

Mathematical Programming, 11(1):128–149.

Yogatama, D., Blunsom, P., Dyer, C., Grefenstette, E., and

Ling, W. (2017). Learning to compose words into sen-

tences with reinforcement learning. In Proc. of ICLR.

https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
https://people.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf
https://arxiv.org/abs/1102.1523
https://arxiv.org/abs/1102.1523
https://arxiv.org/abs/1102.1523
https://arxiv.org/abs/1709.01121
https://arxiv.org/abs/1709.01121
https://arxiv.org/abs/1709.01121
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/1704.05426
https://arxiv.org/abs/1704.05426
https://link.springer.com/article/10.1007/BF01580381
https://arxiv.org/abs/1611.09100
https://arxiv.org/abs/1611.09100

	Introduction
	Background
	Notation
	Tractable structured problems
	Intractable structured problemsand factor graph representations

	LP-SparseMAP
	Forward pass
	Backward pass
	Implementation and specializations

	LP-SparseMAP loss for structured outputs
	Experiments
	ListOps valency tagging
	Natural language inferencewith decomposable structured attention
	Multilabel classification

	Related work
	Conclusions

